E Living with a Restless Caldera— Long Valley, California
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic Map of the Long Valley Caldera, Mono-Inyo Craters
DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-1933 US. GEOLOGICAL SURVEY GEOLOGIC MAP OF LONG VALLEY CALDERA, MONO-INYO CRATERS VOLCANIC CHAIN, AND VICINITY, EASTERN CALIFORNIA By Roy A. Bailey GEOLOGIC SETTING VOLCANISM Long Valley caldera and the Mono-Inyo Craters Long Valley caldera volcanic chain compose a late Tertiary to Quaternary Volcanism in the Long Valley area (Bailey and others, volcanic complex on the west edge of the Basin and 1976; Bailey, 1982b) began about 3.6 Ma with Range Province at the base of the Sierra Nevada frontal widespread eruption of trachybasaltic-trachyandesitic fault escarpment. The caldera, an east-west-elongate, lavas on a moderately well dissected upland surface oval depression 17 by 32 km, is located just northwest (Huber, 1981).Erosional remnants of these mafic lavas of the northern end of the Owens Valley rift and forms are scattered over a 4,000-km2 area extending from the a reentrant or offset in the Sierran escarpment, Adobe Hills (5-10 km notheast of the map area), commonly referred to as the "Mammoth embayment.'? around the periphery of Long Valley caldera, and The Mono-Inyo Craters volcanic chain forms a north- southwestward into the High Sierra. Although these trending zone of volcanic vents extending 45 km from lavas never formed a continuous cover over this region, the west moat of the caldera to Mono Lake. The their wide distribution suggests an extensive mantle prevolcanic basement in the area is mainly Mesozoic source for these initial mafic eruptions. Between 3.0 granitic rock of the Sierra Nevada batholith and and 2.5 Ma quartz-latite domes and flows erupted near Paleozoic metasedimentary and Mesozoic metavolcanic the north and northwest rims of the present caldera, at rocks of the Mount Morrisen, Gull Lake, and Ritter and near Bald Mountain and on San Joaquin Ridge Range roof pendants (map A). -
Volcanic Gases and Aerosols Guidelines Introduction
IVHHN Gas Guidelines www.ivhhn.org/gas/guidelines.html Volcanic Gases and Aerosols Guidelines The following pages contain information relating to the health hazards of gases and aerosols typically emitted during volcanic activity. Each section outlines the properties of the emission; its impacts on health; international guidelines for concentrations; and examples of concentrations and effects in volcanic contexts, including casualties. Before looking at the emissions data, we recommend that you read the general introduction to volcanic gases and aerosols first. A glossary to some of the terms used in the explanations and guidelines is also provided at the end of this document. Introduction An introduction to the aims and purpose of the Gas and Aerosol Guidelines is given here, as well as further information on international guideline levels and the units used in the website. A brief review of safety procedures currently implemented by volcanologists and volcano observatories is also provided. General Introduction Gas and aerosol hazards are associated with all volcanic activity, from diffuse soil gas emissions to 2- plinian eruptions. The volcanic emissions of most concern are SO2, HF, sulphate (SO4 ), CO2, HCl and H2S, although, there are other volcanic volatile species that may have human health implications, including mercury and other metals. Since 1900, there have been at least 62 serious volcanic-gas related incidents. Of these, the gas-outburst at Lake Nyos in 1986 was the most disastrous, causing 1746 deaths, >845 injuries and the evacuation of 4430 people. Other volcanic-gas related incidents have been responsible for more than 280 deaths and 1120 injuries, and contributed to the evacuation or ill health of >53,700 people (Witham, in review). -
Satellite Observations of Fumarole Activity at Aluto Volcano, Ethiopia: Implications for Geothermal Monitoring and Volcanic Hazard
Accepted Manuscript Satellite observations of fumarole activity at Aluto volcano, Ethiopia: Implications for geothermal monitoring and volcanic hazard Mathilde Braddock, Juliet Biggs, Iain M. Watson, William Hutchison, David M. Pyle, Tamsin A. Mather PII: S0377-0273(17)30118-X DOI: doi: 10.1016/j.jvolgeores.2017.05.006 Reference: VOLGEO 6091 To appear in: Journal of Volcanology and Geothermal Research Received date: 24 February 2017 Revised date: 6 May 2017 Accepted date: 7 May 2017 Please cite this article as: Mathilde Braddock, Juliet Biggs, Iain M. Watson, William Hutchison, David M. Pyle, Tamsin A. Mather , Satellite observations of fumarole activity at Aluto volcano, Ethiopia: Implications for geothermal monitoring and volcanic hazard, Journal of Volcanology and Geothermal Research (2017), doi: 10.1016/ j.jvolgeores.2017.05.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Satellite observations of fumarole activity at Aluto volcano, Ethiopia: implications for geothermal monitoring and volcanic hazard Mathilde Braddock1*, Juliet Biggs2, Iain M. Watson2, William Hutchison3, David M. Pyle4 and Tamsin A. Mather4 1 School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK 2 COMET, School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK 3 School of Earth and Environmental Sciences, University of St. -
Geothermal Springs, Geysers and Fumaroles
Sciences Secondary volcanic activities: Geothermal springs, Geysers and Fumaroles Geothermal Springs A geothermal (or hydrothermal) spring is produced by the emergence of geothermally heated groundwater from the Earth's crust. There are geothermal springs in many locations all over the crust of the earth. Geothermal Springs Surface water percolates downward through the rocks below the Earth's surface to high-temperature regions surrounding a magma chamber, either active or recently solidified but still hot. When the water is heated, becomes less dense, and rises Surface water back to the surface along fissures and cracks. Sometimes these features are called "dying volcanoes" because they seem to represent the last stage of volcanic activity as the magma, in depth, cools and hardens. Water percolation Heated water rises up The temperature of hot springs depends on factors such as: •the rate at which water circulates through the underground channels Hot rocks •the amount of heat at depth •the dilution of the heated water by cool ground water near the surface. Geothermal Springs The water issuing from a hot spring is heated by geothermal heat from the Earth's astenosphere. In general, the temperature of rocks increases with depth. The rate of temperature increase is known as the geothermal gradient (it is about 25°C per km). If water percolates deeply enough into the crust, it will be heated as it comes into contact with hot rocks. Warm springs are sometimes the result of hot and cold springs mixing but may also occur outside of volcanic areas. Geysers Geyser are located near active volcanic areas, and the geyser effect is due to the proximity of magma. -
Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico Do Fogo, Cape Verde
ORIGINAL RESEARCH published: 15 July 2021 doi: 10.3389/feart.2021.631190 Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde Gladys V. Melián 1,2,3*, Pedro A. Hernández 1,2,3, Nemesio M. Pérez 1,2,3, María Asensio-Ramos 1, Eleazar Padrón 1,2,3, Mar Alonso 1,2, Germán D. Padilla 1,2, José Barrancos 1,2, Francesco Sortino 4, Hirochicka Sumino 5, Fátima Rodríguez 1, Cecilia Amonte 1, Sonia Silva 6, Nadir Cardoso 6 and José M. Pereira 7 1Instituto Volcanológico de Canarias (INVOLCAN), La Laguna, Spain, 2Instituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, Spain, 3Agencia Insular de la Energía de Tenerife (AIET), Granadilla de Abona, Spain, 4Istituto Nazionale di Geofisica e Vulcanologia - Sezione Roma 2, Roma, Italy, 5Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Japan, 6Universidade de Cabo Verde (UNICV), Praia, Cape Verde, 7Laboratório de Engenharia Civil of Cape Verde (LEC) Tira - Chapéu, Praia, Cape Verde Edited by: We report the results of the geochemical monitoring of the fumarolic discharges at the Pico Francesco Italiano, do Fogo volcano in Cape Verde from 2007 to 2016. During this period Pico do Fogo National Institute of Geophysics and Volcanology, Italy experienced a volcanic eruption (November 23, 2014) that lasted 77 days, from a new vent Reviewed by: ∼2.5 km from the fumaroles. Two fumaroles were sampled, a low (F1∼100°C) and a Pierpaolo Zuddas, medium (F2∼300°C) temperature. The variations observed in the δ18O and δ2H in F1 and Sorbonne Universités, France F2 suggest different fluid source contributions and/or fractionation processes. -
Yosemite, Lake Tahoe & the Eastern Sierra
Emerald Bay, Lake Tahoe PCC EXTENSION YOSEMITE, LAKE TAHOE & THE EASTERN SIERRA FEATURING THE ALABAMA HILLS - MAMMOTH LAKES - MONO LAKE - TIOGA PASS - TUOLUMNE MEADOWS - YOSEMITE VALLEY AUGUST 8-12, 2021 ~ 5 DAY TOUR TOUR HIGHLIGHTS w Travel the length of geologic-rich Highway 395 in the shadow of the Sierra Nevada with sightseeing to include the Alabama Hills, the June Lake Loop, and the Museum of Lone Pine Film History w Visit the Mono Lake Visitors Center and Alabama Hills Mono Lake enjoy an included picnic and time to admire the tufa towers on the shores of Mono Lake w Stay two nights in South Lake Tahoe in an upscale, all- suites hotel within walking distance of the casino hotels, with sightseeing to include a driving tour around the north side of Lake Tahoe and a narrated lunch cruise on Lake Tahoe to the spectacular Emerald Bay w Travel over Tioga Pass and into Yosemite Yosemite Valley Tuolumne Meadows National Park with sightseeing to include Tuolumne Meadows, Tenaya Lake, Olmstead ITINERARY Point and sights in the Yosemite Valley including El Capitan, Half Dome and Embark on a unique adventure to discover the majesty of the Sierra Nevada. Born of fire and ice, the Yosemite Village granite peaks, valleys and lakes of the High Sierra have been sculpted by glaciers, wind and weather into some of nature’s most glorious works. From the eroded rocks of the Alabama Hills, to the glacier-formed w Enjoy an overnight stay at a Yosemite-area June Lake Loop, to the incredible beauty of Lake Tahoe and Yosemite National Park, this tour features lodge with a private balcony overlooking the Mother Nature at her best. -
Consequences of Drying Lake Systems Around the World
Consequences of Drying Lake Systems around the World Prepared for: State of Utah Great Salt Lake Advisory Council Prepared by: AECOM February 15, 2019 Consequences of Drying Lake Systems around the World Table of Contents EXECUTIVE SUMMARY ..................................................................... 5 I. INTRODUCTION ...................................................................... 13 II. CONTEXT ................................................................................. 13 III. APPROACH ............................................................................. 16 IV. CASE STUDIES OF DRYING LAKE SYSTEMS ...................... 17 1. LAKE URMIA ..................................................................................................... 17 a) Overview of Lake Characteristics .................................................................... 18 b) Economic Consequences ............................................................................... 19 c) Social Consequences ..................................................................................... 20 d) Environmental Consequences ........................................................................ 21 e) Relevance to Great Salt Lake ......................................................................... 21 2. ARAL SEA ........................................................................................................ 22 a) Overview of Lake Characteristics .................................................................... 22 b) Economic -
Compositional Zoning of the Bishop Tuff
JOURNAL OF PETROLOGY VOLUME 48 NUMBER 5 PAGES 951^999 2007 doi:10.1093/petrology/egm007 Compositional Zoning of the Bishop Tuff WES HILDRETH1* AND COLIN J. N. WILSON2 1US GEOLOGICAL SURVEY, MS-910, MENLO PARK, CA 94025, USA 2SCHOOL OF GEOGRAPHY, GEOLOGY AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF AUCKLAND, PB 92019 AUCKLAND MAIL CENTRE, AUCKLAND 1142, NEW ZEALAND Downloaded from https://academic.oup.com/petrology/article/48/5/951/1472295 by guest on 29 September 2021 RECEIVED JANUARY 7, 2006; ACCEPTED FEBRUARY 13, 2007 ADVANCE ACCESS PUBLICATION MARCH 29, 2007 Compositional data for 4400 pumice clasts, organized according to and the roofward decline in liquidus temperature of the zoned melt, eruptive sequence, crystal content, and texture, provide new perspec- prevented significant crystallization against the roof, consistent with tives on eruption and pre-eruptive evolution of the4600 km3 of zoned dominance of crystal-poor magma early in the eruption and lack of rhyolitic magma ejected as the BishopTuff during formation of Long any roof-rind fragments among the Bishop ejecta, before or after onset Valley caldera. Proportions and compositions of different pumice of caldera collapse. A model of secular incremental zoning is types are given for each ignimbrite package and for the intercalated advanced wherein numerous batches of crystal-poor melt were plinian pumice-fall layers that erupted synchronously. Although released from a mush zone (many kilometers thick) that floored the withdrawal of the zoned magma was less systematic than previously accumulating rhyolitic melt-rich body. Each batch rose to its own realized, the overall sequence displays trends toward greater propor- appropriate level in the melt-buoyancy gradient, which was self- tions of less evolved pumice, more crystals (0Á5^24 wt %), and sustaining against wholesale convective re-homogenization, while higher FeTi-oxide temperatures (714^8188C). -
GY 111: Physical Geology
UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 9: Extrusive Igneous Rocks Instructor: Dr. Douglas W. Haywick Last Time 1) The chemical composition of the crust 2) Crystallization of molten rock 3) Bowen's Reaction Series Web notes 8 Chemical Composition of the Crust Element Wt% % of atoms Oxygen 46.6 60.5 Silicon 27.7 20.5 Aluminum 8.1 6.2 Iron 5.0 1.9 Calcium 3.6 1.9 Sodium 2.8 2.5 Potassium 2.6 1.8 Magnesium 2.1 1.4 All other elements 1.5 3.3 Crystallization of Magma http://myweb.cwpost.liu.edu/vdivener/notes/igneous.htm Bowen’s Reaction Series Source http://www.ltcconline.net/julian Igneous Rock Composition Source: http://hyperphysics.phy-astr.gsu.edu Composition Formation Dominant Silica content Temperature Minerals Ultramafic Very high Olivine, pyroxene Very low (<45%) Mafic High Olivine, pyroxene, low Ca-plagioclase Intermediate Medium Na-Plagioclase, moderate amphibole, biotite Felsic Medium-low Orthoclase, quartz, high (>65%) muscovite, biotite Igneous Rock Texture Extrusive Rocks (Rapid Cooling; non visible* crystals) Intrusive Rocks (slow cooling; 100 % visible crystals) *with a hand lens Igneous Rock Texture Igneous Rock Texture Today’s Agenda 1) Pyro-what? (air fall volcanic rocks) 2) Felsic and Intermediate Extrusive Rocks 3) Mafic Extrusive Rocks Web notes 9 Pyroclastic Igneous Rocks Pyroclastic Igneous Rocks Pyroclastic: Pyro means “fire”. Clastic means particles; both are of Greek origin. Pyroclastic Igneous Rocks Pyroclastic: Pyro means “fire”. Clastic means particles; both are of Greek origin. Pyroclastic rocks are usually erupted from composite volcanoes (e.g., they are produced via explosive eruptions from viscous, “cool” lavas) Pyroclastic Igneous Rocks Pyroclastic: Pyro means “fire”. -
Bailey-1976.Pdf
VOL. 81, NO. 5 JOURNAL OF GEOPHYSICAL RESEARCH FEBRUARY 10, 1976 Volcanism, Structure,and Geochronologyof Long Valley Caldera, Mono County, California RoY A. BAILEY U.S. GeologicalSurvey, Reston, Virginia 22092 G. BRENT DALRYMPLE AND MARVIN A. LANPHERE U.S. GeologicalSurvey, Menlo Park, California 94025 Long Valley caldera, a 17- by 32-km elliptical depressionon the east front of the Sierra Nevada, formed 0.7 m.y. ago during eruption of the Bishoptuff. Subsequentintracaldera volcanism included eruption of (1) aphyric rhyolite 0.68-0.64 m.y. ago during resurgentdoming of the caldera floor, (2) porphyritic hornblende-biotiterhyolite from centersperipheral to the resurgentdome at 0.5, 0.3, and 0.1 m.y. ago, and (3) porphyritic hornblende-biotiterhyodacite from outer ring fractures0.2 m.y. ago to 50,000 yr ago, a sequencethat apparently records progressivecrystallization of a subjacentchemically zoned magma chamber. Holocene rhyolitic and phreatic eruptions suggestthat residual magma was present in the chamber as recentlyas 450 yr ago. Intracaldera hydrothermalactivity beganat least0.3 m.y. ago and was widespreadin the caldera moat; it has sincedeclined due to self-sealingof near-surfacecaldera sediments by zeolitization, argillization, and silicificationand has becomelocalized on recentlyreactivated north- west-trendingSierra Nevada frontal faults that tap hot water at depth. INTRODUCTION concentrates were treated with a dilute HF solution to remove small bits of attached glassand fragments of other mineral In the westernUnited States,only three calderasare known grains. Obsidian used for dating was totally unhydrated and to be large enoughand young enoughto possiblystill contain not devitrified. Small blocks sawed from many of the hand residual magma in their chambers:the Vailes caldera (•1.1 specimenswere used for dating. -
Introducing Terminal Lakes Joe Eilers and Ron Larson
Terminal Lakes Introducing Terminal Lakes Joe Eilers and Ron Larson Study Lakes akes tend to be among the more ephemeral features of the landscape Land generally are formed and disappear rapidly on a geological time frame. However, to see groups of lakes disappear within a lifetime is typically not a natural phenomenon. Here in Oregon, we’ve witnessed the desiccation of what was formerly a 16-mile-long lake in a little over a decade. Endorehic lakes, commonly referred to as terminal lakes because they lack an outlet, are among the most vulnerable of lakes to human intervention. Because terminal lakes are usually located in arid environments where water is extremely valuable, they are the first to lose among the competing forces for water. But that doesn’t have to be the case. In some respects, terminal lakes are far easier to restore than eutrophic/hypereutrophic systems. No expensive alum treatments, no dredging, no chemicals . just add water and life returns: but as those in West know, “Whiskey is for drinking; water is for fighting over.” And fight we must. In this issue of LakeLine, we describe a series of terminal lakes in the western United States starting with the least saline lake among the group, Walker Lake, and ending with Lake Winnemucca, which was desiccated in the 20th century (Figure 1). Like all lakes, each of these has a unique story to relate with different Figure 1. Terminal lakes in the western United States described in this issue. chemistry and biota. The loss of Lake Winnemucca is an informative tale, but it a wider audience and reach a solution migration when the birds replenish fat is not necessarily the inevitable outcome that ensures adequate water to save the reserves. -
Deep Carbon Emissions from Volcanoes Michael R
Reviews in Mineralogy & Geochemistry Vol. 75 pp. 323-354, 2013 11 Copyright © Mineralogical Society of America Deep Carbon Emissions from Volcanoes Michael R. Burton Istituto Nazionale di Geofisica e Vulcanologia Via della Faggiola, 32 56123 Pisa, Italy [email protected] Georgina M. Sawyer Laboratoire Magmas et Volcans, Université Blaise Pascal 5 rue Kessler, 63038 Clermont Ferrand, France and Istituto Nazionale di Geofisica e Vulcanologia Via della Faggiola, 32 56123 Pisa, Italy Domenico Granieri Istituto Nazionale di Geofisica e Vulcanologia Via della Faggiola, 32 56123 Pisa, Italy INTRODUCTION: VOLCANIC CO2 EMISSIONS IN THE GEOLOGICAL CARBON CYCLE Over long periods of time (~Ma), we may consider the oceans, atmosphere and biosphere as a single exospheric reservoir for CO2. The geological carbon cycle describes the inputs to this exosphere from mantle degassing, metamorphism of subducted carbonates and outputs from weathering of aluminosilicate rocks (Walker et al. 1981). A feedback mechanism relates the weathering rate with the amount of CO2 in the atmosphere via the greenhouse effect (e.g., Wang et al. 1976). An increase in atmospheric CO2 concentrations induces higher temperatures, leading to higher rates of weathering, which draw down atmospheric CO2 concentrations (Ber- ner 1991). Atmospheric CO2 concentrations are therefore stabilized over long timescales by this feedback mechanism (Zeebe and Caldeira 2008). This process may have played a role (Feulner et al. 2012) in stabilizing temperatures on Earth while solar radiation steadily increased due to stellar evolution (Bahcall et al. 2001). In this context the role of CO2 degassing from the Earth is clearly fundamental to the stability of the climate, and therefore to life on Earth.