INTERIOR-POINT ALGORITHMS FOR CONVEX OPTIMIZATION BASED ON PRIMAL-DUAL METRICS TOR MYKLEBUST, LEVENT TUNC¸EL Abstract. We propose and analyse primal-dual interior-point algorithms for convex opti- mization problems in conic form. The families of algorithms we analyse are so-called short- step algorithms and they match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming problems with given self-scaled barriers. Our results apply to any self-concordant barrier for any convex cone. We also prove that certain specializations of our algorithms to hyperbolic cone programming problems (which lie strictly between symmetric cone programming and gen- eral convex optimization problems in terms of generality) can take advantage of the favourable special structure of hyperbolic barriers. We make new connections to Riemannian geometry, integrals over operator spaces, Gaussian quadrature, and strengthen the connection of our algorithms to quasi-Newton updates and hence first-order methods in general. arXiv:1411.2129v1 [math.OC] 8 Nov 2014 Date: November 7, 2014. Key words and phrases. primal-dual interior-point methods, convex optimization, variable metric methods, local metric, self-concordant barriers, Hessian metric, polynomial-time complexity; AMS subject classification (MSC): 90C51, 90C22, 90C25, 90C60, 90C05, 65Y20, 52A41, 49M37, 90C30. Tor Myklebust: Department of Combinatorics and Optimization, Faculty of Mathematics, University of Wa- terloo, Waterloo, Ontario N2L 3G1, Canada (e-mail:
[email protected]). Research of this author was supported in part by an NSERC Doctoral Scholarship, ONR Research Grant N00014-12-10049, and a Dis- covery Grant from NSERC.