Operations Research and Artificial Intelligence

Total Page:16

File Type:pdf, Size:1020Kb

Operations Research and Artificial Intelligence Volume 13 | Number 2 | June 2019 | ISSN 2223-4373 International Federation of Operational Research Societies NEWS Operations Research and WHAT’S INSIDE Artificial Intelligence From the President Grazia Speranza <[email protected]> 1 Operations Research and Artificial Intelligence In an interview that recently realistic in our appeared in a newspaper I said computational Editorial that people should not think that, experiments but 2 A Fond Farewell 2 IFORS 2020: Seoul, Korea behind new technological products, data, models, 3 IFORS 2023 will be in Chile! there is some kind of magic and that networks, algorithms, central for example in optimization, IFORS Administrative Committee robotics and artificial intelligence, these are all words that are familiar to Reports of 2018 are neither magical nor dangerous. us. 4 President After that interview was published, 4 Immediate Past President I was invited to give a lecture Our community can contribute to the 5 Vice-President 6 Treasurer on artificial intelligence by an development of artificial intelligence, 7 VP for ALIO association of medical doctors. At certainly of machine learning, an 8 VP for APORS first, I was tempted to decline. I am area that is receiving great attention 9 VP for EURO in operations research not in artificial in the academic world and, even 10 VP for NORAM intelligence. Then, I decided to accept more, in companies and institutions. 12 Publications Committee the challenge as the lecture was Many machine learning methods 13 Conferences Committee intended to give an overview of the are already embedded in software OR for Development area and I felt I could do that. In fact, and, as such, available to be used in 13 Call for submissions to the IFORS I started my academic career in a applications, provided one knows Prize for OR in Development 2020 computer science department and I how to use them. I believe that in 14 Sustaining Food Supply by Educating have followed the evolution of what the future we will see more and Smallholder Farmers in Developing has been called artificial intelligence more talks at our conferences and Economies over the years. Only recently times more and more papers published in 15 OR for Humanitarian Logistics have become mature for a variety of our journals linking the traditional OR Impact industrial applications. Nowadays, the OR methods and applications with 17 Placement Optimization expression artificial intelligence is used machine learning methods. We might in Refugee Resettlement to indicate the ability of computers to contribute with new algorithms but learn from experience. This ability is also with new models. It would be Book Review the result of the application of models also worth exploring the combination 19 Decision Making under Deep and algorithms of machine learning. of machine learning methods and Uncertainty Among the methods that fall under classical OR methods in specific Conferences the machine learning umbrella we application areas. There are so many 21 The First EUROYoung Workshop find neural networks. A parametrized decision problems that would benefit function is associated with each node, from past data. Association Governance and Management called neuron, of a neural network. A 23 The ‘Beyond Tourism’ Benefits neural network must be first trained Machine learning is a growing field and of Association Events with (huge amounts of) data and we should be part of this movement. then can be used to predict. To train Protecting our discipline is a mission OR Society in Focus a network an optimization problem for IFORS but part of the mission is 24 AGIFORS – The Airline Industry’s is solved to minimize the prediction also keeping our discipline lively and, OR Society error on the training set of data. The if possible, making it stronger. My Obituary variables are the parameters of the lecture on artificial intelligence to 25 Egon Balas, A Personal Reflection functions associated with the neurons physicians was apparently a success, and the solution of the optimization by the way, probably because we, 27 Call for an editor-in-chief problem defines the values of the operations researchers, are flexible and associate editors for IFORS News parameters. The number of variables and can understand models, goes beyond any value that we are algorithms, technology and their Editorial Box used to consider reasonable or even application. P. 1 • IFORS NEWS June 2019 EDITORIAL Editor’s note: In name of IFORS I would like to thanks James Bleach for acting as co-editor of IFORS News in the past twelve months. James’ kind interaction and work will be missed a lot! A Fond Farewell James Bleach<[email protected]> As my tenure as co-editor finishes with this issue, I’d this increase in productivity can like to take the opportunity to say how much I have be facilitated. This section also enjoyed my time working on IFORS News – and also includes OR for humanitarian to highly recommend to readers that they consider logistics – with logistics playing a volunteering for one of the editorial roles currently key role in operations after major available. If I were to highlight one aspect of the disasters, this article discusses the content from the issues of the past twelve months, real opportunity that exists for OR it would be to celebrate the successful longevity of to provide practical post-disaster many of our OR professional institutions. By way of support. a specific example, my own national society, the UK Operational Research Society, celebrated its 60th In the section OR Impact, we have the article anniversary annual conference in September of Placement Optimization in Refugee Resettlement. With 2018. Organisational milestones such as this, which the number of global refugees reaching record levels, are being achieved around the globe, provide real and with many refugees considered to be in need of confidence in the ability of operational research resettlement, this article describes important work to remain pertinent and successful in a constantly that uses machine learning and integer optimization evolving world. to improve refugee resettlement outcomes. Decision Making under Deep Uncertainty – From Theory to Now to the current issue: there are articles regarding Practice is the subject of Hans W. Ittmann’s book the 22nd and 23rd IFORS triennial conferences, with review, and he concludes that it is a monumental IFORS 2020 being held in Seoul, Korea and IFORS piece of work and a welcome addition to the ever- 2023 announced as being in Santiago, Chile. The increasing body of knowledge in this important highly informative IFORS Administrative Committee emerging field. Reports of 2018 include summaries of the extensive and highly valuable activities of the regional groups, OR Society in Focus provides information on the reports from the presidents (current, past and vice) Airline Group of the International Federation of as well as from the publication and conferences Operational Research Societies (AGIFORS), which is a committees. The IFORS treasurer also reports a better professional society dedicated to the advancement than budgeted for year for IFORS finances in 2018, and application of operational research within the albeit noting a need to address the loss of future airline industry. With regard to conferences, the revenue from the journal International Abstracts success of the first EUROYoung Workshop is reported in Operations Research (IAOR), given the end of its – an event helping to support and develop the next publication in 2017. generation of operational researchers. The OR for Development section includes Sustaining With great sadness we close the issue with an obituary Food Supply by Educating Smallholder Farmers for Egon Balas, who, as Michael Trick reflects, was an in Developing Economies, which discusses the inspiration – surviving incredible challenges in early unprecedented food supply crisis being faced, life to become one of the key pioneers of integer how farmers being more productive by adopting programming, and who remained highly influential sustainable farming techniques can help, and how in that field for his entire professional life. IFORS 2020: Seoul, Korea 21 -26 June, 2020 Karla L Hoffman <[email protected]> The Organizing and Program Committees of state-of-the-art operations research techniques for IFORS 2020 welcomes all operations and technologies. IFORS 2020 will provide you researchers to attend the 22nd Conference of with a unique opportunity to network and engage the International Federation of Operational with operations research analysts, industrial users Research Societies (IFORS) from June 21 (Sun) - of operations research, and academic and industry 26 (Fri), 2020 at the COEX, in Seoul, Korea. experts from all parts of the globe. This conference will highlight global developments This is the first IFORS conference to be held in Asia in operations research and show how the tools of since the 15th conference in China 20 years ago. It operations research are expanding their impact is thus an exciting opportunity to bring together on society, health, science and industry. The IFORS operations researchers from the field in Asia, where conferences provide a platform for experts from it has experienced vigorous and rapid growth, with around the world to showcase the diverse potential colleagues from all regions of the world. P. 2 • IFORS NEWS June 2019 The Organizing Committee, of operations research and chaired by Suk-Gwon Chang, analytics. Three plenary has chosen a wonderful
Recommended publications
  • Curriculum Vitæ
    Aleksandr M. Kazachkov May 30, 2021 Contact Department of Industrial and Systems Engineering Website akazachk.github.io Information Herbert Wertheim College of Engineering Email akazachkov@ufl.edu 303 Weil Hall, P.O. Box 116595 Office 401B Weil Hall Gainesville, FL 32611-6595, USA Phone +1.352.273.4902 Research Discrete optimization, including theoretical, methodological, and applied aspects, with an emphasis on devel- Interests oping better cutting plane techniques and open-source computational contributions Computational economics, particularly on the fair allocation of indivisible resources and fair mechanism design Social good applications, such as humanitarian logistics and donation distribution Academic University of Florida, Department of Industrial and Systems Engineering, Gainesville, FL, USA Positions Assistant Professor January 2021 – Present Courtesy Assistant Professor March 2020 – December 2020 Polytechnique Montréal, Department of Mathematics and Industrial Engineering, Montréal, QC, Canada Postdoctoral Researcher under Andrea Lodi May 2018 – December 2020 Education Carnegie Mellon University, Tepper School of Business, Pittsburgh, PA, USA Ph.D. in Algorithms, Combinatorics, and Optimization under Egon Balas May 2018 Dissertation: Non-Recursive Cut Generation M.S. in Algorithms, Combinatorics, and Optimization May 2013 Cornell University, College of Engineering, Ithaca, NY, USA B.S. in Operations Research and Engineering with Honors, Magna Cum Laude May 2011 Publications [1] P.I. Frazier and A.M. Kazachkov. “Guessing Preferences: A New Approach to Multi-Attribute Ranking and Selection”, Winter Simulation Conference, 2011. [2] J. Karp, A.M. Kazachkov, and A.D. Procaccia. “Envy-Free Division of Sellable Goods”, AAAI Conference on Artificial Intelligence, 2014. [3] J.P. Dickerson, A.M. Kazachkov, A.D. Procaccia, and T.
    [Show full text]
  • 2019 Contents 2019
    mathematical sciences news 2019 contents 2019 Editor-in-Chief Tom Bohman Contributing Writers Letter from Department 03 Tom Bohman Head, Tom Bohman Jocelyn Duffy Bruce Gerson Florian Frick 04 Ben Panko Emily Payne Faculty Notes Ann Lyon Ritchie Franziska Weber Graphic Design and Photography 10 Carnegie Mellon University Expanding the Boundaries on Marketing & Communications Summer Undergraduate Research Mellon College of Science Communications 14 Carnegie Mellon University Frick's Fellowship Department of Mathematical Sciences Wean Hall 6113 Pittsburgh, PA 15213 20 cmu.edu/math In Memorium Carnegie Mellon University does not discriminate in admission, employment, or administration of its programs or activities on the basis of race, color, national origin, sex, 24 handicap or disability, age, sexual orientation, gender identity, religion, creed, ancestry, belief, veteran status, or genetic information. Furthermore, Carnegie Mellon University does Alumni News not discriminate and is required not to discriminate in violation of federal, state, or local laws or executive orders. Inquiries concerning the application of and compliance with this statement should be directed to the university ombudsman, Carnegie Mellon University, 5000 Forbes 26 Avenue, Pittsburgh, PA 15213, telephone 412-268-1018. Obtain general information about Carnegie Mellon University Student News by calling 412-268-2000. Produced for the Department of Mathematical Sciences by Marketing & Communications, November, 2019, 20-137. ©2019 Carnegie Mellon University, All rights reserved. No 30 part of this publication may be reproduced in any form without written permission from Carnegie Mellon University's Department of Mathematical Sciences. Class of 2019 1 Letter from Mathematics Department Head, Tom Bohman Undergraduate research has become a hallmark of a Carnegie Mellon University education, with students citing that it has helped to prepare them for their futures in academia and the workforce.
    [Show full text]
  • On the Depth of Cutting Planes
    On the depth of cutting planes Laurent Poirrier, James Yu∗ flpoirrier,[email protected] March 12, 2019 Abstract We introduce a natural notion of depth that applies to individual cutting planes as well as entire families. This depth has nice properties that make it easy to work with theoretically, and we argue that it is a good proxy for the practical strength of cutting planes. In particular, we show that its value lies in a well-defined interval, and we give parametric upper bounds on the depth of two prominent types of cutting planes: split cuts and intersection cuts from a simplex tableau. Interestingly, these parametric bounds can help explain behaviors that have been observed computationally. For polyhedra, the depth of an individual cutting plane can be computed in polynomial time through an LP formulation, and we show that it can be computed in closed form in the case of corner polyhedra. 1 Introduction Cutting planes (also called valid inequalities or cuts) have proven computationally useful since the very early history of Integer Programming (IP). In the pioneering work of Dantzig, Fulkerson and Johnson [10] on the traveling salesman problem, cutting planes were the main computational tool alongside the simplex method. They were initially less successful for general IP problems, where they were largely outperformed by Land and Doig's branch-and-bound method [23]. However, in the mid-nineties, Balas, Ceria and Cornu´ejols[2] proposed combining the two: first adding a few rounds of cuts, before resorting to branch-and-bound. Since then, cutting planes have become a central component of IP solvers [3], the most effective single families of cuts being Gomory's Mixed-Integer (GMI) cuts [19], and Nemhauser and Wolsey's Mixed-Integer Rounding (MIR) cuts [24, 25].
    [Show full text]
  • A New Column for Optima Structure Prediction and Global Optimization
    76 o N O PTIMA Mathematical Programming Society Newsletter MARCH 2008 Structure Prediction and A new column Global Optimization for Optima by Alberto Caprara Marco Locatelli Andrea Lodi Dip. Informatica, Univ. di Torino (Italy) Katya Scheinberg Fabio Schoen Dip. Sistemi e Informatica, Univ. di Firenze (Italy) This is the first issue of 2008 and it is a very dense one with a Scientific February 26, 2008 contribution on computational biology, some announcements, reports of “Every attempt to employ mathematical methods in the study of chemical conferences and events, the MPS Chairs questions must be considered profoundly irrational and contrary to the spirit in chemistry. If mathematical analysis should ever hold a prominent place Column. Thus, the extra space is limited in chemistry — an aberration which is happily almost impossible — it but we like to use few additional lines would occasion a rapid and widespread degeneration of that science.” for introducing a new feature we are — Auguste Comte particularly happy with. Starting with Cours de philosophie positive issue 76 there will be a Discussion Column whose content is tightly related “It is not yet clear whether optimization is indeed useful for biology — surely biology has been very useful for optimization” to the Scientific contribution, with ­ — Alberto Caprara a purpose of making every issue of private communication Optima recognizable through a special topic. The Discussion Column will take the form of a comment on the Scientific 1 Introduction contribution from some experts in Many new problem domains arose from the study of biological and the field other than the authors or chemical systems and several mathematical programming models an interview/discussion of a couple as well as algorithms have been developed.
    [Show full text]
  • Can Be Formulated As
    MIXED INTEGER SECOND ORDER CONE PROGRAMMING SARAH DREWES∗ AND STEFAN ULBRICH † Abstract. This paper deals with solving strategies for mixed integer second order cone problems. We present different lift-and-project based linear and convex quadratic cut generation techniques for mixed 0-1 second-order cone problems and present a new convergent outer approximation based approach to solve mixed integer SOCPs. The latter is an extension of outer approximation based approaches for continuously differ- entiable problems to subdifferentiable second order cone constraint functions. We give numerical results for some application problems, where the cuts are applied in the context of a nonlinear branch-and-cut method and the branch-and-bound based outer approximation algorithm. The different approaches are compared to each other. Key words. Mixed Integer Nonlinear Programming, Second Orde Cone Program- ming, Outer Approximation, Cuts AMS(MOS) subject classifications. 90C11 1. Introduction. Mixed Integer Second Order Cone Programs (MIS- OCP) can be formulated as min cT x s.t. Ax = b x º 0 (1.1) xj ∈ [lj ,uj ] (j ∈ J), xj ∈ Z (j ∈ J), n m,n m n where c ∈ R , A ∈ R , b ∈ R , lj ,uj ∈ R and x º 0 denotes that x ∈ R ki consists of noc part vectors xi ∈ R lying in second order cones defined by T T R Rki−1 Ki = {xi = (xi0,xi1) ∈ × : kxi1k2 ≤ xi0}. Mixed integer second order cone problems have various applications in fi- nance or engineering, for example turbine balancing problems, cardinality- constrained portfolio optimization (cf. Bertsimas and Shioda in [12]) or the problem of finding a minimum length connection network also known as the Euclidian Steiner Tree Problem (ESTP) (cf.
    [Show full text]
  • Disjunctive Programming
    Chapter 10 Disjunctive Programming Egon Balas Introduction by Egon Balas In April 1967 I and my family arrived into the US as fresh immigrants from be- hind the Iron Curtain. After a fruitful semester spent with George Dantzig’s group in Stanford, I started working at CMU. My debut in integer programming and entry ticket into Academia was the additive algorithm for 0-1 programming [B65], an im- plicit enumeration procedure based on logical tests akin to what today goes under the name of constraint propagation. As it used only additions and comparisons, it was easy to implement and was highly popular for a while. However, I was aware of its limitations and soon after I joined CMU I started investigating cutting plane procedures, trying to use for this purpose the tools of convex analysis: support func- tions and their level sets, maximal convex extensions, polarity, etc. During the five years starting in 1969, I proposed a number of procedures based on the central idea of intersection cuts [2] (numbered references are to those at the end of the paper, whereas mnemonicized ones are to the ones listed at the end of this introduction): Given any convex set S containing the LP optimum of a mixed integer program (MIP) but containing no feasible integer point in its interior, one can generate a valid cut by intersecting the boundary of S with the extreme rays of the cone defined by the optimal solution to the linear programming relaxation of the MIP and tak- ing the hyperplane defined by the intersection points as the cut.
    [Show full text]
  • History of Operations Research
    INFORMS 2011 c 2011 INFORMS j isbn 978-0-9843378-2-8 doi: http://dx.doi.org/10.1287/educ.1110.0084 History of Operations Research Saul I. Gass University of Maryland, College Park, Maryland 20742, [email protected] Arjang A. Assad School of Management, State University of New York at Buffalo, Buffalo, New York 14260, aassad@buffalo.edu Abstract We discuss the history of operations research (OR) from the following perspectives: the origins and people of OR; the major sites of early United States OR research; the best stories from contributors to early OR; and lessons learned, or how history informs OR today. Keywords operations research; history; perspectives Tutorial Outline Part I: Origins and People of Operations Research (OR)|A Quick Tour Part II: The Major Sites of Early U.S. OR Research Part III: The Best Stories from Contributors to Early OR Part IV: Lessons Learned, or How History Informs OR Today Prologue Over the last 10 years, we have taken intersecting paths along the complex network that defines the background, development, and worldwide acceptation of OR as a scientific-based profession that is directed at resolving decision problems in business, government, industry, and society. Prior to these travels, we both spent our careers (and still are) in consulting, teaching, and related research. So, it is fitting to ask, what do we find in the pursuit of the historical aspects of OR that make it of interest to us and, we hope, of interest to you? But first, we discuss some brief background on the origins of OR and how we became interested in that area: OR had its origins in the late 1930s when a group of British Royal Air Force officers and civilian scientists were asked to determine how recently developed radar technology could be used for controlled interception of enemy aircraft.
    [Show full text]
  • Linear Programming
    LINEAR PROGRAMMING GEORGE B. DANTZIG Department of Management Science and Engineering, Stanford University, Stanford, California 94305-4023 The Story About How It Began: Some legends, a little the transportation problem was also overlooked until after about its historical significance, and comments about where others in the late 1940’s and early 1950’s had independently its many mathematical programming extensions may be rediscovered its properties. headed. What seems to characterize the pre-1947 era was lack of any interest in trying to optimize. T. Motzkin in his schol- inear programming can be viewed as part of a great arly thesis written in 1936 cites only 42 papers on linear Lrevolutionary development which has given mankind inequality systems, none of which mentioned an objective the ability to state general goals and to lay out a path of function. detailed decisions to take in order to “best” achieve its goals The major influences of the pre-1947 era were Leon- when faced with practical situations of great complexity. tief’s work on the Input-Output Model of the Economy Our tools for doing this are ways to formulate real-world (1933), an important paper by von Neumann on Game The- problems in detailed mathematical terms (models), tech- ory (1928), and another by him on steady economic growth niques for solving the models (algorithms), and engines for (1937). executing the steps of algorithms (computers and software). My own contributions grew out of my World War II This ability began in 1947, shortly after World War II, experience in the Pentagon. During the war period (1941– and has been keeping pace ever since with the extraordinary 45), I had become an expert on programming-planning growth of computing power.
    [Show full text]
  • Newsletter 18 of EUROPT
    Newsletter 18 of EUROPT EUROPT - The Continuous Optimization Working Group of EURO http://www.iam.metu.edu.tr/EUROPT/ January 2010 1 In this issue: ² Words from the chair ² Forthcoming Events ² Awards and Nominations ² Job opportunities ² Invited Short Note: "Simple bounds for boolean quadratic problems", by Yu. Nesterov ² Editor’s personal comments 2 Words from the chair Dear Members of EUROPT, dear Friends, It is once again my great pleasure to insert some salutation words in this new issue of our Newsletter. In these special days, I would like to express to all of you my best wishes for a Happy New Year 2010, and my deep thanks to the Members of the Managing Board (MB) for their permanent support and expert advice. This is also time for remembering the many important scientific events to take place during this year. They are of great interest, and I am sure of meeting most of you in some of them. I would like to express my gratitude to those members of EUROPT who are involved in the organization of these activities and, according the experience of the last years, all of them will be successfully organized. I would like to start by calling your attention on our 8th EUROPT Workshop "Advances in Continuous Optimization" (www.europt2010.com), to be held in University of Aveiro, Portugal, in July 9-10, the days previous to EURO XXIV 2010, in Lisbon (http://euro2010lisbon.org/). We kindly invite you to participate in this meeting, which is the annual meeting of our EU- ROPT group and that, in this occasion, has many additional points of interest.
    [Show full text]
  • Pioneers and Innovators (International Series in Operations
    Contents Chapter 1. PATRICK BLACKETT (1897) ................................................01 by Maurice W. Kirby, Lancaster University Jonathan Rosenhead, London School of Economics Chapter 2. STEVEN VAJDA (1901) .............................................................31 by Jakob Krarup, University of Copenhagen Chapter 3. PHILIP McCORD MORSE (1903) .........................................45 by Robert M. Oliver, University of California, Berkeley Chapter 4. JOHN von NEUMANN (1903)..................................................69 by Saul I. Gass, University of Maryland, College Park Chapter 5. CHARLES FREDERICK GOODEVE (1904).....................83 by Maurice W. Kirby, Lancaster University Chapter 6. ALBERT W. TUCKER (1905)..................................................95 by Saul I. Gass, University of Maryland, College Park XV xvi Contents Chapter 7. JACINTO STEINHARDT (1906) ......................................... 113 by Saul I. Gass, University of Maryland, College Park Chapter 8. GEORGE E. KIMBALL (1906) ............................................ 123 by John F. Magee, Arthur D. Little, Inc. (retired) Chapter 9. ELLIS A. JOHNSON (1906)................................................... 143 by Saul I. Gass, University of Maryland, College Park Chapter 10. LEONID VITAL’EVICH KANTOROVICH (1912).... 157 by Saul I. Gass, University of Maryland, College Park Jonathan Rosenhead, London School of Economics Chapter 11. C. WEST CHURCHMAN (1913)........................................ 171 by Arjang A. Assad, University at Buffalo,
    [Show full text]
  • Tight Approximations of Dynamic Risk Measures
    Tight Approximations of Dynamic Risk Measures Dan A. Iancu˚ Marek Petrik: Dharmashankar Subramanian: November 9, 2012 Abstract This paper compares two different frameworks recently introduced in the literature for measuring risk in a multi-period setting. The first corresponds to applying a single coherent risk measure to the cumulative future costs, while the second involves applying a composition of one-step coherent risk mappings. We summarize the relative strengths of the two methods, characterize several necessary and sufficient conditions under which one of the measurements always dominates the other, and introduce a metric to quantify how close the two risk measures are. Using this notion, we address the question of how tightly a given coherent measure can be approx- imated by lower or upper-bounding compositional measures. We exhibit an interesting asymmetry between the two cases: the tightest possible upper-bound can be exactly characterized, and corre- sponds to a popular construction in the literature, while the tightest-possible lower bound is not readily available. We show that testing domination and computing the approximation factors is gen- erally NP-hard, even when the risk measures in question are comonotonic and law-invariant. However, we characterize conditions and discuss several examples where polynomial-time algorithms are possible. One such case is the well-known Conditional Value-at-Risk measure, which is further explored in our companion paper Huang et al.[2012]. Our theoretical and algorithmic constructions exploit interesting connections between the study of risk measures and the theory of submodularity and combinatorial optimization, which may be of independent interest. 1 Introduction.
    [Show full text]
  • Lagrangian Relaxation for Integer Programming
    Chapter 9 Lagrangian Relaxation for Integer Programming Arthur M. Geoffrion Introduction by Arthur M. Geoffrion It is a pleasure to write this commentary because it offers an opportunity to ex- press my gratitude to several people who helped me in ways that turned out to be essential to the birth of [8]. They also had a good deal to do with shaping my early career and, consequently, much of what followed. The immediate event that triggered my interest in this topic occurred early in 1971 in connection with a consulting project I was doing for Hunt-Wesson Foods (now part of ConAgra Foods) with my colleague Glenn Graves. It was a distribution system design problem: how many distribution centers should there be and where, how should plant outputs flow through the DCs to customers, and related questions. We had figured out how to solve this large-scale MILP problem optimally via Ben- ders Decomposition, a method that had been known for about a decade but had not yet seen practical application to our knowledge. This involved repeatedly solving a large 0-1 integer linear programming master problem in alternation with as many pure classical transportation subproblems as there were commodity classes. The master problem was challenging, and one day Glenn, who did all the implementa- tion, came up with a new way to calculate conditional “penalties” to help decide which variable to branch on in our LP-based branch-and-bound approach. I regularly taught a doctoral course in those days that covered, inter alia, the main types of penalties used by branch-and-bound algorithms.
    [Show full text]