Semi-Claustral Colony Founding in the Seed-Harvester Ant Pogonomyrmex Californicus: a Comparative Analysis of Colony Founding Strategies

Total Page:16

File Type:pdf, Size:1020Kb

Semi-Claustral Colony Founding in the Seed-Harvester Ant Pogonomyrmex Californicus: a Comparative Analysis of Colony Founding Strategies Oecologia (2002) 132:60–67 DOI 10.1007/s00442-002-0960-2 POPULATION ECOLOGY Robert A. Johnson Semi-claustral colony founding in the seed-harvester ant Pogonomyrmex californicus: a comparative analysis of colony founding strategies Received: 4 February 2002 / Accepted: 25 April 2002 / Published online: 25 May 2002 © Springer-Verlag 2002 Abstract The evolution of queens that rear their first strategies to survive this stage. The two primary modes brood solely using body reserves, i.e. fully claustral, of nest founding are dependent colony founding, in is viewed as a major advance for higher ants because which a queen starts a colony with a retinue of workers, it eliminated the need for queens to leave the nest to and independent colony founding, in which a queen forage. In an apparently unusual secondary modification, starts a nest without workers. Both founding strategies the seed-harvester ant Pogonomyrmex californicus dis- display several variants (Hölldobler and Wilson 1977). plays obligate queen foraging, i.e. queens must forage For example, queens that found nests independently can to garner the resources necessary to survive and success- be fully claustral, in which case the queen remains fully rear their first brood. I examined the potential bene- sealed in the nest chamber and uses only body reserves fits of queen foraging by comparing ecological and phys- to support herself and raise her first brood. Alternatively, iological traits between P. californicus and several con- semi-claustral queens leave the nest to forage. Fully geners in which the queen can rear brood using only claustral nest founding is common in morphologically body reserves. The primary advantage of foraging ap- “advanced” subfamilies of ants (Myrmicinae and For- pears to lie in providing the queens of P. californicus micinae) and is the derived state, whereas the ancestral with the energy to raise significantly more brood than state of semi-claustral nest founding is common in mor- possible by congeners that use only body reserves; the phologically “primitive” subfamilies of ants (Ponerinae workers reared in the first brood were also heavier in and Myrmeciinae; Peeters 1997). mass than that predicted by their head width. Other The evolution of fully claustral queens is viewed as correlates of queen foraging in P. californicus relative to a major advance for ants because it eliminated the need tested congeners included a significantly lower total fat for queens to leave the nest to forage, where they are content for alate queens, a small queen body size, and exposed to predation and other sources of mortality a low queen to worker body mass ratio. Queens also (Haskins and Haskins 1950, 1955; Hölldobler and forage in several other well-studied species of Pogo- Wilson 1977; Rissing et al. 1989; Peeters 1997). Conse- nomyrmex, suggesting the possibility that queen foraging quently, the observation that some ant species in the sub- may be more common than previously thought in higher families Myrmicinae and Formicinae have returned to ants. semi-claustral nest founding, when most of their conge- ners are fully claustral, requires explanation. Information Keywords Brood production · Fat content · Nest on semi-claustral nest founding in higher ants is limited founding · Pogonomyrmex californicus · Queen body size to scattered behavioral observations. The only physio- logical data indicate that queens of Messor andrei lack storage proteins (Brown 1999), which comprise a neces- Introduction sary energy source for fully claustral queens to raise their first brood (Wheeler and Buck 1995, 1996). Nest founding is the most vulnerable stage in the life of It has been suggested that queen foraging is associated an ant colony (Hölldobler and Wilson 1990; Herbers with the small size of queens relative to the workers 1993; Johnson 1998), and ants have evolved numerous (Haskins and Haskins 1950; Stille 1996; Peeters 1997). Correlative evidence for this hypothesis occurs within R.A. Johnson (✉) ponerines, which display a gradation of colony founding Department of Biology, Arizona State University, Tempe, AZ 85287–1501, USA methods that range from dependence on queen foraging e-mail: [email protected] to ability of the queen to successfully rear her first work- Tel.: +1-480-8972473, Fax: +1-480-9652519 ers using only body reserves. One of the few species in 61 the latter group is Pachycondyla (= Brachyponera) lutea, farms were observed for several days to determine if the queens which is exceptional among ponerines because of the un- laid eggs prior to obtaining food. Kentucky blue grass (KBG) seeds were provided ad libitum to a subset of queens after 12 days usually large size of queens relative to workers (the maxi- in 1999 and after 10 days in 2000; other queens remained unfed. mum known caste dimorphism among ponerines; Haskins Thereafter, I recorded queen status and stage of brood develop- and Haskins 1950, 1955; Hölldobler and Wilson 1990; ment every 2–3 days until all queens had produced workers or Peeters 1997). died; this was for 54 days in 1999 and 64 days in 2000. I com- pared survival curves of fed and unfed queens in each year using The primary disadvantage for fully claustral queens the Kaplan-Meier survival analysis log-rank test for censored data seems to be that a fixed amount of energy is available to (PROC SURVIVAL of SPSS; SPSS 1990); the comparison ran raise the first brood. This requires that the queen allocate from the day on which seeds were first provided through to the her energy to maximize colony success, either by pro- last day of observation. ducing many small workers or few large workers. Theo- The quantitative comparison of survival and brood production for single queens used a one-factor (two food levels) laboratory ry predicts that queens should maximize the initial num- experiment; each treatment contained 85 bottles for a total of ber of workers produced because some minimum num- 170 bottles. The experiment used 8-ounce glass bottles that con- ber is needed to perform the gamut of colony tasks that tained 250 ml soil and 35 ml water. A plastic petri dish containing include raising the second brood. Additional brood allow several holes covered each bottle. The bottles were randomly posi- tioned in a darkened room maintained at 25–30°C. KBG seeds these tasks to be performed more efficiently through were provided ad libitum to one-half of the queens beginning on division of labor rather than sequentially by the same in- day 7, and 10–15 ml water were added to all bottles every 10 days dividual (Oster and Wilson 1978). As predicted, fully beginning on day 20. Bottles were emptied after 53 days to deter- claustral ant queens invariably produce many small mine queen status and number of brood (larvae, pupae, and work- ers). This interval was about 10 days after observing the first workers (these small workers from the first brood are worker, thus allowing time for most queens to successfully rear called minim workers or minims). Empirical data also workers, but not so long as to deplete queen energy reserves (see demonstrate the adaptive advantage of producing many Johnson 1998). Survival of fed and unfed queens was compared small workers because the number of workers (not their by a Chi-square test, and number of brood was compared by a size) is the primary factor affecting production of the t-test. All of the above experiments were set up so that the initial wet mass of fed and unfed queens was similar (t-test, P >0.50), second brood (Porter and Tschinkel 1986). thus eliminating effects due to queen mass. This study was motivated by observations that queens of the seed-harvester ant Pogonomyrmex californicus (subfamily Myrmicinae) forage in the field and laboratory. Comparative data with other species of Pogonomyrmex I assessed the possible benefits of queen foraging by quantifying parameters related to nest founding for P. ca- Comparative data for fully claustral congeners provide insight into the evolution of foraging by queens of P. californicus. Ecological lifornicus and several congeners. Two hypotheses were and physiological variables that were measured included time to tested: first, foraging releases queens from the size versus emergence of the first minim worker, number of brood (larvae, number tradeoff relative to producing their first brood; pupae, and workers) produced by each queen, dry mass and head second, queen foraging is correlated with body size con- width of minim workers, dry mass of queens and workers from straints. I also assessed: (1) if foraging is necessary for mature colonies, the ratio of queen to worker mass, and fat content of alate queens; sample size for each variable is given in Table 1. queens of P. californicus to survive and successfully rear Congeners that were examined included P. barbatus and P. rugosus their first minim workers, and (2) if there are additional from the P. barbatus complex, P. occidentalis and P. salinus from ecological and physiological correlates of queen foraging the P. occidentalis complex, and P. maricopa from the P. californ- in comparison with fully claustral congeners. To this end, icus complex; the latter species is closely related to P. californicus (Cole 1968; Taber 1990). I measured several ecological and physiological parame- Data related to colony establishment were obtained for all spe- ters across several species of Pogonomyrmex. cies by placing single queens in glass ant farms filled with moist- ened soil (see above). Nests were placed in a darkened incubator at 30°C, and water was added as necessary to maintain moist nest con- Materials and methods ditions. Queens of P. californicus were provided KBG seeds ad libitum; queens of the other species remained unfed to verify the as- Queen survival and brood production in P. californicus sumption that they were fully claustral.
Recommended publications
  • Double Mound of the Harvester Ant Pogonomyrmex Occidentalis (Hymenoptera: Formicidae, Myrmicinae)
    Great Basin Naturalist Volume 53 Number 4 Article 13 12-28-1993 Double mound of the harvester ant Pogonomyrmex occidentalis (Hymenoptera: Formicidae, Myrmicinae) William H. Clark Orma J. Smith Museum of Natural History, Albertson College of Idaho, Caldwell, Idaho Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Clark, William H. (1993) "Double mound of the harvester ant Pogonomyrmex occidentalis (Hymenoptera: Formicidae, Myrmicinae)," Great Basin Naturalist: Vol. 53 : No. 4 , Article 13. Available at: https://scholarsarchive.byu.edu/gbn/vol53/iss4/13 This Note is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Creat Basin Naturalist 53(4), pp. 407-408 DOUBLE MOUND OF THE HARVESTER ANT POGONOMYRMEX OCCLDENTALIS (HYMENOPTERA: FORMICIDAE, MYRMICINAE) William H. ClarkI Key words: ho.rvester ant double mound, Pogonomyrmex occidentalis, ant nest, UUilt. Several species ofPogOlWmynnex, especial­ County, Utah, approximately 58 Ian NE Moab ly members of the occidentalis complex, have along Highway 128 and about 4 Ian from the nests surmounted by a large, conical mound Colorado River, at an elevation of 1445 m. of soil and gravel in a clearing created by the Voucher specimens from both mounds (WHC ants (Cole 1932, 1968). I report a rare double #8184 and 8185) are deposited in the Orma J. mound of the western halvester ant, Pogono­ Smith Museum of Natural History, Albertson mymwx oecidentalis (Cresson), having two College ofIdaho, Caldwell (ClDA).
    [Show full text]
  • Wildland Fire in Ecosystems: Effects of Fire on Fauna
    United States Department of Agriculture Wildland Fire in Forest Service Rocky Mountain Ecosystems Research Station General Technical Report RMRS-GTR-42- volume 1 Effects of Fire on Fauna January 2000 Abstract _____________________________________ Smith, Jane Kapler, ed. 2000. Wildland fire in ecosystems: effects of fire on fauna. Gen. Tech. Rep. RMRS-GTR-42-vol. 1. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 83 p. Fires affect animals mainly through effects on their habitat. Fires often cause short-term increases in wildlife foods that contribute to increases in populations of some animals. These increases are moderated by the animals’ ability to thrive in the altered, often simplified, structure of the postfire environment. The extent of fire effects on animal communities generally depends on the extent of change in habitat structure and species composition caused by fire. Stand-replacement fires usually cause greater changes in the faunal communities of forests than in those of grasslands. Within forests, stand- replacement fires usually alter the animal community more dramatically than understory fires. Animal species are adapted to survive the pattern of fire frequency, season, size, severity, and uniformity that characterized their habitat in presettlement times. When fire frequency increases or decreases substantially or fire severity changes from presettlement patterns, habitat for many animal species declines. Keywords: fire effects, fire management, fire regime, habitat, succession, wildlife The volumes in “The Rainbow Series” will be published during the year 2000. To order, check the box or boxes below, fill in the address form, and send to the mailing address listed below.
    [Show full text]
  • Honey Bee (Apis Mellifera) Intracolonial Genetic Diversity Influences Worker Nutritional Status Bruce J
    Honey bee (Apis mellifera) intracolonial genetic diversity influences worker nutritional status Bruce J. Eckholm, Ming H. Huang, Kirk E. Anderson, Brendon M. Mott, Gloria Degrandi-Hoffman To cite this version: Bruce J. Eckholm, Ming H. Huang, Kirk E. Anderson, Brendon M. Mott, Gloria Degrandi-Hoffman. Honey bee (Apis mellifera) intracolonial genetic diversity influences worker nutritional status. Api- dologie, Springer Verlag, 2015, 46 (2), pp.150-163. 10.1007/s13592-014-0311-4. hal-01284439 HAL Id: hal-01284439 https://hal.archives-ouvertes.fr/hal-01284439 Submitted on 7 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2015) 46:150–163 Original article * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0311-4 Honey bee (Apis mellifera ) intracolonial genetic diversity influences worker nutritional status 1 2 3 3 Bruce J. ECKHOLM , Ming H. HUANG , Kirk E. ANDERSON , Brendon M. MOTT , 3 Gloria DEGRANDI-HOFFMAN 11025 Zylstra Road, Coupeville, WA 98239, USA 2Eurofins Agroscience Services, Inc., 15250 NC Hwy 86 South, Prospect Hill, NC 27314, USA 3Carl Hayden Bee Research Center, USDA-ARS, 2000 East Allen Road, Tucson, AZ 85719, USA Received 9 January 2014 – Revised 10 July 2014 – Accepted 25 July 2014 Abstract – Honey bee queens mate with multiple males resulting in high intracolonial genetic diversity among nestmates; a reproductive strategy known as extreme polyandry.
    [Show full text]
  • Pogonomyrmex Barbatus
    Anita. Behav., 1986, 34, 1402-1419 The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus) DEBORAH M. GORDON Museum of Comparative Zoology and Society of Fellows, Harvard University, Cambridge, Massachusetts 02138, U.S.A. Abstract. Colonies of the red harvester ant, Pogonomyrmex barbatus, do various tasks outside the nest. There is a daily temporal pattern in the numbers of ants engaged in each of five activities: foraging, nest maintenance, patrolling, midden work and convening. Perturbations were carried out in the field to investigate how the daily round changes in response to environmental events and colony needs. Interfering with nest maintenance, foraging or both caused changes in the temporal patterns in all five of the observed activities. Removing nest maintenance workers, foragers or both caused the numbers involved in all five activities to decrease, and there were temporal patterns in the effects of removals. The results of both interference and removal experiments show that the extent to which a worker group does one activity affects the behaviour of other groups. When nest maintenance or foraging is impeded experimentally, these two activities are of reciprocal priority. When both are impeded, foraging is of higher priority than nest maintenance. Harvester ants forage, patrol, maintain the nest speaking, that of an equilibrium state, but the area and foraging trails, collect and arrange dynamics of colony organization are not yet under- pebbles on the nest, and gather in small groups, stood. What events will alter the daily round, by inspecting and grooming each other. The beha- how much, and for how long? Is there more than viour of the colony outside the nest at any moment one equilibrium state? can be described by citing the number of ants This study begins an exploration of the dynamics engaged in each of the five activities.
    [Show full text]
  • Evolution of Colony Characteristics in the Harvester Ant Genus
    Evolution of Colony Characteristics in The Harvester Ant Genus Pogonomyrmex Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Christoph Strehl Nürnberg Würzburg 2005 - 2 - - 3 - Eingereicht am: ......................................................................................................... Mitglieder der Prüfungskommission: Vorsitzender: ............................................................................................................. Gutachter : ................................................................................................................. Gutachter : ................................................................................................................. Tag des Promotionskolloquiums: .............................................................................. Doktorurkunde ausgehändigt am: ............................................................................. - 4 - - 5 - 1. Index 1. Index................................................................................................................. 5 2. General Introduction and Thesis Outline....................................................... 7 1.1 The characteristics of an ant colony...................................................... 8 1.2 Relatedness as a major component driving the evolution of colony characteristics.................................................................................................10 1.3 The evolution
    [Show full text]
  • TAXONOMIC IDENTITY of "HALLUCINOGENIC" HARVESTER ANT Lpogonomyrmex Calijornicus) CONFIRMED
    Journal of Ethnobiology 21(2): 133-144 Winter 2001 TAXONOMIC IDENTITY OF "HALLUCINOGENIC" HARVESTER ANT lPogonomyrmex calijornicus) CONFIRMED KEVIN I' GROARK Department of Anthropology, Un;ocrsity of California, Los Angeles Los Angeles, CA 90024 ABSTRACf.-The use of California harvester ants (fbgollomyrmex californiClls) for visionary and therapeutic ends was an important but poorly-documented tradi­ tion in native south-central California. In this brief report, a confirmation of the taxonomic identity of the red ant species used in California is presented, and the descriptive record of its use is supplemented with additional ethnographic ac­ counts. This taxonomic identification of this species is of particular importance, as visionary red ant ingestion provides the only well-documented case of the widespread use of an insect as an hallucinogenic agent. RESUMEN.-La utilizaci6n de hormigas granivoras rojas (HJgo/wmyrmex califor­ nicus) con fines alucin6genos y terapeuticos, fue una tradici6n de mucha impor­ tancia pero mal documentada en el sur y centro-sur de California. Este breve articulo confirma la identidad taxon6mica de dicha especie y la descripci6n de su uso se hace a !raves de datos etnogrMicos adicionales. Esta identificaci6n taxo­ n6mica es de especial interes, puesto que es el dnico ejemplo etnografico debi­ damente documentado de un agente alucin6geno derivado de un insecto. REsUME.-L'u!ilisation des fourmis moissonneuses rouges (fbgonomyrmex califor­ nicus) a des desseins religieux et therapeutiques etait une tradition peu docu­ mentee mais importante dans la vie de plusieurs groupes autochtones du centre­ sud de la Californie. Dans ce bref expose on trouve la confirmation de I'identification taxonomique de la fourmi et a la description de la methode de son utilisation s'ajoute des donnees ethnographiques suplementaires.
    [Show full text]
  • Red Harvester Ant (Big Red Ants; Harvester Ants, Red Ants; Barbatus Harvester Ant)
    Pest Profile Photo credit: April Nobile, California Academy of Sciences (Specimen CASENT0006306; from https://www.antweb.org) Common Name: Red harvester ant (big red ants; harvester ants, red ants; Barbatus harvester ant) Scientific Name: Pogonomyrmex barbatus Order and Family: Order Hymenoptera; Family Formicidae Size and Appearance: Length (mm) Appearance Egg Larva/Nymph Adult Workers Pogonomyrmex harvester ants are characterized by broad, range from 5 boxy heads, 12-segmented antennae, a two-part waist, a pair mm – 8 mm of dorsal spines and a stinger. Many species have a set of long hairs (called a psammophore) on the posterior lower portion of the head, behind the mouthparts. Workers of the red harvester ant are polymorphic without distinct majors and minors. They vary in color from a light to very deep red and they have texture in the form of lines on the head (rugae). Colonies have one queen (monogynous). Queens are similar to workers but larger with a larger thorax. Female and male reproductive ants have wings. Pupa (if applicable) Type of feeder (Chewing, sucking, etc.): Chewing Host(s): Harvester ants in the genus Pogonomyrmex specialize in seeds but may forage on other foods (generalist and opportunistic). Description of Damage (larvae and adults): Because theses ants primarily eat seeds (up to 90% of the diet), they are pests of agricultural systems, damaging crops but especially grasslands (pasture). They harvest seeds, defoliate plants, and remove young and old plants. Agricultural important plants they affect include corn, oats, alfalfa, cotton, guayule, grapes, date, citrus trees, apple, and pear, as well as more generally pasture (grasses) and shrubs.
    [Show full text]
  • I. Petiole Node II. Tip of Abdomen IV. Length of Antennae Guide to Vineyard Ant Identification III. Shape of Thorax
    Guide to Vineyard Ant Identification head abdomen Monica L. Cooper, Viticulture Farm Advisor, Napa County Lucia G. Varela, North Coast IPM Advisor thorax I. Petiole node One Node Two nodes Go to II Subfamily Myrmicinae Go to V II. Tip of abdomen Circle of small hairs present Circle of small hairs absent Subfamily Formicinae Subfamily Dolichoderinae Go to III Argentine Ant (Linepithema humile) III. Shape of thorax Thorax uneven Thorax smooth and rounded Go to IV Subfamily Formicinae Carpenter ant (Camponotus spp.) IV. Length of antennae Antennae not much longer than length of head Antennae much longer than length of head Subfamily Formicinae Subfamily Formicinae Field or Gray Ant (Formica spp.) False honey ant (Prenolepis imparis) head abdomen Petiole with two nodes Subfamily Myrmicinae (V-VIII) thorax V. Dorsal side of Thorax & Antennae One pair of spines on thorax No spines on thorax 12 segmented antennae 10 segmented antennae Go to VI Solenopsis molesta and Solenopsis xyloni VI. Underside of head No brush of bristles Brush of long bristles Go to VII Harvester ants (Pogonomyrmex californicus and P. brevispinosis) VII. Head and Thorax With hairs Without hairs Go to VIII Cardiocondyla mauritanica VIII. Head and Thorax With many parallel furrows Without parallel furrows Profile of thorax rounded Profile of thorax not evenly rounded Pavement ant (Tetramorium “species E”) Pheidole californica Argentine Ant (Linepithema humile), subfamily Dolichoderinae Exotic species 3-4 mm in length Deep brown to light black Move rapidly in distinct trails Feed on honeydew Shallow nests (2 inches from soil surface) Alex Wild Does not bite or sting Carpenter Ant (Camponotus spp.), subfamily Formicinae Large ant: >6 mm in length Dark color with smooth, rounded thorax Workers most active at dusk and night One of most abundant and widespread genera worldwide Generalist scavengers and predators: feed on dead and living insects, nectar, fruit juices and Jack K.
    [Show full text]
  • Red Harvester Ants Bastiaan M
    E-402 4-06 Red Harvester Ants Bastiaan M. Drees* ed harvester ants are one of the more Life cycle noticeable and larger ants in open areas in Texas. Eleven species in this group of ants Winged males and females swarm, couple and R mate, especially following rains. Winged forms (genus Pogonomyrmex) are known from the state. are larger than worker ants. Males soon die and However, harvester ants are not nearly as com- females seek a suitable nesting site. After drop- mon today as they were during the earlier 1900s. ping her wings, the queen ant digs a burrow and The decline, particularly in the eastern part of produces a few eggs. Larvae hatch from eggs and the state, has caused some alarm because these develop through several stages (instars). Larvae ants serve as a major source of food for the are white and legless, shaped like a crookneck rapidly disappearing and threatened Texas squash with a small distinct head. Pupation horned lizard. occurs within a cocoon. Worker ants produced by the queen ant begin caring for other develop- Description ing ants, enlarge the nest and forage for food. 1 1 Worker ants are ⁄4 to ⁄2 inch long and red to Pest status dark brown. They have squarish heads and no spines on the body. There are 22 species of har- Worker ants can give a painful, stinging bite, vester ants in the United States, 10 of which are but are generally reluctant to attack. Effects of found in Texas. Seven of these species are found the bite can spread along lymph channels and only in far west Texas.
    [Show full text]
  • A New Ant Genus from Southern Argentina and Southern Chile, Patagonomyrmex (Hymenoptera: Formicidae)
    Zootaxa 4139 (1): 001–031 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4139.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:ED6570FE-F499-4B75-B1A3-1386514C3F07 A new ant genus from southern Argentina and southern Chile, Patagonomyrmex (Hymenoptera: Formicidae) ROBERT A. JOHNSON1,3 & CORRIE S. MOREAU2 1School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA 2Field Museum of Natural History, Department of Science and Education, 1400 South Lake Shore Drive, Chicago, IL 60605, USA 3Corresponding author. E-mail: [email protected] Abstract The ant genus Pogonomyrmex (Hymenoptera: Formicidae: Myrmicinae) comprises 71 described species that occur in North America, South America, and Hispaniola, and it is the nominal genus in the recently established tribe Pogonomyr- mecini. A molecular phylogeny using 3,647 base pairs from fragments of one mitochondrial gene (cytochrome oxidase I) and five nuclear genes (long-wavelength rhodopsin, elongation factor 1α F1, elongation factor 1α F2, wingless, rudimen- tary) inferred that Pogonomymrex was not monophyletic. The vast majority of species belonged to a monophyletic clade (Pogonomyrmex sensu stricto), whereas species in the Po. angustus-group formed a second lineage outside of Pogono- myrmex and Hylomyrma, the latter being the only other genus in the tribe. To maintain monophyly of Pogonomyrmex, we create the genus Patagonomyrmex gen. n., which consists of the three angustus-group species (Patagonomyrmex angustus comb. n., Patagonomyrmex laevigatus comb. n., and Patagonomyrmex odoratus comb. n.) that are sister to all other pogonomyrmecines.
    [Show full text]
  • Florida Harvester Ant1 J
    EENY-298 Florida Harvester Ant1 J. C. Nickerson and T. R. Fasulo2 Introduction Distribution Although the Florida harvester ant, Pogonomyrmex badius The Florida harvester ant is found from Florida to North (Latreille), occurs throughout most of Florida, it is limited Carolina (Haack and Granovsky 1990) and west into by its ecological requirements. Where it does occur, the ant Mississippi (Creighton 1950) and Louisiana (Cole 1968). nest is readily visible as a large cleared area with a number The ant is the only eastern representative of the genus of slow moving individuals on the surface near the nest. Pogonomyrmex (Cole 1968). Harvester ants in the genus Pogonomyrmex received this name due to their practice of gathering seeds for food. Description While there are 22 species of harvester ants found in the The adults are dark rust red in color (Haack and Granovsky United States, only the Florida harvester ant occurs east of 1990), with the worker caste strongly polymorphic (1/4 to 3/8 the Mississippi River (Smith and Whitman 1992). inch long) (Smith and Whitman 1992). The major worker has a disproportionally enlarged head (after Creighton 1950). Like most other Pogonomyrmex spp. the Florida harvester ant has a psammophore (rows of long hair on ventral side of head) but it is poorly developed (Smith and Whitman 1992). The antennae are clubless with twelve segments. The thoracic dorsum has the sutures obsolescent or absent, and the thorax is not impressed between the masonotum and epinotum. The abdominal pedicel consists of two segments. The tibial spurs on the middle and hind legs are very finely pectinate.
    [Show full text]
  • Phylogeny and Biogeography of a Hyperdiverse Ant Clade (Hymenoptera: Formicidae)
    UC Davis UC Davis Previously Published Works Title The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae) Permalink https://escholarship.org/uc/item/2tc8r8w8 Journal Systematic Entomology, 40(1) ISSN 0307-6970 Authors Ward, PS Brady, SG Fisher, BL et al. Publication Date 2015 DOI 10.1111/syen.12090 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Systematic Entomology (2015), 40, 61–81 DOI: 10.1111/syen.12090 The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae) PHILIP S. WARD1, SEÁN G. BRADY2, BRIAN L. FISHER3 andTED R. SCHULTZ2 1Department of Entomology and Nematology, University of California, Davis, CA, U.S.A., 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A. and 3Department of Entomology, California Academy of Sciences, San Francisco, CA, U.S.A. Abstract. This study investigates the evolutionary history of a hyperdiverse clade, the ant subfamily Myrmicinae (Hymenoptera: Formicidae), based on analyses of a data matrix comprising 251 species and 11 nuclear gene fragments. Under both maximum likelihood and Bayesian methods of inference, we recover a robust phylogeny that reveals six major clades of Myrmicinae, here treated as newly defined tribes and occur- ring as a pectinate series: Myrmicini, Pogonomyrmecini trib.n., Stenammini, Solenop- sidini, Attini and Crematogastrini. Because we condense the former 25 myrmicine tribes into a new six-tribe scheme, membership in some tribes is now notably different, espe- cially regarding Attini. We demonstrate that the monotypic genus Ankylomyrma is nei- ther in the Myrmicinae nor even a member of the more inclusive formicoid clade – rather it is a poneroid ant, sister to the genus Tatuidris (Agroecomyrmecinae).
    [Show full text]