Why Are Coral Reef Fish So Colorful?

Total Page:16

File Type:pdf, Size:1020Kb

Why Are Coral Reef Fish So Colorful? PACI F I C OCEAN: Why Are Reef Fish So Colorful? Bright patterns on reef fish are key to astound- LIZARD ingly complex strategies to attract mates, repel ISLAND rivals and hide from predators by Justin Marshall strange event, I was stunned background—and also, it would seem, mak- to realize the black dots were ing them an obvious meal. I wondered how the eyes of an enormous the environment of the coral reef could CAIRNS school of kyphosids swim- have given rise to the virtually invisible HERON ming past on their way to drummer and frogfish as well as the highly ISLAND ) the reef edge. The bodies of conspicuous angelfish and butterfly fish. globe these fish, which are also known as drummers, are Extreme Biodiversity about 30 centimeters (nearly 12 inches) long and are a sil- t is such questions that occupy me on AUSTRALIA HAXBY ( ); WILLIAM F. very-blue color. When ver- Ifield trips to the University of Queens- map tical in water, they merged land’s research stations on Heron and Lizard perfectly with the dim, blue islands. These two islands are at either end light pervading the lagoon. of the 2,300-kilometer expanse of the Great LAURIE GRACE ( GRACE LAURIE Here was a wonderful ex- Barrier Reef (map), which is by far the ample of camouflage under- largest reef system in the world and right- trangely enough, I became water. I was humbled by my ineptitude as fully one of its seven natural wonders. The curiousS about the colors of fish not while a predator—I allowed literally tons of fish to huge expanse is a living area of 200,000 diving in the crystal-clear waters of Aus- pass within a meter or two of me and my square kilometers consisting of some 3,000 tralia’s Great Barrier Reef, surrounded by net before I even realized what they were. small reefs that include more than 400 spe- countless incredibly colorful fish. On the As a marine biologist interested in vision cies of hard and soft corals. For compari- contrary: I was in the murky, turbid wa- in the sea, however, I immediately thought son, a typical Caribbean reef might be tens ters of Heron Island’s Coral Cay Lagoon, of several questions. How is the skin of of kilometers long and have perhaps 40 near the southeastern edge of the reef, drummers so well adapted to merge with kinds of hard and soft corals. close to Shark Bay. the sea? What is it about the visual capa- Like terrestrial rain forests, coral reefs are Sitting slightly apprehensively at a depth bilities of the fish that prey on drummers isolated enclaves that are important for their of only two meters, I was trying to catch that enables them, presumably, to see the extreme biodiversity. In this respect, too, fish in a hand net. Suddenly I became dim- drummers while mine was so ineffective? the Great Barrier Reef is superlative: it is ly aware of hundreds of little black dots I noticed that many of the fish and other home to around 1,500 species of fish. This shooting past me almost at the limits of my reef creatures that the school had by now huge variety is all the more surprising in vision in the silty water. Sucking air through joined were boldly colorful, their bright light of the relatively young age of the my dive regulator and pondering this patterns making them pop out from the reef. It began to form 12 to 18 million years JUSTIN MARSHALL BARBARA BURGER JUSTIN MARSHALL 54 Scientific American Presents Why Are Reef Fish So Colorful? COPYRIGHT 1998 SCIENTIFIC AMERICAN, INC. Compared with some species of fish and FISH EYE of this beaked leatherjacket sees other creatures, humans are relatively color- the light spectrum in a slightly different way blind. People have three color receptors in than a human eye does. their eyes: the blue-, green- and red-sensi- tive cones. Some reef fish (and indeed am- 57] and the school of kyphosids I saw in the phibians, reptiles, birds and insects) possess Heron Island lagoon. But to attract a mate, four or more. The record is currently held chase rivals away or provide other warn- by the mantis shrimp (a stomatopod), a reef BY JUSTIN MARSHALL PHOTOGRAPHS ings, bright colors that are easily seen un- dweller whose eyes have 12 color recep- derwater may be the order of the day. In tors. With these additional receptors, the the blue waters of the reef, the colors yel- animals can see the region of the near ul- low and blue travel the farthest, so many traviolet, with wavelengths between about reef animals have evolved bodily patterns 350 and 400 nanometers (humans cannot of yellow and blue in striped or spotted see wavelengths shorter than about 380 combinations. Because yellow and blue nanometers). Also, they can see in greater ago and in some places is only two million are also widely separated in the spectrum, detail some of the colors humans see. years old; reefs of the western Atlantic and they offer strong contrast underwater. Such impressive visual capabilities might central Pacific formed 25 million years ago. Just what does a butterfly fish look like to seem to be unnecessary on the reef, where The diversity of colored fish and inverte- another butterfly fish? How does a drum- so many creatures have evolved bold pat- brates on the Great Barrier Reef is truly mer appear to a shark? It is this goal to un- terns that emit strong visual signals. Alterna- awe-inspiring. Yet the color patterns exhib- derstand color vision and its evolution tively, it may seem incredible that these ited by these inhabitants did not evolve for from the point of view of the animals them- brightly colored fish manage to survive human eyes. The brilliant blue spots of the selves that my colleagues and I at the Uni- with markings so striking that they would semicircle angelfish, or the contrasting yel- versity of Queensland’s Vision, Touch and seem to attract the attention of even weak- low and blue fins of the yellowtail coris Hearing Research Center are striving to- eyed predators. wrasse [see illustrations at top of pages 56 and ward at present. Our research has revolved Could it be that coral reefs are colorful, 57], are a vital component of the survival around three critical questions: One, what and therefore that colorful animals fit in and strategies of these species on the reef. are the animals’ visual capabilities? To ex- may even be camouflaged? Logical though To understand this role of color and ap- plore this matter, we are carrying out ex- it may seem, the notion does not hold up pearance requires some understanding of periments in which we are quantifying to scrutiny. A reef stripped of its fish and survival on the reef and also of the optics of colors nonsubjectively, using the world’s other mobile life-forms is actually relative- the undersea realm. At its most fundamental first underwater spot-reflectance spectro- ly monochromatic. Most of the corals are level, survival for any animal species de- radiometer. Two, what are the light and brown or green, their colorful splendor mands three things: eating, not being eaten surroundings like in the habitat where these coming out only at night when the polyps and reproducing. Unfortunately for sea creatures live? Experienced divers know open or under the falsely bright illumina- creatures, the demands on appearance im- that seawater is so blue that all red light is tion of the camera strobe or video light. posed by the first two of these survival re- absorbed within 20 meters of the surface; a Another possible explanation revolves quirements conflict with those of the third. bright-red fish at this depth therefore ap- around disruptive coloration, a principle A good way to avoid being eaten, or, in- pears black. And three, under what cir- first described in detail in the 1940s and deed, to lurk undetected while waiting for cumstances, and to what other creatures, subsequently used for military camouflage. prey to swim by, is to be camouflaged to do fish show off their color patterns? The central idea is the use of large, bold pat- match the background (the scientific term Clearly, displaying bright colors to impress terns of contrasting colors that make an is “cryptic”). Masters of camouflage include a potential mate would be unwise when object blend in when viewed against an the frogfish [see illustration at bottom of page visually guided predators are lurking nearby. equally variable, contrasting background. STRIKINGLY PATTERNED REEF FISH include (from far left) the thread- whose vertical stripes make it difficult to discern head from tail. Bright fin butterfly fish, which has a “false eye” above the caudal fin to con- patterns also appear on the dorsal fin of the yellowtail coris wrasse fuse predators; the humphead Maori wrasse; and the Moorish idol, (below left) and on the anal fin of the regal angelfish (below). Why Are Reef Fish So Colorful? The Oceans 55 COPYRIGHT 1998 SCIENTIFIC AMERICAN, INC. FISH COLORS include vivid patterns, as seen above (from left to right): the midbody of a The light and dark branches, pockets and beaked leatherjacket; nose of a surf parrot fish; tail of a yellowtail coris wrasse; dorsal fin of a shafts of light on a reef provide just such a regal angelfish; midbody of a royal dottyback; fin of a regal angelfish; cheek of a harlequin background. tuskfish; dorsal fin of a harlequin tuskfish; tail of a semicircle angelfish; and another fin of a Good examples of disruptive camou- regal angelfish.
Recommended publications
  • Field Guide to the Nonindigenous Marine Fishes of Florida
    Field Guide to the Nonindigenous Marine Fishes of Florida Schofield, P. J., J. A. Morris, Jr. and L. Akins Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States goverment. Pamela J. Schofield, Ph.D. U.S. Geological Survey Florida Integrated Science Center 7920 NW 71st Street Gainesville, FL 32653 [email protected] James A. Morris, Jr., Ph.D. National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, NC 28516 [email protected] Lad Akins Reef Environmental Education Foundation (REEF) 98300 Overseas Highway Key Largo, FL 33037 [email protected] Suggested Citation: Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field Guide to Nonindigenous Marine Fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. Field Guide to Nonindigenous Marine Fishes of Florida Pamela J. Schofield, Ph.D. James A. Morris, Jr., Ph.D. Lad Akins NOAA, National Ocean Service National Centers for Coastal Ocean Science NOAA Technical Memorandum NOS NCCOS 92. September 2009 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Gary F. Locke Jane Lubchenco John H. Dunnigan Secretary Administrator Assistant Administrator Table of Contents Introduction ................................................................................................ i Methods .....................................................................................................ii
    [Show full text]
  • Coral Reef Fishes Which Forage in the Water Column
    HelgotS.nder wiss. Meeresunters, 24, 292-306 (1973) Coral reef fishes which forage in the water column A review of their morphology, behavior, ecology and evolutionary implications W. P. DAVIS1, & R. S. BIRDSONG2 1 Mediterranean Marine Sorting Center; Khereddine, Tunisia, and 2 Department of Biology, Old Dominion University; Norfolk, Virginia, USA EXTRAIT: <<Fourrages. des poissons des r&ifs de coraux dans la colonne d'eau: Morpholo- gie, comportement, &ologie et ~volution. Dans un biotope ~t r&if de coraiI, des esp&es &roitement li~es peuvent servir d'exempIe de diff~renciatlon sur le plan de t'~volutlon. La radiation ~volutive de poissons repr&entant plusieurs familles du r~eif corallien tropical a conduit ~t plusieurs reprises ~t la formation de <dourragers dans la colonne d'eam>. Ce mode de vie comporte une s~rie de caract~res morphologiques et &hologiques d~finis. On trouve des ~xemples similaires dans I'eau douce et dans des habitats non tropicaux. Les traits distinctifs de cette sp&ialisation, la syst6matique, les caract~rlstiques &ologiques et celies se rapportant ~t l'6volution sont d&rits et discut~s. INTRODUCTION The rapid adoption of in situ studies to investigate lifeways of organisms in the oceans is succeeding in bringing the laboratory to the ocean. Before, the conclusions that observers and scientists were classically forced to accept oPcen represented in- accurate abstractions of things that could not be observed. During the past 10-20 years the cataloging of the fauna and flora of the coral reef habitats has been carried out at an escalated rate, coupled with the many and vast improvements in tools, allowing increased periods of continual observation under sea.
    [Show full text]
  • Spatial and Temporal Distribution of the Demersal Fish Fauna in a Baltic Archipelago As Estimated by SCUBA Census
    MARINE ECOLOGY - PROGRESS SERIES Vol. 23: 3143, 1985 Published April 25 Mar. Ecol. hog. Ser. 1 l Spatial and temporal distribution of the demersal fish fauna in a Baltic archipelago as estimated by SCUBA census B.-0. Jansson, G. Aneer & S. Nellbring Asko Laboratory, Institute of Marine Ecology, University of Stockholm, S-106 91 Stockholm, Sweden ABSTRACT: A quantitative investigation of the demersal fish fauna of a 160 km2 archipelago area in the northern Baltic proper was carried out by SCUBA census technique. Thirty-four stations covering seaweed areas, shallow soft bottoms with seagrass and pond weeds, and deeper, naked soft bottoms down to a depth of 21 m were visited at all seasons. The results are compared with those obtained by traditional gill-net fishing. The dominating species are the gobiids (particularly Pornatoschistus rninutus) which make up 75 % of the total fish fauna but only 8.4 % of the total biomass. Zoarces viviparus, Cottus gobio and Platichtys flesus are common elements, with P. flesus constituting more than half of the biomass. Low abundance of all species except Z. viviparus is found in March-April, gobies having a maximum in September-October and P. flesus in November. Spatially, P. rninutus shows the widest vertical range being about equally distributed between surface and 20 m depth. C. gobio aggregates in the upper 10 m. The Mytilus bottoms and the deeper soft bottoms are the most populated areas. The former is characterized by Gobius niger, Z. viviparus and Pholis gunnellus which use the shelter offered by the numerous boulders and stones. The latter is totally dominated by P.
    [Show full text]
  • Jarvis Island NWR Final
    Jarvis Island National Wildlife Refuge Comprehensive Conservation Plan FINDING OF NO SIGNIFICANT IMPACT Jarvis Island National Wildlife Refuge Comprehensive Conservation Plan Unincorporated U.S. Territory, Central Pacific Ocean The U.S. Fish and Wildlife Service (Service) has completed the Comprehensive Conservation Plan (CCP) and Environmental Assessment (EA) for Jarvis Island National Wildlife Refuge (Refuge). The CCP will guide management of the Refuge for the next 15 years. The CCP and EA describe the Service’s preferred alternative for managing the Refuge and its effects on the human environment. Decision Following comprehensive review and analysis, the Service selected Alternative B in the draft EA for implementation because it is the alternative that best meets the following criteria: Achieves the mission of the National Wildlife Refuge System. Achieves the purposes of the Refuge. Will be able to achieve the vision and goals for the Refuge. Maintains and restores the ecological integrity of the habitats and plant and animal populations at the Refuge. Addresses the important issues identified during the scoping process. Addresses the legal mandates of the Service and the Refuge. Is consistent with the scientific principles of sound wildlife management. Can be implemented within the projected fiscal and logistical management constraints associated with the Refuge’s remote location. As described in detail in the CCP and EA, implementing the selected alternative will have no significant impacts on any of the natural or cultural resources identified in the CCP and EA. Public Review The planning process incorporated a variety of public involvement techniques in developing and reviewing the CCP. This included three planning updates, meetings with partners, and public review and comment on the planning documents.
    [Show full text]
  • Shrinking Shark Numbers on the Great Barrier Reef Unlikely to Have Cascading Impacts
    Khaled bin Sultan Living Oceans Foundation 821 Chesapeake Avenue #3568 • Annapolis, MD 21403 443.221.6844 • LivingOceansFoundation.org FOR IMMEDIATE RELEASE Shrinking shark numbers on the Great Barrier Reef unlikely to have cascading impacts New evidence suggests that reef sharks exert weak control over coral reef food webs Shark populations are dwindling worldwide, and scientists are concerned that the decline could trigger a cascade of impacts that hurt coral reefs. But a new paper published in Ecology suggests that the effects of shark losses are unlikely to reverberate throughout the marine food web. Instead, the findings point to physical and ecological features, like the structure of coral reefs and patterns of water movement, as important regulators of coral reef communities. Lead author Amelia Desbiens, a marine ecologist at the University of Queensland in Brisbane, Australia, conducted the study using data collected by the Khaled bin Sultan Living Oceans Foundation during its 2014 Global Reef Expedition, which surveyed shark populations on the northern Great Barrier Reef. Back then, this area was one of the most pristine reef regions in the world. The divers were heartened by the dizzying array of fish species in some locations, counting a total of 433 species of coral reef fish across their study area. “We were pleasantly surprised at the status of the coral reefs and fish communities in the northern Great Barrier Reef when we surveyed them in 2014,” said Alex Dempsey, Director of Science Management at the Khaled bin Sultan Living Oceans Foundation, and one of the paper’s authors. “We saw a relatively high percentage of live coral cover, and an abundance of reef fish species that gave us hope that perhaps these reef systems were resilient and have been able to persistently flourish.” They also found that no-fishing zones had four times as many reef sharks as the zones that allow fishing.
    [Show full text]
  • Fish Feeding and Dynamics of Soft-Sediment Mollusc Populations in a Coral Reef Lagoon
    MARINE ECOLOGY PROGRESS SERIES Published March 3 Mar. Ecol. Prog. Ser. Fish feeding and dynamics of soft-sediment mollusc populations in a coral reef lagoon G. P. Jones*, D. J. Ferrelle*,P. F. Sale*** School of Biological Sciences, University of Sydney, Sydney 2006, N.S.W., Australia ABSTRACT: Large coral reef fish were experimentally excluded from enclosed plots for 2 yr to examine their effect on the dynamics of soft sediment mollusc populations from areas in One Tree lagoon (Great Barrier Reef). Three teleost fish which feed on benthic molluscs. Lethrinus nebulosus, Diagramrna pictum and Pseudocaranx dentex, were common in the vicinity of the cages. Surveys of feeding scars in the sand indicated similar use of cage control and open control plots and effective exclusion by cages. The densities of 10 common species of prey were variable between locations and among times. Only 2 species exhibited an effect attributable to feeding by fish, and this was at one location only. The effect size was small relative to the spatial and temporal variation in numbers. The power of the test was sufficient to detect effects of fish on most species, had they occurred. A number of the molluscs exhibited annual cycles in abundance, with summer peaks due to an influx of juveniles but almost total loss of this cohort in winter. There was no evidence that predation altered the size-structure of these populations. While predation by fish is clearly intense, it does not have significant effects on the demo- graphy of these molluscs. The results cast doubt on the generality of the claim that predation is an important structuring agent in tropical communities.
    [Show full text]
  • Blue Water Spawning by Moorish Idols and Orangespine Surgeonfish in Palau: Is It a “Suicide Mission”?
    aqua, International Journal of Ichthyology Blue Water Spawning by Moorish Idols and Orangespine Surgeonfish in Palau: Is it a “Suicide Mission”? Mandy T. Etpison1 and Patrick L. Colin2 1) Etpison Museum, PO Box 7049, Koror, Palau 96940. Email: [email protected] 2) Coral Reef Research Foundation, PO Box 1765, Koror, Palau 96940. Email: [email protected] Received: 13 December 2017 – Accepted: 05 March 2018 Keywords am Morgen zu den Laichplätzen, schlossen sich zu Gruppen Predation, aggregation, feeding frenzy, gray reef shark, zusammen und bewegten sich über der Rifffläche auf und lunar periodicity. ab und zogen dabei die Aufmerksamkeit von Beutegreifern auf sich. Um die Mittagszeit steigen sie vom Riff auf und Abstract begeben sich ins freie Wasser jenseits vom Riff. Graue Spawning aggregations of the moorish idol (MI) and or- Riffhaie folgen ihnen, greifen sie an der Oberfläche an und angespine surgeonfish (OSS) were found on the western verzehren viele von ihnen in einem Fressrausch. Ein hoher barrier reef of Palau. MI aggregated around the first quar- Prozentsatz der aufsteigenden erwachsenen HF wird von ter moon from Dec. to Mar., with largest groups in Jan. den Haien gefressen, nur wenige können in die sichere Zone and Feb. Fish arrived near the sites in the morning, des Riffs zurückkehren. KD versammeln sich in denselben grouped together and moved up and down the reef face up Monaten, aber in der Zeit des letzten Mondviertels – wobei in late morning attracting the attention of predators. At es hierüber weniger Berichte gibt. Die Beobachtungen bei mid-day they ascend from the reef out into open water beiden Fischarten, dass sie weit nach oben steigen und sich away from the reef.
    [Show full text]
  • Larvae of the Moorish Idol, Zanclus Cornutus, Including a Comparison with Other Larval Acanthuroids
    BULLETIN OF MARINE SCIENCE. 40(3): 494-511. 1987 CORAL REEF PAPER LARVAE OF THE MOORISH IDOL, ZANCLUS CORNUTUS, INCLUDING A COMPARISON WITH OTHER LARVAL ACANTHUROIDS G. David Johnson and Betsy B. Washington ABSTRACT The larvae of Zane/us carnutus are described and illustrated based on one postflexion and several preflexion specimens. In addition to general morphology and pigmentation, bony ornamentation ofthe head bones and other osteological features are described in detail. Head bones and the associated ornamentation are illustrated for larval Zane/us, Siganus. Luvarus and Nasa. These and other aspects of the morphology of larval acanthuroids are compared and discussed within the context of a phylogenetic hypothesis proposed in other current work. Larval characters corroborate the monophyly of the Acanthuroidei and the phyletic sequence, Siganidae, Luvaridae, Zanc1idae, Acanthuridae. The Acanthuridae is represented by three distinct larval forms. The moorish idol, Zane/us cornutus (Linnaeus), Family Zanclidae, occurs in tropical waters of the Indo-Pacific and eastern Pacific. Like the closely related Acanthuridae, adult Zane/us are reef-associated fishes, but the young are spe- cialized for a relatively prolonged pelagic existence. The specialized pelagic pre- juvenile is termed the "acronurus" stage, and, at least in acanthurids, may reach a length of 60 mm or more before settling (Leis and Rennis, 1983). Strasburg (1962) briefly described 13.4 and 16.0-mm SL specimens ofthe monotypic Zan- e/us and illustrated the larger specimens. Eggs, preflexion larvae and small post- flexion larvae of Zane/us have not been described (Leis and Richards, 1984). The primary purposes of this paper are to describe a 9.S-mm SL postflexion larva of Zane/us and to compare its morphology to that of postflexion larvae of other acanthuroids in a phylogenetic context.
    [Show full text]
  • Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data
    Remote Sens. 2014, 6, 6961-6987; doi:10.3390/rs6086961 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data Thomas Mann 1,* and Hildegard Westphal 1,2 1 Leibniz Center for Tropical Marine Ecology, Fahrenheitstrasse 6, D-28359 Bremen, Germany; E-Mail: [email protected] 2 Department of Geosciences, University of Bremen, D-28359 Bremen, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-421-2380-0132; Fax: +49-421-2380-030. Received: 30 May 2014; in revised form: 7 July 2014 / Accepted: 18 July 2014 / Published: 25 July 2014 Abstract: Atoll islands are subject to a variety of processes that influence their geomorphological development. Analysis of historical shoreline changes using remotely sensed images has become an efficient approach to both quantify past changes and estimate future island response. However, the detection of long-term changes in beach width is challenging mainly for two reasons: first, data availability is limited for many remote Pacific islands. Second, beach environments are highly dynamic and strongly influenced by seasonal or episodic shoreline oscillations. Consequently, remote-sensing studies on beach morphodynamics of atoll islands deal with dynamic features covered by a low sampling frequency. Here we present a study of beach dynamics for nine islands on Takú Atoll, Papua New Guinea, over a seven-decade period. A considerable chronological gap between aerial photographs and satellite images was addressed by applying a new method that reweighted positions of the beach limit by identifying “outlier” shoreline positions.
    [Show full text]
  • Nature Parks Snorkeling Surfing Fishing
    Things to do in Florida Nature Parks Snorkeling Surfing Fishing Nature Parks Green Cay This nature center is the county’s newest nature canter that over- looks 100 acres of constructed wetland. Wakodahatchee Wetlands Is a park in Delray Beach with a three-quarter mile boardwalk that crosses between open water ponds and marches. Patch Reef Park & DeHoernle Park Parks in Boca Raton that have an abundant of sports and recreation facilities. Morikami Museum & Japanese Gardens The gardens at this Japanese cultural center in Delray Beach in- clude paradise garden, various styles of rock and Zen gardens, and a museum. Gumbo Limbo This Nature Center and Environmental Complex includes an indoor museum with fish tanks with fish, turtles, and other sea life. It is also known for rehabilitating and protecting sea turtles. *More information and website links are located on the last page. Snorkeling Blowing Rocks This is an environmental preserve on Jupiter Island in Hobe Sound. This peaceful, barrier island sanctuary is known for large-scale, native coastal habitat restoration. Lantana Beach Lantana is a coastal community in Palm Beach and 10 feet off shore there is a pretty good areas to snorkel. Red Reef Park A 67-acre oceanfront park in Boca Raton for swimming, snorkeling, and surf fishing that includes a nature center. Lauderdale-by-the-Sea Is known as “The Shore Diving Capital of South Florida”. There are two coral reef lines that are just a short swim from the beach. John Pennekamp Coral Reef State Park The first undersea park that encompasses about 70 natural square miles.
    [Show full text]
  • The Economic, Social and Icon Value of the Great Barrier Reef Acknowledgement
    At what price? The economic, social and icon value of the Great Barrier Reef Acknowledgement Deloitte Access Economics acknowledges and thanks the Great Barrier Reef Foundation for commissioning the report with support from the National Australia Bank and the Great Barrier Reef Marine Park Authority. In particular, we would like to thank the report’s Steering Committee for their guidance: Andrew Fyffe Prof. Ove Hoegh-Guldberg Finance Officer Director of the Global Change Institute Great Barrier Reef Foundation and Professor of Marine Science The University of Queensland Anna Marsden Managing Director Prof. Robert Costanza Great Barrier Reef Foundation Professor and Chair in Public Policy Australian National University James Bentley Manager Natural Value, Corporate Responsibility Dr Russell Reichelt National Australia Bank Limited Chairman and Chief Executive Great Barrier Reef Marine Park Authority Keith Tuffley Director Stephen Fitzgerald Great Barrier Reef Foundation Director Great Barrier Reef Foundation Dr Margaret Gooch Manager, Social and Economic Sciences Stephen Roberts Great Barrier Reef Marine Park Authority Director Great Barrier Reef Foundation Thank you to Associate Professor Henrietta Marrie from the Office of Indigenous Engagement at CQUniversity Cairns for her significant contribution and assistance in articulating the Aboriginal and Torres Strait Islander value of the Great Barrier Reef. Thank you to Ipsos Public Affairs Australia for their assistance in conducting the primary research for this study. We would also like
    [Show full text]
  • Impacts of Sharks on Coral Reef Ecosystems } Do Healthy Reefs Need
    Impacts of sharks on coral reef ecosystems } Do healthy reefs need sharks? This is one of the most misunderstood questions in coral reef ecology. Shark populations are declining due to habitat loss, overfishing, and other stressors. It is important to understand how these losses could affect the rest of the ecosystem. Understanding the predator-prey interactions between herbivores and sharks is crucial for coral reef conservation. As top predators, sharks not only eat other fish, but they can also affect their behavior. In the presence of sharks, herbivorous fish may be concentrating their grazing to small, sheltered areas. Because these fish have to eat where they are safe from predators, there is more space to allow young coral to settle, grow, and thrive. In the absence of sharks, herbivorous fish may spread out their grazing randomly across large patches of algae, leaving few well-defined or cleared areas for corals to settle. Fortunately, Florida International University has just the place to explore these dynamic questions, a lab under the sea – Aquarius Reef Base. From September 7th to 14th, a mission at Aquarius Reef Base will combine sonar with baited remote underwater video surveys (BRUVs), an experiment the first of its kind to bring these technologies together. Researchers on this mission strive to understand the direct impact of shark presence on herbivorous fish behavior as well as the indirect impact of sharks on algae communities. Combining these technologies: • Provides a new way to study reef fish behavior • Carves the path forward for future ecological research • Offers insights that may lead to critical marine conservation outcomes Mission Overview: Dr.
    [Show full text]