The Chaotic Motion of a Double Pendulum

Total Page:16

File Type:pdf, Size:1020Kb

The Chaotic Motion of a Double Pendulum The Chaotic Motion of a Double Pendulum Carl W. Akerlof September 26, 2012 The following notes describe the kinematics of the double pendulum. The starting point is a pendulum consisting of two point masses, m, and m2, suspended by massless wires of length l1 and l2. The treatment of this case can be found at: http://scienceworld.wolfram.com/physics/DoublePendulum.html For a real system, the equations of motion depend in a more complicated way on the distribution of mass that is essential for modeling the physical pendulum used in this experiment. Figure 1. Point mass double pendulum. Figure 2. Extended mass double pendulum. University of Michigan 1 Department of Physics Double pendulum with point masses: xl11 sin 1 yl11 cos 1 xl21sin l 2 sin 2 yl21cos 122 lcos xl11 cos 11 yl sin 11 11 xl21 cos 112 l cos 22 yl21 sin 112 l sin 22 222 rl111 222 22 rl21112 2 ll cos 121222 l Double pendulum with distributed masses: xu11 sin 11 v cos 1 yu11 cos 111 v sin xl21 sin 1 u 2 sin 2 v 2 cos 2 yl2 1 cos 12 u cos 22 v sin 2 xu11 cos 111 v sin 11 yu sin v cos 11 111 11 xl21 cos 112 u cos 222 v sin 22 yl21 sin 112 u sin 222 v cos 22 222 222 rr111 ; ruv 1 11 222 22 2 22 rl21112 2 lu cos 12 v 2 sin 12 122 r 2 ; ruv 2 22 Assume mirror symmetry: vv12 0 KE1 m r22 m l 22 2 m u l cos m r 22 2 11 1 211 2 21 2 1 2 2 2 PE m11 u g cos 1 m 21 l g cos 1 m 2 u 2 g cos 2 University of Michigan 2 Department of Physics Thus, the Lagrangian for the system is: LTV1 mr 22 ml 22 2 mul cos mr 22 2 11 1 211 2 2 1 2 1 12 2 2 2 mu11 g cos 1 mlg 21 cos 1 mu 2 2 g cos 2 This leads directly to the equations of motion which we shall investigate shortly. Dynamics of the physical pendulum The aim of this experiment is to compare the actual dynamical behavior of a real physical pendulum with a mathematical simulation. To this end, we need to characterize the pendulum properties as accurately as possible and incorporate these into the appropriate equations of motion. One approximation will be involved: the motion will be assumed frictionless. This simplification is driven principally by the lack of any very elegant fundamental theory although it would actually be fairly trivial to incorporate velocity-dependent damping in the dynamical modeling. The moving parts for the real pendulum are: 2 primary axis bearings 2 primary arms 2 secondary axis bearings 2 secondary axis spacers 1 secondary axis cap screw 1 secondary axis hex nut 1 secondary arm The vendor for this apparatus, chaoticpendulums.com, has conveniently provided the dimensions for these parts as shown in Figure 3. Note that all dimensions are in millimeters. The required spatial mass moments can be calculated analytically for each item. The contribution that each one provides to the kinetic and potential energies is given below. For future reference, the distance between the primary and secondary axes is denoted l1 and equals 173 mm. Bearing: A bearing facilitates low-friction axial rotation shear while constraining the shaft location. Thus, the inner race of the bearing can be rotating with angular velocity, , while the outer race is rotating with an angular velocity of . To keep the modeling of this component simple, it is assumed that the bearing is homogeneous with a rotation rate at radius, r, that is linearly interpolated by the distances from the inner and outer radii. Primary axis bearing: University of Michigan 3 Department of Physics KE1 m r 22 2 b 1 PE 0 Secondary axis bearing: KE1 ml22 mr 2 22 mr 2 mr 2 2 2 bb11 1 b 12 b 2 PE mb l11 g cos Primary arm: 1 22 KE m11 r 2 PE m11 u g cos Secondary axis components: The cap screw, spacers and hex nut are all constrained to rotate rigidly with the secondary arm. KE1 m r22222 m r m r 2 csn2 PE mcsn 2 m m l11 g cos Secondary arm: 1 22 2 2 KE m21 l 12 m 2 u l 1 1 2 cos 2 1 m 2 r 2 2 PE m21 l g cos 1 m 2 u g cos 2 Thus, the Lagrangian can be represented by: La1122 ab cos a c cos c cos 2211 1 12 12 2 1 1 2 22 2 1 1 2 2 where: amrmrmmmmml2422 22 2 11 1bbcsn 2 1 amr2 2 12 b 22 222 amrmrmrmrmr22 2 22bcsn bmul12 2 1 cmummmmmlg1122 2 bc2 sn 1 cmug22 The canonical momenta can be calculated from the Lagrangian: University of Michigan 4 Department of Physics L paab11111212212 cos 1 L pab cos a 21212211222 2 The Hamiltonian is given by: Hp11 p 2 2 L 11aab22 cos ac cos c cos 2211 1 12 12 2 1 1 2 22 2 1 1 2 2 By replacing i by pi , one can convert the Hamiltonian into a form that depends only on i and pi . ap22 1 bp 2 1 2 aa11 22 b bp1112 a p 2 2 aa11 22 b and ba12 b 12 cos 2 1 Thus: 22 1 ap22 12 a 12 b 12 cos 2 1 ppap 1 2 11 2 Hcccos cos 2 2 1122 aa11 22 a 12 b 12 cos 2 1 The coupled equations of motion follow: University of Michigan 5 Department of Physics H ap22 1 a 12 b 12 cos 2 1 p 2 1 p 2 1 aa11 22 a 12 b 12 cos 2 1 H ab12 12 cos 2 1 pap 1 11 2 2 p 2 2 aa11 22 a 12 b 12 cos 2 1 H pcqpp1111212 sin , , , 1 H pcqpp 2221212 sin , , , 2 ab12 12 cos 2 1 papapab 1 11 2 22 1 12 12 cos 2 1 pb 2 12 sin 2 1 qp121, , , p2 2 2 aa a b cos 11 22 12 12 2 1 Figure 3. Double pendulum dimensions. University of Michigan 6 Department of Physics Dynamical stability and Lyapunov exponents In this experiment, we would like to explore how sensitively the dynamical evolution of a system depends on the initial conditions. Do small perturbations lead to small variations or huge ones? As a starting point, consider a one-dimensional system whose evolution is governed by: qfqt Suppose we want to find out how q will evolve for slightly different initial conditions in the neighborhood of qo: f qfqtfqt o q q Thus, in the limit, q 0, qf qt() et q 0 qq qo The value, λ, is the Lyapunov exponent at qo. If it is greater than zero, the evolution of the system diverges exponentially with time, preventing all attempts to compute the motion at arbitrary times. We can take this example to the next level of complexity by considering the simple pendulum. The Lagrangian for this system is: LTV1 mr 22 mug cos 2 The canonical momentum is: L pmr2 and thus the Hamiltonian is: University of Michigan 7 Department of Physics p2 Hp L mugcos 2 mr 2 Hp p mr 2 H pmug sin We would like to find out how the motion evolves for small perturbations from the initial condition specified by θ0 and p0. 22HH p p pp 2 mr 2 22HH ppmug cos 2 p This can be represented by the matrix equation below: 1 0 2 mr p p mug cos 0 We seek solutions of the form: aaa mm11 21 bbbmm12 22 where qabp(0) is an eigenvector for the matrix with an eigenvalue, λ, and thus qt() et q (0). To find λ, the following equation must be solved: mm11 21 Det 0 mm12 22 For this particular case, the resulting equation is: mu cos 2 g mr 2 University of Michigan 8 Department of Physics For , the values of λ are imaginary. However, for , one of the values is positive and 2 2 real, leading to divergent growth. The eigenvalues and eigenvectors (normal modes) are thus: mug cos : i 2 mr 2 1 e imumrg2 cos mug cos : 2 2 mr 1 e mu mr 2 gcos To understand the long term behavior of the system, one must average the Lyapunov exponents over the dynamical path in the phase space. It is worth remarking about a generic property of Lyapunov exponents stemming from the Hamiltonian description. The Jacobian matrix that transforms the phase space volume, 11pp 2 2 must have the form: 22HH 2 H 2 H pp 2 p pp 11 1 1 2 12 22HH 2 H 2 H J 2 1112212pp The diagonal elements of this matrix cancel in pairs so that the trace of J is zero. This guarantees that the sum of eigenvalues, ie. the Lyapunov exponents, is also zero. The physical implication of this is the invariance of phase space volume for a conservative system. For a dissipative system, this would not be true. University of Michigan 9 Department of Physics This analysis can be extended to the double pendulum although the expressions become algebraically messy. In this case, we will only be interested in obtaining numerical solutions. The Jacobian matrix for this problem is a 4 × 4 array: j11jjj 12 13 14 j jjj J 21 22 23 24 j31jjj 32 33 34 j41jjj 42 43 44 By defining the following intermediate quantities, the matrix elements can be computed fairly easily.
Recommended publications
  • Hamiltonian Chaos
    Hamiltonian Chaos Niraj Srivastava, Charles Kaufman, and Gerhard M¨uller Department of Physics, University of Rhode Island, Kingston, RI 02881-0817. Cartesian coordinates, generalized coordinates, canonical coordinates, and, if you can solve the problem, action-angle coordinates. That is not a sentence, but it is classical mechanics in a nutshell. You did mechanics in Cartesian coordinates in introductory physics, probably learned generalized coordinates in your junior year, went on to graduate school to hear about canonical coordinates, and were shown how to solve a Hamiltonian problem by finding the action-angle coordinates. Perhaps you saw the action-angle coordinates exhibited for the harmonic oscillator, and were left with the impression that you (or somebody) could find them for any problem. Well, you now do not have to feel badly if you cannot find them. They probably do not exist! Laplace said, standing on Newton’s shoulders, “Tell me the force and where we are, and I will predict the future!” That claim translates into an important theorem about differential equations—the uniqueness of solutions for given ini- tial conditions. It turned out to be an elusive claim, but it was not until more than 150 years after Laplace that this elusiveness was fully appreciated. In fact, we are still in the process of learning to concede that the proven existence of a solution does not guarantee that we can actually determine that solution. In other words, deterministic time evolution does not guarantee pre- dictability. Deterministic unpredictability or deterministic randomness is the essence of chaos. Mechanical systems whose equations of motion show symp- toms of this disease are termed nonintegrable.
    [Show full text]
  • Role of Nonlinear Dynamics and Chaos in Applied Sciences
    v.;.;.:.:.:.;.;.^ ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Oivisipn 2000 Please be aware that all of the Missing Pages in this document were originally blank pages BARC/2OOO/E/OO3 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2000 BARC/2000/E/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification: Unclassified • 02 Distribution: External 03 Report status: New 04 Series: BARC External • 05 Report type: Technical Report 06 Report No. : BARC/2000/E/003 07 Part No. or Volume No. : 08 Contract No.: 10 Title and subtitle: Role of nonlinear dynamics and chaos in applied sciences 11 Collation: 111 p., figs., ills. 13 Project No. : 20 Personal authors): Quissan V. Lawande; Nirupam Maiti 21 Affiliation ofauthor(s): Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate authoifs): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Theoretical Physics Division, BARC, Mumbai 24 Sponsors) Name: Department of Atomic Energy Type: Government Contd...(ii) -l- 30 Date of submission: January 2000 31 Publication/Issue date: February 2000 40 Publisher/Distributor: Head, Library and Information Services Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution: Hard copy 50 Language of text: English 51 Language of summary: English 52 No. of references: 40 refs. 53 Gives data on: Abstract: Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings.
    [Show full text]
  • Annotated List of References Tobias Keip, I7801986 Presentation Method: Poster
    Personal Inquiry – Annotated list of references Tobias Keip, i7801986 Presentation Method: Poster Poster Section 1: What is Chaos? In this section I am introducing the topic. I am describing different types of chaos and how individual perception affects our sense for chaos or chaotic systems. I am also going to define the terminology. I support my ideas with a lot of examples, like chaos in our daily life, then I am going to do a transition to simple mathematical chaotic systems. Larry Bradley. (2010). Chaos and Fractals. Available: www.stsci.edu/~lbradley/seminar/. Last accessed 13 May 2010. This website delivered me with a very good introduction into the topic as there are a lot of books and interesting web-pages in the “References”-Sektion. Gleick, James. Chaos: Making a New Science. Penguin Books, 1987. The book gave me a very general introduction into the topic. Harald Lesch. (2003-2007). alpha-Centauri . Available: www.br-online.de/br- alpha/alpha-centauri/alpha-centauri-harald-lesch-videothek-ID1207836664586.xml. Last accessed 13. May 2010. A web-page with German video-documentations delivered a lot of vivid examples about chaos for my poster. Poster Section 2: Laplace's Demon and the Butterfly Effect In this part I describe the idea of the so called Laplace's Demon and the theory of cause-and-effect chains. I work with a lot of examples, especially the famous weather forecast example. Also too I introduce the mathematical concept of a dynamic system. Jeremy S. Heyl (August 11, 2008). The Double Pendulum Fractal. British Columbia, Canada.
    [Show full text]
  • Lecture Notes on Classical Mechanics for Physics 106Ab Sunil Golwala
    Lecture Notes on Classical Mechanics for Physics 106ab Sunil Golwala Revision Date: September 25, 2006 Introduction These notes were written during the Fall, 2004, and Winter, 2005, terms. They are indeed lecture notes – I literally lecture from these notes. They combine material from Hand and Finch (mostly), Thornton, and Goldstein, but cover the material in a different order than any one of these texts and deviate from them widely in some places and less so in others. The reader will no doubt ask the question I asked myself many times while writing these notes: why bother? There are a large number of mechanics textbooks available all covering this very standard material, complete with worked examples and end-of-chapter problems. I can only defend myself by saying that all teachers understand their material in a slightly different way and it is very difficult to teach from someone else’s point of view – it’s like walking in shoes that are two sizes wrong. It is inevitable that every teacher will want to present some of the material in a way that differs from the available texts. These notes simply put my particular presentation down on the page for your reference. These notes are not a substitute for a proper textbook; I have not provided nearly as many examples or illustrations, and have provided no exercises. They are a supplement. I suggest you skim them in parallel while reading one of the recommended texts for the course, focusing your attention on places where these notes deviate from the texts. ii Contents 1 Elementary Mechanics 1 1.1 Newtonian Mechanics ..................................
    [Show full text]
  • Instructional Experiments on Nonlinear Dynamics & Chaos (And
    Bibliography of instructional experiments on nonlinear dynamics and chaos Page 1 of 20 Colorado Virtual Campus of Physics Mechanics & Nonlinear Dynamics Cluster Nonlinear Dynamics & Chaos Lab Instructional Experiments on Nonlinear Dynamics & Chaos (and some related theory papers) overviews of nonlinear & chaotic dynamics prototypical nonlinear equations and their simulation analysis of data from chaotic systems control of chaos fractals solitons chaos in Hamiltonian/nondissipative systems & Lagrangian chaos in fluid flow quantum chaos nonlinear oscillators, vibrations & strings chaotic electronic circuits coupled systems, mode interaction & synchronization bouncing ball, dripping faucet, kicked rotor & other discrete interval dynamics nonlinear dynamics of the pendulum inverted pendulum swinging Atwood's machine pumping a swing parametric instability instabilities, bifurcations & catastrophes chemical and biological oscillators & reaction/diffusions systems other pattern forming systems & self-organized criticality miscellaneous nonlinear & chaotic systems -overviews of nonlinear & chaotic dynamics To top? Briggs, K. (1987), "Simple experiments in chaotic dynamics," Am. J. Phys. 55 (12), 1083-9. Hilborn, R. C. (2004), "Sea gulls, butterflies, and grasshoppers: a brief history of the butterfly effect in nonlinear dynamics," Am. J. Phys. 72 (4), 425-7. Hilborn, R. C. and N. B. Tufillaro (1997), "Resource Letter: ND-1: nonlinear dynamics," Am. J. Phys. 65 (9), 822-34. Laws, P. W. (2004), "A unit on oscillations, determinism and chaos for introductory physics students," Am. J. Phys. 72 (4), 446-52. Sungar, N., J. P. Sharpe, M. J. Moelter, N. Fleishon, K. Morrison, J. McDill, and R. Schoonover (2001), "A laboratory-based nonlinear dynamics course for science and engineering students," Am. J. Phys. 69 (5), 591-7. http://carbon.cudenver.edu/~rtagg/CVCP/Ctr_dynamics/Lab_nonlinear_dyn/Bibex_nonline..
    [Show full text]
  • Arxiv:0705.0033V3 [Math.DS]
    ERGODIC THEORY: RECURRENCE NIKOS FRANTZIKINAKIS AND RANDALL MCCUTCHEON Contents 1. Definition of the Subject and its Importance 3 2. Introduction 3 3. Quantitative Poincaré Recurrence 5 4. Subsequence Recurrence 7 5. Multiple Recurrence 11 6. Connections with Combinatorics and Number Theory 14 7. Future Directions 17 References 19 Almost every, essentially: Given a Lebesgue measure space (X, ,µ), a property P (x) predicated of elements of X is said to hold for almostB every x X, if the set X x: P (x) holds has zero measure. Two sets A, B are∈ essentially disjoint\ { if µ(A B) =} 0. ∈B Conservative system: Is an∩ infinite measure preserving system such that for no set A with positive measure are A, T −1A, T −2A, . pairwise essentially disjoint.∈ B (cn)-conservative system: If (cn)n∈N is a decreasing sequence of posi- tive real numbers, a conservative ergodic measure preserving transforma- 1 tion T is (cn)-conservative if for some non-negative function f L (µ), ∞ n ∈ n=1 cnf(T x)= a.e. arXiv:0705.0033v3 [math.DS] 4 Nov 2019 ∞ PDoubling map: If T is the interval [0, 1] with its endpoints identified and addition performed modulo 1, the (non-invertible) transformation T : T T, defined by Tx = 2x mod 1, preserves Lebesgue measure, hence induces→ a measure preserving system on T. Ergodic system: Is a measure preserving system (X, ,µ,T ) (finite or infinite) such that every A that is T -invariant (i.e. T −B1A = A) satisfies ∈B either µ(A) = 0 or µ(X A) = 0. (One can check that the rotation Rα is ergodic if and only if α is\ irrational, and that the doubling map is ergodic.) Ergodic decomposition: Every measure preserving system (X, ,µ,T ) can be expressed as an integral of ergodic systems; for example,X one can 2000 Mathematics Subject Classification.
    [Show full text]
  • Dissipative Dynamical Systems and Their Attractors
    Dissipative dynamical systems and their attractors Grzegorz ukaszewicz, University of Warsaw MIM Qolloquium, 05.11.2020 Plan of the talk Context: conservative and dissipative systems 3 Basic notions 10 Important problems of the theory. G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 2 / 14 Newtonian mechanics ∼ conservative system of ODEs in Rn system reversible in time ∼ groups ∼ deterministic chaos From P. S. de Laplace to H. Poincaré, and ... Evolution of a conservative system Example 1. Motivation: Is our solar system stable? (physical system) G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 3 / 14 Evolution of a conservative system Example 1. Motivation: Is our solar system stable? (physical system) Newtonian mechanics ∼ conservative system of ODEs in Rn system reversible in time ∼ groups ∼ deterministic chaos From P. S. de Laplace to H. Poincaré, and ... G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 3 / 14 Mech. of continuous media ∼ dissipative system of PDEs in a Hilbert phase space system irreversible in time ∼ semigroups ∼ innite dimensional dynamical systems ∼ deterministic chaos Since O. Ladyzhenskaya's papers on the NSEs (∼ 1970) Evolution of a dissipative system Example 2. Motivation: How does turbulence in uids develop? G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 4 / 14 Evolution of a dissipative system Example 2. Motivation: How does turbulence in uids develop? Mech. of continuous media ∼ dissipative system of PDEs in a Hilbert phase space system irreversible in time ∼ semigroups ∼ innite dimensional dynamical systems ∼ deterministic chaos Since O. Ladyzhenskaya's papers on the NSEs (∼ 1970) G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 4 / 14 Let us compare the above problems Example 1.
    [Show full text]
  • Chaos Theory and Robert Wilson: a Critical Analysis Of
    CHAOS THEORY AND ROBERT WILSON: A CRITICAL ANALYSIS OF WILSON’S VISUAL ARTS AND THEATRICAL PERFORMANCES A dissertation presented to the faculty of the College of Fine Arts Of Ohio University In partial fulfillment Of the requirements for the degree Doctor of Philosophy Shahida Manzoor June 2003 © 2003 Shahida Manzoor All Rights Reserved This dissertation entitled CHAOS THEORY AND ROBERT WILSON: A CRITICAL ANALYSIS OF WILSON’S VISUAL ARTS AND THEATRICAL PERFORMANCES By Shahida Manzoor has been approved for for the School of Interdisciplinary Arts and the College of Fine Arts by Charles S. Buchanan Assistant Professor, School of Interdisciplinary Arts Raymond Tymas-Jones Dean, College of Fine Arts Manzoor, Shahida, Ph.D. June 2003. School of Interdisciplinary Arts Chaos Theory and Robert Wilson: A Critical Analysis of Wilson’s Visual Arts and Theatrical Performances (239) Director of Dissertation: Charles S. Buchanan This dissertation explores the formal elements of Robert Wilson’s art, with a focus on two in particular: time and space, through the methodology of Chaos Theory. Although this theory is widely practiced by physicists and mathematicians, it can be utilized with other disciplines, in this case visual arts and theater. By unfolding the complex layering of space and time in Wilson’s art, it is possible to see the hidden reality behind these artifacts. The study reveals that by applying this scientific method to the visual arts and theater, one can best understand the nonlinear and fragmented forms of Wilson's art. Moreover, the study demonstrates that time and space are Wilson's primary structuring tools and are bound together in a self-renewing process.
    [Show full text]
  • Energy Cycle for the Lorenz Attractor
    Energy cycle for the Lorenz attractor Vinicio Pelino, Filippo Maimone Italian Air Force, CNMCA Aeroporto “De Bernardi”, Via di Pratica Di Mare, I-00040 Pratica di Mare (Roma) Italy In this note we study energetics of Lorenz-63 system through its Lie-Poisson structure. I. INTRODUCTION In 1955 E. Lorenz [1] introduced the concept of energy cycle as a powerful instrument to understand the nature of atmospheric circulation. In that context conversions between potential, kinetic and internal energy of a fluid were studied using atmospheric equations of motion under the action of an external radiative forcing and internal dissipative processes. Following these ideas, in this paper we will illustrate that chaotic dynamics governing Lorenz-63 model can be described introducing an appropriate energy cycle whose components are kinetic, potential energy and Casimir function derived from Lie-Poisson structure hidden in the system; Casimir functions, like enstrophy or potential vorticity in fluid dynamical context, are very useful in analysing stability conditions and global description of a dynamical system. A typical equation describing dissipative-forced dynamical systems can be written in Einstein notation as: x&ii=−Λ+{xH, } ijji x f i = 1,2...n (1) Equations (1) have been written by Kolmogorov, as reported in [2], in a fluid dynamical context, but they are very common in simulating natural processes as useful in chaos synchronization [3]. Here, antisymmetric brackets represent the algebraic structure of Hamiltonian part of a system described by function H , and a cosymplectic matrix J [4], {}F,G = J ik ∂ i F∂ k G . (2) Positive definite diagonal matrix Λ represents dissipation and the last term f represents external forcing.
    [Show full text]
  • Moon-Earth-Sun: the Oldest Three-Body Problem
    Moon-Earth-Sun: The oldest three-body problem Martin C. Gutzwiller IBM Research Center, Yorktown Heights, New York 10598 The daily motion of the Moon through the sky has many unusual features that a careful observer can discover without the help of instruments. The three different frequencies for the three degrees of freedom have been known very accurately for 3000 years, and the geometric explanation of the Greek astronomers was basically correct. Whereas Kepler’s laws are sufficient for describing the motion of the planets around the Sun, even the most obvious facts about the lunar motion cannot be understood without the gravitational attraction of both the Earth and the Sun. Newton discussed this problem at great length, and with mixed success; it was the only testing ground for his Universal Gravitation. This background for today’s many-body theory is discussed in some detail because all the guiding principles for our understanding can be traced to the earliest developments of astronomy. They are the oldest results of scientific inquiry, and they were the first ones to be confirmed by the great physicist-mathematicians of the 18th century. By a variety of methods, Laplace was able to claim complete agreement of celestial mechanics with the astronomical observations. Lagrange initiated a new trend wherein the mathematical problems of mechanics could all be solved by the same uniform process; canonical transformations eventually won the field. They were used for the first time on a large scale by Delaunay to find the ultimate solution of the lunar problem by perturbing the solution of the two-body Earth-Moon problem.
    [Show full text]
  • Chapter 8 Nonlinear Systems
    Chapter 8 Nonlinear systems 8.1 Linearization, critical points, and equilibria Note: 1 lecture, §6.1–§6.2 in [EP], §9.2–§9.3 in [BD] Except for a few brief detours in chapter 1, we considered mostly linear equations. Linear equations suffice in many applications, but in reality most phenomena require nonlinear equations. Nonlinear equations, however, are notoriously more difficult to understand than linear ones, and many strange new phenomena appear when we allow our equations to be nonlinear. Not to worry, we did not waste all this time studying linear equations. Nonlinear equations can often be approximated by linear ones if we only need a solution “locally,” for example, only for a short period of time, or only for certain parameters. Understanding linear equations can also give us qualitative understanding about a more general nonlinear problem. The idea is similar to what you did in calculus in trying to approximate a function by a line with the right slope. In § 2.4 we looked at the pendulum of length L. The goal was to solve for the angle θ(t) as a function of the time t. The equation for the setup is the nonlinear equation L g θ�� + sinθ=0. θ L Instead of solving this equation, we solved the rather easier linear equation g θ�� + θ=0. L While the solution to the linear equation is not exactly what we were looking for, it is rather close to the original, as long as the angleθ is small and the time period involved is short. You might ask: Why don’t we just solve the nonlinear problem? Well, it might be very difficult, impractical, or impossible to solve analytically, depending on the equation in question.
    [Show full text]
  • Transformations)
    TRANSFORMACJE (TRANSFORMATIONS) Transformacje (Transformations) is an interdisciplinary refereed, reviewed journal, published since 1992. The journal is devoted to i.a.: civilizational and cultural transformations, information (knowledge) societies, global problematique, sustainable development, political philosophy and values, future studies. The journal's quasi-paradigm is TRANSFORMATION - as a present stage and form of development of technology, society, culture, civilization, values, mindsets etc. Impacts and potentialities of change and transition need new methodological tools, new visions and innovation for theoretical and practical capacity-building. The journal aims to promote inter-, multi- and transdisci- plinary approach, future orientation and strategic and global thinking. Transformacje (Transformations) are internationally available – since 2012 we have a licence agrement with the global database: EBSCO Publishing (Ipswich, MA, USA) We are listed by INDEX COPERNICUS since 2013 I TRANSFORMACJE(TRANSFORMATIONS) 3-4 (78-79) 2013 ISSN 1230-0292 Reviewed journal Published twice a year (double issues) in Polish and English (separate papers) Editorial Staff: Prof. Lech W. ZACHER, Center of Impact Assessment Studies and Forecasting, Kozminski University, Warsaw, Poland ([email protected]) – Editor-in-Chief Prof. Dora MARINOVA, Sustainability Policy Institute, Curtin University, Perth, Australia ([email protected]) – Deputy Editor-in-Chief Prof. Tadeusz MICZKA, Institute of Cultural and Interdisciplinary Studies, University of Silesia, Katowice, Poland ([email protected]) – Deputy Editor-in-Chief Dr Małgorzata SKÓRZEWSKA-AMBERG, School of Law, Kozminski University, Warsaw, Poland ([email protected]) – Coordinator Dr Alina BETLEJ, Institute of Sociology, John Paul II Catholic University of Lublin, Poland Dr Mirosław GEISE, Institute of Political Sciences, Kazimierz Wielki University, Bydgoszcz, Poland (also statistical editor) Prof.
    [Show full text]