Amynothrips Andersoni Distinguishing Features Both Sexes Either Fully Winged Or with Wings Shorter Than Thorax Width

Total Page:16

File Type:pdf, Size:1020Kb

Amynothrips Andersoni Distinguishing Features Both Sexes Either Fully Winged Or with Wings Shorter Than Thorax Width Amynothrips andersoni Distinguishing features Both sexes either fully winged or with wings shorter than thorax width. Body, legs and antennae brown, fore tarsi and antennal segment III sometimes paler; fore wing weakly shaded. Antennae 8-segmented; segments III & IV with apex truncate, 2 sense cones on III, 4 on IV; segment VIII slender. Head longer than wide, Short-winged femaleAntenna Head & pronotum without sculpture dorsally; eyes much larger dorsally than ventrally; postocular setae wide apart, apices blunt; maxillary stylets retracted to postocular setae, one third of head width apart with slender maxillary bridge. Pronotum with no sculpture medially; anteromarginal setae minute; remaining 4 pairs of major setae unstable in size and shape, long or very short; paired prosternal basantra present. Fore tarsus with small Mesonotum, metanotum, pelta & Tergites IX–X (tube) hooked tooth at inner apex. Metanotum reticulate. Fore wings tergite II parallel sided, without duplicated cilia. Pelta reticulate; tergites II & VII with wing retaining setae weak, sigmoid on III–VI; tergite IX setae S1 bluntly pointed, about as long as tube. Male smaller, tergite IX setae S2 short and stout; sternite VIII with broadly transverse pore plate. Related species The genus Amynothrips includes only one species. Although this has prosternal basantra similar to those found in Haplothrips and its relatives, the fore wing is parallel sided not constricted medially. Biological data Breeding on the leaves of Alligator weed, Alternanthera philoxeroides [Amaranthaceae], of which aquatic weed it is a useful biological control agent (O'Neill, 1968). Distribution data Native to Argentina, Brazil, Paraguay, and Uruguay, but introduced to USA and Australia (Mound & Marullo, 1996). Family name PHLAEOTHRIPIDAE, PHLAEOTHRIPINAE Species name Amynothrips andersoni O'Neill Original name and synonyms Amynothrips andersoni O'Neill, 1968: 179 References Mound LA & Marullo R (1996) The Thrips of Central and South America: An Introduction. Memoirs on Entomology, International 6: 1–488. O'Neill K (1968) Amynothrips andersoni, a new genus and species injurious to alligatorweed (Thysanoptera: Phlaeothripidae). Proceedings of the Entomological Society of Washington 70 (2): 175–183..
Recommended publications
  • Thysanoptera (Insecta) of Barrow Island, Western Australia
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 83 287–290 (2013) SUPPLEMENT Thysanoptera (Insecta) of Barrow Island, Western Australia Laurence A. Mound CSIRO Ecosystem Sciences, Canberra, ACT 2601, Australia. Email: [email protected] ABSTRACT – Almost 50 species of the insect order Thysanoptera are here listed from Barrow Island, Western Australia, of which several are known only from this island. This cannot be interpreted as indicating that any species is endemic to the island, because almost nothing is known of the Thysanoptera fauna of the nearby mainland. KEYWORDS: Thysanoptera, thrips, Barrow Island INTRODUCTION taxa that have been recognised from the available samples. The Australian fauna of the insect order Thysanoptera is far from exhaustively known. Within the order Thysanoptera, two suborders The number of correctly identified species from are recognised, both of which are well represented this continent was less than 20 in 1915, about 225 on Barrow Island. The Tubulifera comprises in 1960, and almost 400 by 1995. However, even a single family, Phlaeothripidae, whereas the Terebrantia includes five families in Australia the total of 830 species now listed (ABRS 2012) (Mound et al. 2012), of which three were found in seems likely to represent little more than 50% of the Barrow Island samples. Nomenclatural details the real fauna (Mound et al. 2012). Field studies of Thysanoptera taxa are not given here, but are have been concentrated primarily on parts of New fully web-available (ThripsWiki 2013; ABRS 2012). South Wales, eastern Queensland and Central Australia. Only limited field work has been carried BARROW ISLAND THYSANOPTERA- out in most of Western Australia, moreover the TEREBRANTIA northern tropics of Australia as well as the forests of Tasmania and Victoria remain little sampled.
    [Show full text]
  • Integrated Pest Management: Current and Future Strategies
    Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P.
    [Show full text]
  • Haplothrips Leucanthemi Distinguishing Features Both Sexes Fully Winged
    Haplothrips leucanthemi Distinguishing features Both sexes fully winged. Body brown to dark brown, fore tarsi and base of antennal segment III yellow; fore wing pale with base extensively shaded. Head slightly longer than wide; maxillary stylets one third of head width apart, retracted to postocular setae, maxillary bridge complete; postocular setae short and acute, usually not reaching posterior margin of compound eyes. Antennae 8-segmented, segment III with 2 sense cones, IV with 4 sense cones; VIII short and broad at base. Pronotal setae small and acute, anteromarginal and midlateral setae no longer than discal setae; prosternal basantra and ferna present, mesopresternum eroded to paired lateral triangles. Fore tarsal tooth minute in female. Fore wing constricted medially, with 7–12 duplicated cilia, sub-basal setae acute or blunt. Tergite Antenna IX setae S1 bluntly pointed, much shorter than tube, S2 acute. Male with large fore tarsal tooth; tergite IX setae S2 short and stout; pseudovirga of aedeagus slender. Related species The genus Haplothrips comprises 240 described species worldwide, of which only four are recorded from New Zealand, and none of these seems to be endemic. H. leucanthemi is a European species that is particularly associated with the flowers of Chrysanthemum leucanthemum. A form of this species is associated with red clover flowers and has been known as H. niger, but this is considered to be a parthenogenetic strain of H. leucanthemi. This thrips is remarkable among Haplothrips species in Head & pronotum having unusually short setae on the head and pronotum. Biological data Breeding and pupating within flowers, particularly Chrysanthemum leucanthemum (Asteraceae), but also Trifolium sp.
    [Show full text]
  • Programme and Book of Abstracts
    MONDAY SEPTEMBER 17 19 MANAGING INVASIVE PLANTS IN AUSTRALIA: A DECADE OF ACHIEVEMENT McFadyen R Cooperative Research Centre for Australian Weed Management, Indooroopilly, Brisbane Qld The first Cooperative Research Centre (CRC) for Weeds started in 1995 and the National Weeds Strategy was launched in 1997. The first national eradication campaign against an invasive plant started in 1994, and a ‘Permitted List’ system was adopted in 1998 for entry of new plant species into Australia, using a Weed Risk Assessment System. These were major advances in the management of invasive plants in Australia, and this paper discusses the critical policy issues and turning points along the way. It also considers where policy has failed and the critical challenges for the future. 20 21 CURRENT AND POTENTIAL GEOPHYTE WEEDS OF SOUTH-WESTERN AUSTRALIA Keighery GJ Department of Environment and Conservation, Science Division, Wanneroo, WA [email protected] South Western Australia is an internationally recognised biodiversity hotspot for flowering plants, containing over 6,000 species of which 75% are endemic. Altered land use since European settlement has lead to 1234 naturalised plants becoming established. These now pose a major threat to this biodiversity. Unlike SE Australia shrubs are a minor component of this weed flora, major weeds are grasses, annuals (Peas, Daisies and Brassicaceae) or geophytes. The 107 geophytic weeds present in Western Australia come from 18 families of plants, both Monocots and Dicots, although nearly half are cormous Iridaceae from southern Africa. Unlike many other areas of similar climates, Southern Western Australia is depauperate in geophytes, with about 200 species in our flora of c.
    [Show full text]
  • Thysanoptera: Phlaeothripinae, Leeuweniini), with Comments on Related Old World Taxa
    Blackwell Science, LtdOxford, UKAENAustralian Journal of Entomology1326-67562004 Australian Entomological SocietyMarch 20044312837Original ArticleAustralian long-tailed gall thripsLaurence A Mound Australian Journal of Entomology (2004) 43, 28–37 Australian long-tailed gall thrips (Thysanoptera: Phlaeothripinae, Leeuweniini), with comments on related Old World taxa Laurence A Mound CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia. Abstract The Tribe Leeuweniini is a group of Old World Phlaeothripinae species that feed and usually induce irregular galls on the leaves of rainforest trees. These thrips all have the last abdominal segment unusually elongate, but this is a variable and homoplastic character state, and the tribe remains ill- defined. Worldwide, 27 species in three genera are now recognised, with five other generic names here included as synonyms of Leeuwenia Karny. From Australia, six species in two genera are recorded here occurring in the eastern rainforests. Four newly described Australian species and their host plants are: Leeuwenia diospyri sp. n. (Diospyros pentamera–Ebenaceae); L. polyosmae sp. n. (Polyosma cunninghamii–Grossulariaceae); L. scolopiae sp. n. (Scolopia braunii–Flacourtiaceae); and L. tetrastigmae sp. n. (Tetrastigma nitens–Vitaceae). The host association of L. convergens Hood is not known, but the sixth species, Neohoodiella jennibeardae Mound and Williams, breeds on two unrelated plants of which the leaves are similar in texture – Ficus coronata (Moraceae) and Rhipogonum elseyanum (Smilacaceae). Key words galls, Leeuwenia, Neohoodiella, rainforest trees. INTRODUCTION that was found living in an abandoned weevil mine on an Acacia phyllode in Queensland. In contrast to other insects, adults of the 3500 named species This paper gives some account of the six Australian mem- in the thysanopteran family Phlaeothripidae have the tenth bers of an Old World group of 27 described thrips species in abdominal segment forming a complete tube.
    [Show full text]
  • Haplothrips Aliakbarii Sp. Nov. (Thysanoptera: Phlaeothripidae): a New Thrips on Oak Trees from Ilam Province (Western Iran)
    Turkish Journal of Zoology Turk J Zool (2018) 42: 608-613 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Short Communication doi:10.3906/zoo-1805-27 Haplothrips aliakbarii sp. nov. (Thysanoptera: Phlaeothripidae): a new thrips on oak trees from Ilam Province (western Iran) Majid MIRAB-BALOU*, Behzad MIRI Department of Plant Protection, College of Agriculture, Ilam University, Ilam, Iran Received: 18.05.2018 Accepted/Published Online: 12.08.2018 Final Version: 17.09.2018 Abstract: Haplothrips aliakbarii sp. nov. (Phlaeothripidae: Phlaeothripinae) is described and illustrated from Ilam Province, western Iran. This new species was collected on the leaves of oak trees (Quercus brantii). An identification key for Iranian species of Haplothrips is presented. Key words: Haplothrips, new species, oak, key, Iran Species of the large genus Haplothrips Amyot & Serville Bagnall, H. kurdjumovi Karny, H. longipes Bagnall, H. (Phlaeothripinae: Haplothripini) are found worldwide, maroccanus Priesner, H. minutes Uzel, H. phyllophilus with 242 extant species (Mound and Matsunaga, 2017). Priesner, H. rabinovitchi Priesner, and H. subtilissimus This genus is divided into two subgenera, Haplothrips and (Haliday). Trybomiella, which are distinguished by the presence or In this paper, we describe a new species of Haplothrips absence of fore wings with duplicated cilia (Minaei and that was collected on the leaves of oak trees in Ilam Mound, 2008). Species of this genus are usually brown and Province, western Iran. An identification key is also are readily recognized from the head gradually narrowed provided for 21 species of Haplothrips from Iran (Minaei towards base, postocular setae pointed, blunt or expanded; and Mound, 2008), and an updated key is provided for antennae 8-segmented, segment III with one or two sense Iranian species of this genus.
    [Show full text]
  • Hoplothrips Karnyi Distinguishing Features Both Sexes Either Fully Winged Or with Wings Shorter Than Thorax Width
    Hoplothrips karnyi Distinguishing features Both sexes either fully winged or with wings shorter than thorax width. Body and legs brown, tarsi and much of fore tibiae yellow, also hind tibiae sometimes yellow at base; antennal segment III mainly yellow, IV–VI variably yellow at base; fore wings weakly Pelta & tergite II shaded toward apex. Antennae 8-segmented; sense Female Antenna cones longer in winged than wingless individuals, segment III with 3 sense cones, IV with 4 sense cones; VIII constricted to base. Head longer than wide, slightly wider across cheeks than across eyes, cheeks without prominent tubercles, but with several small setae in wingless individuals; postocular setae long Male sternite VIII and pointed, wide apart; maxillary stylets retracted to eyes, close together medially. Pronotum without sculpture medially; with four pairs of slender pointed major setae, anteromarginal setae Male head, pronotum & fore legs small. Fore tarsal tooth small in winged but large in wingless individuals. Metanotum without sculpture medially. Fore wing parallel sided, with about 10 duplicated cilia. Abdominal tergites II–VII with two pairs of sigmoid wing-retaining setae, even in wingless individuals, marginal setae S1 long and pointed; tergite IX setae S1 pointed, almost as long as tube. Male varying in size, large males with fore femora swollen; tergite IX setae S2 short and stout; sternite VIII with transverse pore plate extending full width of sternite. Related species This species is not known from California, but is included here as one specimen has been seen from British Colombia. H. karnyi from North America is possibly the same species as the European H.
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • Thysanoptera, Aeolothripidae) from Iran
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Linzer biol. Beitr. 46/1 637-642 31.7.2014 New record of predatory thrips, Aeolothrips melaleucus (Thysanoptera, Aeolothripidae) from Iran K. MINAEI Abstract: A predatory species, Aeolothrips melaleucus (HALIDAY) is recorded on the base of materials collected on apple and bean caper leaves in Fars Province, south of Iran. The species is very similar to another predatory thrips Aeolothrips versicolor UZEL in forewing in which posterior margin of forewing is dark except at base and apex in both species. The characters on which these two species are separated together with illustrations are provided and predatory habitat of A. melaleucus is discussed briefly. Key words: Aeolothrips, biology, Fars Province, predator. Introduction Most members of the insects, order Thysanoptera or thrips are phytophagous on living plants or mycophagous on dead branches and in leaf litter (MOUND 1997). However a widespread behavioral attribute amongst these tiny insects has been demonstrated. Some thrips play role as pollinators (LEWIS 1973), some induce gall (CRESPI et al. 2004) and a few have been recorded as obligate predator (PALMER & MOUND 1991). Moreover, larvae and adults of species in the genus Aulacothrips (Heterothripidae) have become ectoparasite on some members of insect order Hemiptera in Brazil (CAVALLERI et al. 2010, 2012). More recently CAVALLERI et al. (2013) reported a novel interaction between a phlaeothripd (family Phlaeothripidae) species, Mirothrips arbiter, and three species of social paper wasps, the genus Polistes (Vespidae). This thrips species breeds inside the wasp colonies, and larval and adult thrips feed on wasp eggs, which become severely damaged.
    [Show full text]
  • Thysanoptera)
    A peer-reviewed open-access journal ZooKeys 786: 59–68 (2018)One generic synonym and one new species of Phlaeothripidae... 59 doi: 10.3897/zookeys.786.28332 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research One generic synonym and one new species of Phlaeothripidae from India (Thysanoptera) Kaomud Tyagi1, Devkant Singha1,2, Goutam Kumar Saha2, Vikas Kumar1 1 Centre for DNA Taxonomy (CDT), Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India 2 Department of Zoology, University of Calcutta, West Bengal, India Corresponding author: Kaomud Tyagi ([email protected]) Academic editor: Laurence Mound | Received 12 July 2018 | Accepted 3 August 2018 | Published 25 September 2018 http://zoobank.org/BFDE9229-D4F5-4FCF-B9FD-59AF8C1FA826 Citation: Tyagi K, Singha D, Saha GK, Kumar V (2018) One generic synonym and one new species of Phlaeothripidae from India (Thysanoptera). ZooKeys 786: 59–68.https://doi.org/10.3897/zookeys.786.28332 Abstract Haplothrips shivendraii Tyagi & Kumar, sp. n. is described from Rajasthan state of India. The monobasic Austro-oriental genus Dyothrips Kudô is formally synonymised with Haplothrips. Keywords Dyothrips, Haplothrips, India, new species, synonym. Introduction The generaHaplothrips , Dyothrips, and Plicothrips belong to tribe Haplothripini in the subfamily Phlaeothripinae, family Phlaeothripidae (Mound and Minaei 2007, Minaei and Mound 2008). Haplothrips was erected by Amyot and Serville (1843) for the single species, Phloeothrips albipennis Burmeister, 1836. It is the second largest genus in the family Phlaeothripidae and comprises the two subgenera Haplothrips and Trybomiella. These are distinguished by the presence or absence of fore wing duplicated cilia, pre- sent in Haplothrips and absent in Trybomiella.
    [Show full text]
  • First Insight Into Microbiome Profile of Fungivorous Thrips Hoplothrips Carpathicus (Insecta: Thysanoptera) at Different Develop
    www.nature.com/scientificreports OPEN First insight into microbiome profle of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) Received: 19 January 2018 Accepted: 12 September 2018 at diferent developmental stages: Published: xx xx xxxx molecular evidence of Wolbachia endosymbiosis Agnieszka Kaczmarczyk 1, Halina Kucharczyk2, Marek Kucharczyk3, Przemysław Kapusta4, Jerzy Sell1 & Sylwia Zielińska5,6 Insects’ exoskeleton, gut, hemocoel, and cells are colonized by various microorganisms that often play important roles in their host life. Moreover, insects are frequently infected by vertically transmitted symbionts that can manipulate their reproduction. The aims of this study were the characterization of bacterial communities of four developmental stages of the fungivorous species Hoplothrips carpathicus (Thysanoptera: Phlaeothripidae), verifcation of the presence of Wolbachia, in silico prediction of metabolic potentials of the microorganisms, and sequencing its mitochondrial COI barcode. Taxonomy- based analysis indicated that the bacterial community of H. carpathicus contained 21 bacterial phyla. The most abundant phyla were Proteobacteria, Actinobacteria, Bacterioidetes and Firmicutes, and the most abundant classes were Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Betaproteobacteria, with diferent proportions in the total share. For pupa and imago (adult) the most abundant genus was Wolbachia, which comprised 69.95% and 56.11% of total bacterial population respectively. Moreover, similarity analysis of bacterial communities showed that changes in microbiome composition are congruent with the successive stages of H. carpathicus development. PICRUSt analysis predicted that each bacterial community should be rich in genes involved in membrane transport, amino acid metabolism, carbohydrate metabolism, replication and repair processes. Insects are by far the most diverse and abundant animal group, in numbers of species globally, in ecological habits, and in biomass1.
    [Show full text]
  • Forest Health Technology Enterprise Team Biological Control of Invasive
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control Biological Control of Invasive Plants in the Eastern United States Roy Van Driesche Bernd Blossey Mark Hoddle Suzanne Lyon Richard Reardon Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2002-04 Department of Service August 2002 Agriculture BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES Technical Coordinators Roy Van Driesche and Suzanne Lyon Department of Entomology, University of Massachusets, Amherst, MA Bernd Blossey Department of Natural Resources, Cornell University, Ithaca, NY Mark Hoddle Department of Entomology, University of California, Riverside, CA Richard Reardon Forest Health Technology Enterprise Team, USDA, Forest Service, Morgantown, WV USDA Forest Service Publication FHTET-2002-04 ACKNOWLEDGMENTS We thank the authors of the individual chap- We would also like to thank the U.S. Depart- ters for their expertise in reviewing and summariz- ment of Agriculture–Forest Service, Forest Health ing the literature and providing current information Technology Enterprise Team, Morgantown, West on biological control of the major invasive plants in Virginia, for providing funding for the preparation the Eastern United States. and printing of this publication. G. Keith Douce, David Moorhead, and Charles Additional copies of this publication can be or- Bargeron of the Bugwood Network, University of dered from the Bulletin Distribution Center, Uni- Georgia (Tifton, Ga.), managed and digitized the pho- versity of Massachusetts, Amherst, MA 01003, (413) tographs and illustrations used in this publication and 545-2717; or Mark Hoddle, Department of Entomol- produced the CD-ROM accompanying this book.
    [Show full text]