2014 MIT Briefing Book
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Department of Biology, Report to the President 2016-2017
Department of Biology Academic year 2016–2017 was exciting and productive for the Department of Biology. The department is considered one of the best biological science departments in the world. Our superb faculty members are leaders in biological research and education. Some of the news regarding our faculty, research, and educational programs is highlighted below. Faculty Count and Departures During AY2017, the Department of Biology had 56 faculty members: 44 full professors, eight associate professors, and four assistant professors. Research homes are distributed among Building 68, the Broad Institute, the Koch Institute for Integrative Cancer Research, the Picower Institute for Learning and Memory, and the Whitehead Institute for Biomedical Research. In addition to 56 primary faculty members, there were six faculty members with secondary appointments in Biology. These joint faculty members provide important connections to other departments, including Brain and Cognitive Sciences, Chemistry, Biological Engineering, and Civil and Environmental Engineering. We are saddened by the loss of Professor Susan Lindquist, who passed away in October 2016. Hidde Ploegh (Whitehead Institute) moved to Children’s Hospital in January 2017. Professor William (Chip) Quinn (Biology/Brain and Cognitive Sciences) retired in July 2016. Faculty Awards Department of Biology faculty members are widely recognized for their contributions to the field. Among our core faculty are three Nobel Laureates, 30 members of the National Academy of Sciences, 28 members of the American Academy of Arts and Sciences, 14 fellows of the American Association for the Advancement of Science, four recipients of the National Science Foundation National Medal of Science, and 15 Howard Hughes Medical Institute (HHMI) investigators. -
2008-Annual-Report.Pdf
whitehead institute 2008 AnnuAl RepoRt. a year in the life of a scientific community empowered to explore biology’s most fundamental questions for the betterment of human health. whitehead institute 2008 annual report a Preserving the mission, contents facing the future 1 preserving the mission, it’s customary in this space to recount and reflect facing the future on the accomplishments of the year gone by. i’ll certainly do so here—proudly—but in many 5 scientific achievement important ways, 2008 was about positioning the institute for years to come. 15 principal investigators many colleges, universities, and independent 30 whitehead fellows research institutions found themselves in dire fiscal positions at the close of 2008 and entered 34 community evolution 2009 in operational crisis reflective of the global economic environment. hiring freezes and large- 40 honor roll of donors scale workforce reductions have become the norm. although whitehead institute is certainly not 46 financial summary insulated from the impact of the downturn, i am 48 leadership pleased and somewhat humbled to report that the institute remains financially strong and no less 49 sited for science committed to scientific excellence. david page, director over the past two years, we have been engaged in a focused effort to increase efficiency and editor & direCtor reduce our administrative costs, with the explicit goal of ensuring that as much of the institute’s matt fearer revenue as possible directly supports Whitehead research. Our approach, which has resulted in assoCiate editor nicole giese a 10-percent reduction in operational expense, has been carefully considered. every decision offiCe of CommuniCation and PubliC affairs has been evaluated not just for its potential effects on our scientific mission, but also for 617.258.5183 www.whitehead.mit.edu possible consequences to the whitehead community and its unique culture. -
Volume 3 Summer 2012
Volume 3 Summer 2012 . Academic Partners . Cover image Magnetic resonance image of the human brain showing colour-coded regions activated by smell stimulus. Editors Ulisses Barres de Almeida Max-Planck-Institut fuer Physik [email protected] Juan Rojo TH Unit, PH Division, CERN [email protected] [email protected] Academic Partners Fondazione CEUR Consortium Nova Universitas Copyright ©2012 by Associazione EURESIS The user may not modify, copy, reproduce, retransmit or otherwise distribute this publication and its contents (whether text, graphics or original research content), without express permission in writing from the Editors. Where the above content is directly or indirectly reproduced in an academic context, this must be acknowledge with the appropriate bibliographical citation. The opinions stated in the papers of the Euresis Journal are those of their respective authors and do not necessarily reflect the opinions of the Editors or the members of the Euresis Association or its sponsors. Euresis Journal (ISSN 2239-2742), a publication of Associazione Euresis, an Association for the Promotion of Scientific Endevour, Via Caduti di Marcinelle 2, 20134 Milano, Italia. www.euresisjournal.org Contact information: Email. [email protected] Tel.+39-022-1085-2225 Fax. +39-022-1085-2222 Graphic design and layout Lorenzo Morabito Technical Editor Davide PJ Caironi This document was created using LATEX 2" and X LE ATEX 2 . Letter from the Editors Dear reader, with this new issue we reach the third volume of Euresis Journal, an editorial ad- venture started one year ago with the scope of opening up a novel space of debate and encounter within the scientific and academic communities. -
ANNUAL REPORT 2019 1 Contents Director’S Letter 1
Whitehead Institute ANNUAL REPORT 2019 1 Contents Director’s Letter 1 Chair’s Letter 3 Members & Fellows 4–5 Science 6 Community 44 Philanthropy 56 2 The Changing Face of Discovery For 37 years, Whitehead Institute has demonstrated an ability to drive scientific discovery and to chart paths into new frontiers of knowledge. Its continuing achievements are due, in substan- tial part, to the unique capacities and dedication of Members who joined the Institute in the 1980s and ‘90s — from Founding Members Gerald Fink, Harvey Lodish, Rudolf Jaenisch, and Robert Weinberg to those who followed, including David Bartel, David Sabatini, Hazel Sive, Terry Orr-Weaver, Richard Young, and me. Those long-serving Members continue to do pioneering science and to be committed teachers and mentors. Yet we have begun an inevitable genera- tional transition: In the last two years, Gerry and Terry have closed their labs, and Harvey will do so this coming year. The exigencies of time mean that, increasingly, Whitehead Institute’s ability to maintain its vigorous scientific leadership depends on our next generation of researchers. As I move toward the conclusion of my term as director, I am particularly proud of the seven current Members and the 14 Whitehead Institute Fellows we recruited during the last 16 years. The newest of those stellar researchers joined us in 2019: Whitehead Institute Member Pulin Li and Whitehead Fellow Kipp Weiskopf. Pulin studies how circuits of interacting genes in individu- al cells enable multicellular functions, such as self-organizing into complex tissues, and her research brilliantly combines approaches from synthetic biology, developmental and stem cell biology, biophysics, and bioengineering to study these multicellular behaviors. -
Advanced Imaging Technology
MICROELECTRONICS LABORATORY SPOTLIGHT ON Advanced Imaging Technology KEY FEATURES • World’s lowest readout noise, Digital focal plane array. highest quantum efficiency CCD imagers MIT Lincoln Laboratory has long been a leader • Geiger-mode (GM) APDs with in advanced imaging for defense and scientific single-photon sensitivity and applications. Our imaging capabilities are broadly noiseless digital readout classified into three categories: charge-coupled • DFPAs containing a complete devices (CCDs), avalanche photodiodes (APDs), analog-to-digital converter in every pixel, enabling image and digital focal plane array (DFPA) technology. processing on the focal plane Technology in Support of National Security www.ll.mit.edu SPOTLIGHT ON Advanced Imaging Technology Charge-Coupled Devices Our CCDs are used in ground, air, and spaced-based applications of interest to the government and scientific research community. These CCDs span a range of wavelengths including visible, near infrared, ultraviolet, and soft X-ray. Among imagers employing our CCDs are the two 1.4-billion- pixel Panoramic Survey Telescope and Rapid Response System’s (Pan-STARRS) focal plane arrays, the largest focal planes fabricated to date, and the Space Surveillance Telescope’s curved focal planes that provide a uniform and wide field of view. Optical micrograph of back-illuminated CCD wafer. Geiger-Mode Avalanche Photodiodes For passive imaging, the noiseless readout of our GM-APDs enables photon counting, providing both the requisite sensitivity for low-light applications and photon count rates for high-speed imaging. APDs are also employed in active ladar systems to time-stamp photon arrival times, enabling 3D imaging in compact airborne systems. We also fabricate APD arrays on compound semiconductor materials, expanding these capabilities further into the infrared. -
Classmate Biographies
CLASSMATE BIOGRAPHIES 38 David Jeffrey Abeshouse Course: VIII Tell us about your recollections of your student years at MIT: I lived in Student House, which is essentially on the B.U. campus. If I recall correctly, it was a mile walk to MIT. That walk, in all kinds of weather, is one of my strongest, if not favorable, memories of my years there. Unless something unusual happened, I made the round trip just once a day. Student House is near Kenmore Square and Fenway Park. The gates to Fenway would open in the sixth inning then, and there were mostly afternoon games, so we would go up to the park occasionally to see, for free, the last three innings. We saw Ted Williams regularly. Student House was also next to the Charles, and it was fun to go down near the river in pleasant weather. I struggled to survive academically, but I did it. I don't remember the name of the professor who lectured our freshman chemistry course, but he spoke in a monotone, and I fell asleep practically every time. I finally went to a different lecture section. I have a poor sense of direction and was regularly lost around the campus and often rushing to get to class. Once in my sophomore year I was rushing and rounded a corner and almost flattened Norbert Wiener. He had a large abdomen, and, from my point of view, the collision was soft. The work on my senior paper was done in building 20. That was a fine place to spend a lot of time. -
Whitehead Institute Hosts Campbio for Middle School Students
Whitehead Institute Hosts CampBio for LINKS About Whitehead Pulse Middle School Students Contact COMMUNITY NOV E MB E R 8 , 2 0 1 3 B Y DUS TIN GRINNE L L Subscribe Upcoming events Whitehead home In August, Whitehead Institute joined with Science from Scientists to host the first CampBio, a weeklong science program bringing local middle school students to CATEG O RIES Whitehead Institute to learn firsthand how researchers answer biology’s most challenging questions. Community Events Honors and Awards Twentysix 7th and 8th graders attended the program, In the news participating in handson activities, laboratory Multimedia demonstrations and discussions with scientists. “We Research were one of the first research institutions in the area to invite high school students into our labs,” says Amy Tremblay, the Public Programs Officer in charge of SEARCH education and community outreach at Whitehead Institute. “We wanted to offer outreach programs to middle school students as well.” It’s a niche that needs to be met, Tremblay says, given the nation’s increasing commitment to STEM (for Science, Technology, Engineering, and Mathematics) education. Such is the credo of Science from Scientists, the leading inclass science/STEM enrichment program in Massachusetts, and codesigner of CampBio. This spring, Tremblay and her team worked with the Bostonbased nonprofit group to bring the summer program to life. “We’re on the cutting edge of biomedical science,” says Tremblay, “so what better place to introduce kids to research?” She says the students were surprisingly unfiltered during the week’s activities, unpressured by their peers and unafraid to ask questions about complex subjects. -
MIT Lincoln Laboratory Division and Group Descriptions
MIT Lincoln Laboratory Division and Group Descriptions October 2012 AIR AND MISSILE DEFENSE TECHNOLOGY DIVISION 3 The Air and Missile Defense Technology Division’s role is to work with government, industry, and laboratories to develop an integrated air and missile defense system. The division’s main focus is investigating system concepts, developing technology, building prototypes, and conducting measurements to support the development of radar and optical sensors, interceptors, and networks for air and missile defense systems. A strong emphasis is placed on partnerships and the transfer of technology to industry. Group 31—Systems and Architectures The Systems and Architectures Group examines near- and long-term technology opportunities for charting the future development of U.S. air and missile defenses. As the country proceeds with the deployment of new missile defense systems, Lincoln Laboratory and this group are working on the next generation of architectures and technologies. The group investigates advanced radar concepts, new infrared sensors, missile designs, space-based platforms, and future distributed command-and-control software to help identify opportunities to develop, test, and deploy these technologies. The group also devotes considerable effort to investigating the impact of various countermeasures on U.S. air and missile defense systems, particularly with respect to various types of electronic warfare. Staff members in the group have a wide variety of backgrounds, including physics, electrical engineering, mathematics, and astrodynamics. Group 33—Advanced Sensor Systems and Test Beds The Advanced Sensor Systems and Test Beds Group supports the Department of Defense by designing and developing modern sensor systems and components to support airborne air defense radars as well as the ballistic missile defense system. -
2-Page-Tree-Saving Format
M P Corp. SS&C Conf. .O. Box 8236 Box .O. onterey, CA 93943 CA onterey, FORTY-SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS November 4–7, 2012 Asilomar Hotel and Conference Grounds Technical Co-sponsor FORTY-SIXTH Welcome from the General Chairman ASILOMAR CONFERENCE ON Prof. Miloš Doroslovački SIGNALS, SYstEMS & COMPUTERS The George Washington University Welcome to this unique conference. Many of us come here from year to year to be exposed to new ideas and to do brainstorming Organized in cooperation with about them in an informal and relaxed way, surrounded by magnificent nature. To cite John Steinbeck, Nobel Prize laureate in literature and local to this part of California: “Ideas are like ATK SPACE SYstEMS rabbits. You get a couple and learn how to handle them, and pretty Monterey, California soon you have a dozen.” I am sure that the conference will be stimulating for your future professional endeavors. and Technical Co-sponsor The biggest credit for the intellectual value of the conference goes to the Technical Program Chair Erik G. Larsson and his team, made of Technical Area Chairs and Session Chairs, as well as to IEEE SIGNAL PROCESSING SOCIETY all of you who contributed with papers. Erik and his team prepared an excellent program of 435 papers, including 171 invited, and a tutorial session. For their outstanding work in shaping the technical program, I would like to thank Erik and the Technical Area Chairs: Henk Wymeersch, Gerald Matz, Vincent Poor, Erchin Serpedin, Marius Pesavento, Arye Nehorai, Joseph Cavallaro, Ghassan CONFERENCE COMMITTEE AlRegib and Phil Schniter. -
Mapeig D'innovació Massachusetts
MAPEIG D’INNOVACIÓ MASSACHUSETTS SECTOR BIO-IT / DIGITAL HEALTH 9 de febrer de 2016 CATALUNYA I MASSACHUSETTS CATALUNYA MASSACHUSETTS Sup. (km²) 32,107 27,360 Habitants 7,504,008 6,349,097 PIB (milions €) 199,786 427,365 PIB per càpita (€) 26,624 67,311 Atur 17.7% 4.7% R&D sobre PIB 1.5% 5.67% Universitats 12 122 MASSACHUSETTS INNOVADOR MASSACHUSETTS INNOVADOR KEY INDUSTRIES Financial Services Technology Medicine and Life Sciences Manufacturing Fishing Tourism Big Data Digital Health LIFE SCIENCES UNIVERSITATS El sistema d’ensenyament superior de Massachusetts és dual; és a dir, format per una xarxa de centres públics i una de centres privats. La majoria de les 122 institucions d’educació superior que acull l’estat, i també les més destacades en termes d’excel·lència acadèmica i investigadora, pertanyen a l’àmbit privat, encara que la potència del sistema públic també és remarcable. llistar principals amb algun indicador RECERCA? UNIVERSITATS HARVARD Any fundació: 1636 Faculty members : 2,400 Students: 21,000 Alumni: 323,000 living alumni, Budget: $4,500 milliom MIT Any fundació: 1861 Professors (all ranks): 1,021 Other teaching staff: 809 Students: 11,319 Applicants: 18,356 Admits: 1,447 Percentage admitted: 7.9% Patents granted: 275 Budget: $2,920 million MIT Biology/bioengineering • Bioinstrumentation Engineering Analysis and • Emergent Behaviors of Integrated Cellular Systems Microscopy (BEAM) • Harvard-MIT Division of Health Sciences and • BioInstrumentation Laboratory Technology (HST) • Biological Engineering • Human Genomics Laboratory -
2016 Annual Report (Pdf)
MIT LINCOLN LABORATORY LINCOLN MIT Follow MIT Lincoln Laboratory online. Facebook: MIT Lincoln Laboratory LinkedIn: http://www.linkedin.com/company/ mit-lincoln-laboratory Twitter: @MITLL YouTube: MIT Lincoln Laboratory Instagram: https://www.instagram.com/ lincoln_laboratory/ 2016 Annual2016 Report MIT Lincoln Laboratory 2016 ANNUAL REPORT www.ll.mit.edu Communications and Community Outreach Office: 781.981.4204 Approved for public release: distribution unlimited. This material is based upon work supported under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force. TECHNOLOGY IN SUPPORT OF NATIONAL SECURITY © 2016 Massachusetts Institute of Technology TECHNOLOGY IN SUPPORT OF NATIONAL SECURITY Massachusetts Institute of Technology Lincoln Space Surveillance Complex, Westford, Massachusetts MIT Lincoln Laboratory Reagan Test Site, Kwajalein Atoll, Marshall Islands MIT LINCOLN LABORATORY 2016 Table of Contents MISSION 2 Leadership Technology in Support 3 Organizational Changes of National Security 4 Letter from the Director 5 Vision, Values, and Strategic Directions MIT Lincoln Laboratory employs some of the nation’s best technical talent to support system and 7 Technology Innovation technology development for national security needs. 8 Swarm of Miniature Aircraft Autonomously Maintains Flight Formation Principal core competencies are sensors, infor- 10 Technology Investments mation extraction (signal processing and embedded 16 Achieving a Near-Ideal Laser Beam computing), communications, integrated sensing, and 18 Localizing Ground-Penetrating Radar decision support. Nearly all of the Lincoln Laboratory 20 Discovering the Vast Asteroid Population efforts are housed at its campus on Hanscom Air 22 Technology Transfer Force Base in Massachusetts. -
Directions to MIT Lincoln Laboratory E Receiving Dock Hours of Operation: Monday Through Friday, 8:00AM - 4:00PM
MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY 244 WOOD STREET LEXINGTON, MASSACHUSETTS 02421-6426 Directions to MIT Lincoln Laboratory E Receiving Dock Hours of operation: Monday through Friday, 8:00AM - 4:00PM From I-95/Rte. 128, take Exit 30B, Route 2A West Hanscom Field exit. Follow Route 2A West for 1.5 miles to a blinking yellow light. Turn right and go ¼ of a mile, then bear right and you will come to the Sartain Gate (formerly Vandenberg Gate). You are entering a US Air Force Base. All commercial vehicles must follow the guidelines listed below: Commercial vehicle access is allowed Monday through Friday only, from 6:00AM to 5:30PM. Commercial vehicle access and deliveries are not allowed on weekends. If the commercial vehicle is larger than a passenger van and/or towing a trailer, it must proceed to the Commercial Vehicle Search Area located at the Sartain Gate to be searched. Search area hours are Monday through Friday only, from 6:00AM to 5:30PM. The Air Force guards will inspect your papers and your vehicle. You will need a valid driver’s license and proof of insurance for your vehicle. If you are making a delivery to MIT Lincoln Laboratory, you must have a computer generated bill of lading. Bills of lading or invoices must have a “deliver on” date that matches the date the vehicle is at the gate, or a “deliver by date” in the near future, or the vehicle will not be allowed to enter the Base. After you are cleared by the Air Force: Go straight until you come to a fork in the road.