Honey Bee (Apis Mellifera) Intracolonial Genetic Diversity Influences Worker Nutritional Status Bruce J

Total Page:16

File Type:pdf, Size:1020Kb

Honey Bee (Apis Mellifera) Intracolonial Genetic Diversity Influences Worker Nutritional Status Bruce J Honey bee (Apis mellifera) intracolonial genetic diversity influences worker nutritional status Bruce J. Eckholm, Ming H. Huang, Kirk E. Anderson, Brendon M. Mott, Gloria Degrandi-Hoffman To cite this version: Bruce J. Eckholm, Ming H. Huang, Kirk E. Anderson, Brendon M. Mott, Gloria Degrandi-Hoffman. Honey bee (Apis mellifera) intracolonial genetic diversity influences worker nutritional status. Api- dologie, Springer Verlag, 2015, 46 (2), pp.150-163. 10.1007/s13592-014-0311-4. hal-01284439 HAL Id: hal-01284439 https://hal.archives-ouvertes.fr/hal-01284439 Submitted on 7 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2015) 46:150–163 Original article * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0311-4 Honey bee (Apis mellifera ) intracolonial genetic diversity influences worker nutritional status 1 2 3 3 Bruce J. ECKHOLM , Ming H. HUANG , Kirk E. ANDERSON , Brendon M. MOTT , 3 Gloria DEGRANDI-HOFFMAN 11025 Zylstra Road, Coupeville, WA 98239, USA 2Eurofins Agroscience Services, Inc., 15250 NC Hwy 86 South, Prospect Hill, NC 27314, USA 3Carl Hayden Bee Research Center, USDA-ARS, 2000 East Allen Road, Tucson, AZ 85719, USA Received 9 January 2014 – Revised 10 July 2014 – Accepted 25 July 2014 Abstract – Honey bee queens mate with multiple males resulting in high intracolonial genetic diversity among nestmates; a reproductive strategy known as extreme polyandry. Several studies have demonstrated the adaptive significance of extreme polyandry for overall colony performance and colony growth. Colonies that are more genetically diverse collect more pollen than colonies with less diversity. However, the effects of intracolonial genetic diversity on worker nutritional status are unknown. We created colonies headed by queens instrumentally insem- inated with sperm from either 1 or 20 drones, then compared protein consumption, digestion, and uptake among nestmates. We found that nurse bees from colonies with multiple-drone-inseminated (MDI) queens consumed more pollen, had lower amounts of midgut tissue protease, and invested more protein into larvae than nurse bees from single-drone-inseminated (SDI) queens. Pollen foragers from MDI colonies had significantly higher hemolymph protein concentration than pollen foragers from SDI colonies. Differences in hemolymph protein concentration between nurses and pollen foragers were significantly smaller among MDI colonies than among SDI colonies. While intracolonial genetic diversity is correlated with increased foraging, our results suggest that this relationship may be driven in part by the elevated resource demands of nurse bees in genetically diverse colonies that consume and distribute more protein in response to the social context within the hive. intracolonial genetic diversity / extreme polyandry / honey bee nutrition 1. INTRODUCTION Page 2000; Schlüns et al. 2005). However, ex- treme polyandry appears to offer a selective ad- Multiple mating by honey bee (Apis mellifera ) vantage at the colony level, largely as a conse- queens is a reproductive behavioral trait known as quence of the increased genetic diversity among extreme polyandry. While relatively uncommon, the queen’s offspring (Keller and Reeve 1994; extreme polyandry (i.e., ≥2 mates/queen) has been Oldroyd et al. 1998; Cole and Wiernasz 1999). documented in 13 genera of the Hymenoptera A honey bee queen mates in flight with many (Hughes et al. 2008). There are inherent risks to males (Tarpy et al. 2004) after which she begins to the queen of mating in the open with multiple lay eggs. The majority of fertilized eggs develop males, such as disease transmission (de Miranda into female workers, forming the colony work- and Fries 2008; da Cruz-Landim et al. 2012)or force. Worker offspring sired by any particular simply not returning to the colony (Tarpy and male with whom the queen mated comprise a “patriline” within the colony and, as a conse- quence of the queen’s multiple mates, the colony is comprised of many patrilines. On average, Corresponding author: B. J. Eckholm, workers within any patriline will be more similar [email protected] to each other than to their half-sisters from differ- Handling Editor: David Tarpy ent patrilines (Page and Laidlaw 1988). Genetic Honey bee (Apis mellifera ) intracolonial genetic diversity influences worker nutritional status 151 variability among patrilines contributes to the trophallaxis. Nurse bees consume and digest overall genetic diversity of the colony and is a stored pollen and distribute it as a proteinaceous key factor in colony health and productivity for jelly to all colony members, including the queen, honey bees (Oldroyd et al. 1992b, Fuchs and larvae, drones, and foragers (Crailsheim 1991). Schade, 1994; Mattila and Seeley, 2007)aswell The transition to foraging behavior is accom- as other social Hymenoptera (e.g. Wiernasz et al. panied by reduced pollen consumption 2004, 2008;Goodismanetal.,2007). In particu- (Crailsheim et al. 1992)aswellasreducedlevels lar, colonies comprised of a genetically diverse of total protein in the hemolymph (Fluri et al. workforce show increased disease resistance 1982). To support their high activity levels, for- (Baer and Schmid-Hempel 1999;Palmerand agers consume some pollen directly; however, Oldroyd 2003;Tarpy2003; Hughes and they also receive protein via trophallaxis with Boomsma 2004; Tarpy and Seeley 2006; Seeley nurse bees (Crailsheim 1991). Nutritional and and Tarpy 2007) and also exhibit improved effi- physiological shifts in workers suggest that ciency in their division of labor [reviewed by changes in nutritional status may initiate and reg- Oldroyd and Fewell (2007)]. Robinson and Page ulate foraging behavior (Toth and Robinson (1989) proposed a genetically based response 2005). Mechanisms that modulate the foraging threshold model to explain how colony function population are likely integral to colony fitness. improves with increased intracolonial genetic di- Of note, colonies comprised of multiple versity. The model predicts that workers have patrilines are often associated with robust foraging genetically based internal thresholds for populations [reviewed by Mattila and Seeley responding to task stimuli and patrilineal variation (2014)]. Among honey bees, patriline-based differ- in these internal thresholds generates division of ences have been shown to influence a number of labor. In support of the response threshold model, foraging-related activities including type of forage patriline-based differences in behavior have been (Oldroyd et al. 1992a), foraging distance (Oldroyd widely reported for honey bees such as guarding et al. 1993), foraging time of day (Kraus et al. (Giray et al. 2000), nest thermoregulation (Jones 2011), scouting (Dreller 1998; Mattila and Seeley et al. 2004), feeding larvae (Chapman et al. 2007), 2011), and dance communication (Mattila and grooming (Frumhoff and Baker 1988), and corpse Seeley 2010). Variation in behavioral states within removal (Robinson and Page 1988). a multiple patriline colony thus enhances the overall Division of labor, whereby workers specialize foraging effort. Indeed, when compared to honey on subsets of colony tasks (Oster and Wilson bee colonies with reduced intracolonial genetic di- 1978), emerges in part from age-related task versity, honey bee colonies with greater partitioning; young adult workers handle in-hive intracolonial genetic diversity are more efficient at tasks such as comb building and brood care (i.e., pollen foraging, resulting in greater amounts of “nursing”), and older workers perform peripheral pollen collected and increased brood production tasks such as guarding and foraging (Winston (Mattila and Seeley 2007; Eckholm et al. 2011). 1987). Moreover, the network of repeated interac- Large amounts of protein are provided to larvae tions between workers of various genetic and by nurse bees (Crailsheim 1990). Nurse bees in- phenotypic dispositions modulates task crease the feeding frequency and feeding duration partitioning (Robinson 1992). Worker interactions of young larvae when stored pollen is available, provide a mechanism for all individuals to assess resulting in higher larval protein content the needs of the colony, primarily determined by (Schmickl and Crailsheim 2002). Pollen foraging the colony’s food supply (Ribbands 1952). Troph- success therefore directly affects colony growth. allaxis, the transfer of food from one worker to However, we speculated that the ability to convert another, serves as a primary mechanism for the inbound food resources to colony growth may assessment of colony state and allocation of nutri- be—like foraging effort—augmented by tion resources (Crailsheim 1998). As the primary intracolonial genetic diversity. To that end, we digesters and distributors of protein in a honey bee established colonies headed by queens instrumen- colony, nurse bees play a central role in tally inseminated with either multiple (n =20) or 152 B.J. Eckholm et al. single (n =1) drones to construct two treatments locations
Recommended publications
  • Double Mound of the Harvester Ant Pogonomyrmex Occidentalis (Hymenoptera: Formicidae, Myrmicinae)
    Great Basin Naturalist Volume 53 Number 4 Article 13 12-28-1993 Double mound of the harvester ant Pogonomyrmex occidentalis (Hymenoptera: Formicidae, Myrmicinae) William H. Clark Orma J. Smith Museum of Natural History, Albertson College of Idaho, Caldwell, Idaho Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Clark, William H. (1993) "Double mound of the harvester ant Pogonomyrmex occidentalis (Hymenoptera: Formicidae, Myrmicinae)," Great Basin Naturalist: Vol. 53 : No. 4 , Article 13. Available at: https://scholarsarchive.byu.edu/gbn/vol53/iss4/13 This Note is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Creat Basin Naturalist 53(4), pp. 407-408 DOUBLE MOUND OF THE HARVESTER ANT POGONOMYRMEX OCCLDENTALIS (HYMENOPTERA: FORMICIDAE, MYRMICINAE) William H. ClarkI Key words: ho.rvester ant double mound, Pogonomyrmex occidentalis, ant nest, UUilt. Several species ofPogOlWmynnex, especial­ County, Utah, approximately 58 Ian NE Moab ly members of the occidentalis complex, have along Highway 128 and about 4 Ian from the nests surmounted by a large, conical mound Colorado River, at an elevation of 1445 m. of soil and gravel in a clearing created by the Voucher specimens from both mounds (WHC ants (Cole 1932, 1968). I report a rare double #8184 and 8185) are deposited in the Orma J. mound of the western halvester ant, Pogono­ Smith Museum of Natural History, Albertson mymwx oecidentalis (Cresson), having two College ofIdaho, Caldwell (ClDA).
    [Show full text]
  • Wildland Fire in Ecosystems: Effects of Fire on Fauna
    United States Department of Agriculture Wildland Fire in Forest Service Rocky Mountain Ecosystems Research Station General Technical Report RMRS-GTR-42- volume 1 Effects of Fire on Fauna January 2000 Abstract _____________________________________ Smith, Jane Kapler, ed. 2000. Wildland fire in ecosystems: effects of fire on fauna. Gen. Tech. Rep. RMRS-GTR-42-vol. 1. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 83 p. Fires affect animals mainly through effects on their habitat. Fires often cause short-term increases in wildlife foods that contribute to increases in populations of some animals. These increases are moderated by the animals’ ability to thrive in the altered, often simplified, structure of the postfire environment. The extent of fire effects on animal communities generally depends on the extent of change in habitat structure and species composition caused by fire. Stand-replacement fires usually cause greater changes in the faunal communities of forests than in those of grasslands. Within forests, stand- replacement fires usually alter the animal community more dramatically than understory fires. Animal species are adapted to survive the pattern of fire frequency, season, size, severity, and uniformity that characterized their habitat in presettlement times. When fire frequency increases or decreases substantially or fire severity changes from presettlement patterns, habitat for many animal species declines. Keywords: fire effects, fire management, fire regime, habitat, succession, wildlife The volumes in “The Rainbow Series” will be published during the year 2000. To order, check the box or boxes below, fill in the address form, and send to the mailing address listed below.
    [Show full text]
  • Pogonomyrmex Barbatus
    Anita. Behav., 1986, 34, 1402-1419 The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus) DEBORAH M. GORDON Museum of Comparative Zoology and Society of Fellows, Harvard University, Cambridge, Massachusetts 02138, U.S.A. Abstract. Colonies of the red harvester ant, Pogonomyrmex barbatus, do various tasks outside the nest. There is a daily temporal pattern in the numbers of ants engaged in each of five activities: foraging, nest maintenance, patrolling, midden work and convening. Perturbations were carried out in the field to investigate how the daily round changes in response to environmental events and colony needs. Interfering with nest maintenance, foraging or both caused changes in the temporal patterns in all five of the observed activities. Removing nest maintenance workers, foragers or both caused the numbers involved in all five activities to decrease, and there were temporal patterns in the effects of removals. The results of both interference and removal experiments show that the extent to which a worker group does one activity affects the behaviour of other groups. When nest maintenance or foraging is impeded experimentally, these two activities are of reciprocal priority. When both are impeded, foraging is of higher priority than nest maintenance. Harvester ants forage, patrol, maintain the nest speaking, that of an equilibrium state, but the area and foraging trails, collect and arrange dynamics of colony organization are not yet under- pebbles on the nest, and gather in small groups, stood. What events will alter the daily round, by inspecting and grooming each other. The beha- how much, and for how long? Is there more than viour of the colony outside the nest at any moment one equilibrium state? can be described by citing the number of ants This study begins an exploration of the dynamics engaged in each of the five activities.
    [Show full text]
  • Evolution of Colony Characteristics in the Harvester Ant Genus
    Evolution of Colony Characteristics in The Harvester Ant Genus Pogonomyrmex Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Christoph Strehl Nürnberg Würzburg 2005 - 2 - - 3 - Eingereicht am: ......................................................................................................... Mitglieder der Prüfungskommission: Vorsitzender: ............................................................................................................. Gutachter : ................................................................................................................. Gutachter : ................................................................................................................. Tag des Promotionskolloquiums: .............................................................................. Doktorurkunde ausgehändigt am: ............................................................................. - 4 - - 5 - 1. Index 1. Index................................................................................................................. 5 2. General Introduction and Thesis Outline....................................................... 7 1.1 The characteristics of an ant colony...................................................... 8 1.2 Relatedness as a major component driving the evolution of colony characteristics.................................................................................................10 1.3 The evolution
    [Show full text]
  • TAXONOMIC IDENTITY of "HALLUCINOGENIC" HARVESTER ANT Lpogonomyrmex Calijornicus) CONFIRMED
    Journal of Ethnobiology 21(2): 133-144 Winter 2001 TAXONOMIC IDENTITY OF "HALLUCINOGENIC" HARVESTER ANT lPogonomyrmex calijornicus) CONFIRMED KEVIN I' GROARK Department of Anthropology, Un;ocrsity of California, Los Angeles Los Angeles, CA 90024 ABSTRACf.-The use of California harvester ants (fbgollomyrmex californiClls) for visionary and therapeutic ends was an important but poorly-documented tradi­ tion in native south-central California. In this brief report, a confirmation of the taxonomic identity of the red ant species used in California is presented, and the descriptive record of its use is supplemented with additional ethnographic ac­ counts. This taxonomic identification of this species is of particular importance, as visionary red ant ingestion provides the only well-documented case of the widespread use of an insect as an hallucinogenic agent. RESUMEN.-La utilizaci6n de hormigas granivoras rojas (HJgo/wmyrmex califor­ nicus) con fines alucin6genos y terapeuticos, fue una tradici6n de mucha impor­ tancia pero mal documentada en el sur y centro-sur de California. Este breve articulo confirma la identidad taxon6mica de dicha especie y la descripci6n de su uso se hace a !raves de datos etnogrMicos adicionales. Esta identificaci6n taxo­ n6mica es de especial interes, puesto que es el dnico ejemplo etnografico debi­ damente documentado de un agente alucin6geno derivado de un insecto. REsUME.-L'u!ilisation des fourmis moissonneuses rouges (fbgonomyrmex califor­ nicus) a des desseins religieux et therapeutiques etait une tradition peu docu­ mentee mais importante dans la vie de plusieurs groupes autochtones du centre­ sud de la Californie. Dans ce bref expose on trouve la confirmation de I'identification taxonomique de la fourmi et a la description de la methode de son utilisation s'ajoute des donnees ethnographiques suplementaires.
    [Show full text]
  • Red Harvester Ant (Big Red Ants; Harvester Ants, Red Ants; Barbatus Harvester Ant)
    Pest Profile Photo credit: April Nobile, California Academy of Sciences (Specimen CASENT0006306; from https://www.antweb.org) Common Name: Red harvester ant (big red ants; harvester ants, red ants; Barbatus harvester ant) Scientific Name: Pogonomyrmex barbatus Order and Family: Order Hymenoptera; Family Formicidae Size and Appearance: Length (mm) Appearance Egg Larva/Nymph Adult Workers Pogonomyrmex harvester ants are characterized by broad, range from 5 boxy heads, 12-segmented antennae, a two-part waist, a pair mm – 8 mm of dorsal spines and a stinger. Many species have a set of long hairs (called a psammophore) on the posterior lower portion of the head, behind the mouthparts. Workers of the red harvester ant are polymorphic without distinct majors and minors. They vary in color from a light to very deep red and they have texture in the form of lines on the head (rugae). Colonies have one queen (monogynous). Queens are similar to workers but larger with a larger thorax. Female and male reproductive ants have wings. Pupa (if applicable) Type of feeder (Chewing, sucking, etc.): Chewing Host(s): Harvester ants in the genus Pogonomyrmex specialize in seeds but may forage on other foods (generalist and opportunistic). Description of Damage (larvae and adults): Because theses ants primarily eat seeds (up to 90% of the diet), they are pests of agricultural systems, damaging crops but especially grasslands (pasture). They harvest seeds, defoliate plants, and remove young and old plants. Agricultural important plants they affect include corn, oats, alfalfa, cotton, guayule, grapes, date, citrus trees, apple, and pear, as well as more generally pasture (grasses) and shrubs.
    [Show full text]
  • I. Petiole Node II. Tip of Abdomen IV. Length of Antennae Guide to Vineyard Ant Identification III. Shape of Thorax
    Guide to Vineyard Ant Identification head abdomen Monica L. Cooper, Viticulture Farm Advisor, Napa County Lucia G. Varela, North Coast IPM Advisor thorax I. Petiole node One Node Two nodes Go to II Subfamily Myrmicinae Go to V II. Tip of abdomen Circle of small hairs present Circle of small hairs absent Subfamily Formicinae Subfamily Dolichoderinae Go to III Argentine Ant (Linepithema humile) III. Shape of thorax Thorax uneven Thorax smooth and rounded Go to IV Subfamily Formicinae Carpenter ant (Camponotus spp.) IV. Length of antennae Antennae not much longer than length of head Antennae much longer than length of head Subfamily Formicinae Subfamily Formicinae Field or Gray Ant (Formica spp.) False honey ant (Prenolepis imparis) head abdomen Petiole with two nodes Subfamily Myrmicinae (V-VIII) thorax V. Dorsal side of Thorax & Antennae One pair of spines on thorax No spines on thorax 12 segmented antennae 10 segmented antennae Go to VI Solenopsis molesta and Solenopsis xyloni VI. Underside of head No brush of bristles Brush of long bristles Go to VII Harvester ants (Pogonomyrmex californicus and P. brevispinosis) VII. Head and Thorax With hairs Without hairs Go to VIII Cardiocondyla mauritanica VIII. Head and Thorax With many parallel furrows Without parallel furrows Profile of thorax rounded Profile of thorax not evenly rounded Pavement ant (Tetramorium “species E”) Pheidole californica Argentine Ant (Linepithema humile), subfamily Dolichoderinae Exotic species 3-4 mm in length Deep brown to light black Move rapidly in distinct trails Feed on honeydew Shallow nests (2 inches from soil surface) Alex Wild Does not bite or sting Carpenter Ant (Camponotus spp.), subfamily Formicinae Large ant: >6 mm in length Dark color with smooth, rounded thorax Workers most active at dusk and night One of most abundant and widespread genera worldwide Generalist scavengers and predators: feed on dead and living insects, nectar, fruit juices and Jack K.
    [Show full text]
  • Red Harvester Ants Bastiaan M
    E-402 4-06 Red Harvester Ants Bastiaan M. Drees* ed harvester ants are one of the more Life cycle noticeable and larger ants in open areas in Texas. Eleven species in this group of ants Winged males and females swarm, couple and R mate, especially following rains. Winged forms (genus Pogonomyrmex) are known from the state. are larger than worker ants. Males soon die and However, harvester ants are not nearly as com- females seek a suitable nesting site. After drop- mon today as they were during the earlier 1900s. ping her wings, the queen ant digs a burrow and The decline, particularly in the eastern part of produces a few eggs. Larvae hatch from eggs and the state, has caused some alarm because these develop through several stages (instars). Larvae ants serve as a major source of food for the are white and legless, shaped like a crookneck rapidly disappearing and threatened Texas squash with a small distinct head. Pupation horned lizard. occurs within a cocoon. Worker ants produced by the queen ant begin caring for other develop- Description ing ants, enlarge the nest and forage for food. 1 1 Worker ants are ⁄4 to ⁄2 inch long and red to Pest status dark brown. They have squarish heads and no spines on the body. There are 22 species of har- Worker ants can give a painful, stinging bite, vester ants in the United States, 10 of which are but are generally reluctant to attack. Effects of found in Texas. Seven of these species are found the bite can spread along lymph channels and only in far west Texas.
    [Show full text]
  • A New Ant Genus from Southern Argentina and Southern Chile, Patagonomyrmex (Hymenoptera: Formicidae)
    Zootaxa 4139 (1): 001–031 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4139.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:ED6570FE-F499-4B75-B1A3-1386514C3F07 A new ant genus from southern Argentina and southern Chile, Patagonomyrmex (Hymenoptera: Formicidae) ROBERT A. JOHNSON1,3 & CORRIE S. MOREAU2 1School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA 2Field Museum of Natural History, Department of Science and Education, 1400 South Lake Shore Drive, Chicago, IL 60605, USA 3Corresponding author. E-mail: [email protected] Abstract The ant genus Pogonomyrmex (Hymenoptera: Formicidae: Myrmicinae) comprises 71 described species that occur in North America, South America, and Hispaniola, and it is the nominal genus in the recently established tribe Pogonomyr- mecini. A molecular phylogeny using 3,647 base pairs from fragments of one mitochondrial gene (cytochrome oxidase I) and five nuclear genes (long-wavelength rhodopsin, elongation factor 1α F1, elongation factor 1α F2, wingless, rudimen- tary) inferred that Pogonomymrex was not monophyletic. The vast majority of species belonged to a monophyletic clade (Pogonomyrmex sensu stricto), whereas species in the Po. angustus-group formed a second lineage outside of Pogono- myrmex and Hylomyrma, the latter being the only other genus in the tribe. To maintain monophyly of Pogonomyrmex, we create the genus Patagonomyrmex gen. n., which consists of the three angustus-group species (Patagonomyrmex angustus comb. n., Patagonomyrmex laevigatus comb. n., and Patagonomyrmex odoratus comb. n.) that are sister to all other pogonomyrmecines.
    [Show full text]
  • Florida Harvester Ant1 J
    EENY-298 Florida Harvester Ant1 J. C. Nickerson and T. R. Fasulo2 Introduction Distribution Although the Florida harvester ant, Pogonomyrmex badius The Florida harvester ant is found from Florida to North (Latreille), occurs throughout most of Florida, it is limited Carolina (Haack and Granovsky 1990) and west into by its ecological requirements. Where it does occur, the ant Mississippi (Creighton 1950) and Louisiana (Cole 1968). nest is readily visible as a large cleared area with a number The ant is the only eastern representative of the genus of slow moving individuals on the surface near the nest. Pogonomyrmex (Cole 1968). Harvester ants in the genus Pogonomyrmex received this name due to their practice of gathering seeds for food. Description While there are 22 species of harvester ants found in the The adults are dark rust red in color (Haack and Granovsky United States, only the Florida harvester ant occurs east of 1990), with the worker caste strongly polymorphic (1/4 to 3/8 the Mississippi River (Smith and Whitman 1992). inch long) (Smith and Whitman 1992). The major worker has a disproportionally enlarged head (after Creighton 1950). Like most other Pogonomyrmex spp. the Florida harvester ant has a psammophore (rows of long hair on ventral side of head) but it is poorly developed (Smith and Whitman 1992). The antennae are clubless with twelve segments. The thoracic dorsum has the sutures obsolescent or absent, and the thorax is not impressed between the masonotum and epinotum. The abdominal pedicel consists of two segments. The tibial spurs on the middle and hind legs are very finely pectinate.
    [Show full text]
  • Phylogeny and Biogeography of a Hyperdiverse Ant Clade (Hymenoptera: Formicidae)
    UC Davis UC Davis Previously Published Works Title The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae) Permalink https://escholarship.org/uc/item/2tc8r8w8 Journal Systematic Entomology, 40(1) ISSN 0307-6970 Authors Ward, PS Brady, SG Fisher, BL et al. Publication Date 2015 DOI 10.1111/syen.12090 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Systematic Entomology (2015), 40, 61–81 DOI: 10.1111/syen.12090 The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae) PHILIP S. WARD1, SEÁN G. BRADY2, BRIAN L. FISHER3 andTED R. SCHULTZ2 1Department of Entomology and Nematology, University of California, Davis, CA, U.S.A., 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A. and 3Department of Entomology, California Academy of Sciences, San Francisco, CA, U.S.A. Abstract. This study investigates the evolutionary history of a hyperdiverse clade, the ant subfamily Myrmicinae (Hymenoptera: Formicidae), based on analyses of a data matrix comprising 251 species and 11 nuclear gene fragments. Under both maximum likelihood and Bayesian methods of inference, we recover a robust phylogeny that reveals six major clades of Myrmicinae, here treated as newly defined tribes and occur- ring as a pectinate series: Myrmicini, Pogonomyrmecini trib.n., Stenammini, Solenop- sidini, Attini and Crematogastrini. Because we condense the former 25 myrmicine tribes into a new six-tribe scheme, membership in some tribes is now notably different, espe- cially regarding Attini. We demonstrate that the monotypic genus Ankylomyrma is nei- ther in the Myrmicinae nor even a member of the more inclusive formicoid clade – rather it is a poneroid ant, sister to the genus Tatuidris (Agroecomyrmecinae).
    [Show full text]
  • Founding, Foraging, and Fighting: Colony Size and the Spatial Distribution of Harvester Ant Nests Author(S): Deborah M
    Founding, Foraging, and Fighting: Colony Size and the Spatial Distribution of Harvester Ant Nests Author(s): Deborah M. Gordon and Alan W. Kulig Reviewed work(s): Source: Ecology, Vol. 77, No. 8 (Dec., 1996), pp. 2393-2409 Published by: Ecological Society of America Stable URL: http://www.jstor.org/stable/2265741 . Accessed: 28/09/2012 12:10 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology. http://www.jstor.org Ecology, 77(8), 1996, pp. 2393-2409 (? 1996 by the Ecological Society of America FOUNDING, FORAGING, AND FIGHTING: COLONY SIZE AND THE SPATIAL DISTRIBUTION OF HARVESTER ANT NESTS' DEBORAH M. GORDON Department of Biological Sciences, Stanford University, Stanford, California 94305-5020 USA ALAN W. KULIG Department of Statistics, Stanford University, Stanford, California 94305-5020 USA Abstract. This study examines how the spatial distribution of nests is related to the behavioral interactions of conspecific neighbors in a population of the seed-eating ant, Pogonomyrmex barbatus. Colonies live for 15-20 yr, reaching reproductive age and a stable size at =:5 yr. Spatial distributions were measured for 6 yr (1988-1993) in a population of -::250 colonies of known age.
    [Show full text]