ABSTRACT Microbial Community Gene and Environmental

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT Microbial Community Gene and Environmental ABSTRACT Microbial Community Gene and Environmental Relationships in Phosphorus Biogeochemical Cycling within Streams Erick S. LeBrun, Ph.D. Mentor: Sanghoon Kang, Ph.D. Microbial communities of Bacteria, Archaea, and Fungi are known to play integral roles in phosphorus (P) biogeochemical cycles. P is a vital ecosystem nutrient due to its utilization in many of the biological molecules and processes necessary for life. P is generally considered a limiting nutrient and a sudden influx or overabundance of it can cause drastic ecosystem effects. Stream systems are particularly sensitive to P inputs, primarily anthropogenic inputs, and suffer sever effects such as eutrophication as a result. The enclosed chapters take an in-depth look at microbial communities from all three taxonomic groups within stream and unique wetland environments representing P gradients or potentially unique P environments. We first characterize and investigate the relationships of microbes existing in the open water column to their local environment as well as environmental P. We then build on this foundation using functional metagenomics to explore microbial P cycle gene relationships to each other and then directly to environmental P. Throughout this process, we utilize frontier technologies, methods, and statistics to help elucidate these complex relationships. We further introduce new methods and analyses such as the System Relation Overview of Gene Grouping (SROGG) and compare and contrast some existing methods for investigation like computational functional predictions and functional microarray analyses. Compiled, these studies offer a clearer picture of the quasi-mechanics of environmental microbial P cycling. They also highlight the magnitude of gap that exists relating to this type of study and offers a doorway along with tools for further research into the field. Copyright © 2018 by Erick S. LeBrun All rights reserved TABLE OF CONTENTS LIST OF FIGURES ......................................................................................................... viii LIST OF TABLES ............................................................................................................. xi ACKNOWLEDGMENTS ................................................................................................ xii DEDICATION ................................................................................................................. xiii CHAPTER ONE Introduction ..............................................................................................................1 Background ..................................................................................................1 Project and Chapter Objectives ...................................................................3 Author Contributions ...................................................................................6 Chapter References ......................................................................................6 CHAPTER TWO Microbial Community Structure and Function Decoupling Across a Phosphorus Gradient in Streams................................................................................................10 Abstract ......................................................................................................10 Introduction................................................................................................11 Methods ......................................................................................................13 Results ........................................................................................................20 Discussion ..................................................................................................26 Conclusions ................................................................................................30 Acknowledgements .....................................................................................31 Conflict of Interest .....................................................................................32 Statement of Data Availability ...................................................................32 Chapter References ....................................................................................32 CHAPTER THREE Rivers May Constitute an Overlooked Avenue of Dispersal for Terrestrial Fungi ....................................................................................................................38 Abstract ......................................................................................................38 Introduction................................................................................................38 Methods ......................................................................................................41 Results ........................................................................................................47 Discussion ..................................................................................................52 Conclusions ................................................................................................57 Conflict of Interest .....................................................................................57 Statement of Data Availability ...................................................................57 v Acknowledgements .....................................................................................57 Chapter References ....................................................................................58 CHAPTER FOUR A Metagenome-based Investigation of Gene Relationships for Non-substrate Associated Microbial Phosphorus Cycling in the Water Column of Streams and Rivers ....................................................................................................................65 Abstract ......................................................................................................65 Introduction................................................................................................66 Methods ......................................................................................................68 Results ........................................................................................................73 Discussion ..................................................................................................78 Conclusions ................................................................................................83 Acknowledgements .....................................................................................84 Conflict of Interest .....................................................................................84 Statement of Data Availability ...................................................................84 Chapter References ....................................................................................84 CHAPTER FIVE A Comparison of Computationally Predicted Functional Metagenomes and Microarray Analysis for Microbial P Cycle Genes in a Unique Basalt-soil Forest ....................................................................................................................90 Abstract ......................................................................................................90 Introduction................................................................................................91 Methods ......................................................................................................92 Results and discussion ...............................................................................94 Conclusions ................................................................................................96 Acknowledgements .....................................................................................97 Data availability ........................................................................................97 Competing interests ...................................................................................97 Grant information ......................................................................................97 Chapter references .....................................................................................97 CHAPTER SIX Conclusions ..........................................................................................................101 Summary of Findings and Final Thoughts...............................................101 Chapter References ..................................................................................104 APPENDICES .................................................................................................................105 APPENDIX A Supplementary Figures (Chapter two) ........................................106 APPENDIX B Supplementary Tables (Chapter two) ..........................................116 APPENDIX C Supplementary Results (Chapter two) .........................................118 Importance of Functional Data Resolution .............................................119 Illinois River Effect ..................................................................................120 Appendix C References ............................................................................121 vi APPENDIX D Supplementary Material (Chapter Three) ...................................122 Supplementary Table ...............................................................................123
Recommended publications
  • On the Geographical Differentiation of Gymnodactylus Geckoides Spix, 1825 (Sauria, Gekkonidae): Speciation in the Brasilian Caatingas
    Anais da Academia Brasileira de Ciências (2004) 76(4): 663-698 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc On the geographical differentiation of Gymnodactylus geckoides Spix, 1825 (Sauria, Gekkonidae): speciation in the Brasilian caatingas PAULO EMILIO VANZOLINI* Museu de Zoologia da Universidade de São Paulo, Cx. Postal 42694, 04299-970 São Paulo, SP, Brasil Manuscript received on October 31, 2003; accepted for publication on April 4, 2004. ABSTRACT The specific concept of G. geckoides was initially ascertained based on a topotypical sample from Salvador, Bahia. Geographic differentiation was studied through the analysis of two meristic characters (tubercles in a paramedian row and fourth toe lamellae) and color pattern of 327 specimens from 23 localities. It is shown that the population from the southernmost locality, Mucugê, is markedly divergent in all characters studied. A Holocene refuge model is proposed to explain the pattern. A decision about the rank to be attributed to the Mucugê population is deferred until more detailed sampling is effected and molecular methods are applied. Key words: speciation, Holocene refuges, lizards: ecology, lizards: systematics. INTRODUCTION Both the description and the figure are very good. The Gymnodactylus geckoides complex has one of The type locality, environs of the city of Bahia (the the most interesting distributions of all cis-Andean present Salvador), is satisfactorily explicit, and the lizards. It occurs in such diversified areas as the animal is still fairly common there. semi-arid caatingas of northeastern Brazil, the Cen- Fitzinger (1826: 48), in a rather confused note tral Brazilian cerrados, which are mesic open forma- on gekkonid systematics, placed geckoides in his tions, and the humid Atlantic coast.
    [Show full text]
  • A Morphological and Molecular Study of Hydrodynastes Gigas (Serpentes, Dipsadidae), a Widespread Species from South America
    A morphological and molecular study of Hydrodynastes gigas (Serpentes, Dipsadidae), a widespread species from South America Priscila S. Carvalho1,2, Hussam Zaher3, Nelson J. da Silva Jr4 and Diego J. Santana1 1 Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil 2 Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio preto, São Paulo, Brazil 3 Museu de Zoologia da Universidade de São Paulo, São Paulo, São Paulo, Brazil 4 Escola de Ciências Médicas, Farmacêuticas e Biomédicas, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil ABSTRACT Background. Studies with integrative approaches (based on different lines of evidence) are fundamental for understanding the diversity of organisms. Different data sources can improve the understanding of the taxonomy and evolution of snakes. We used this integrative approach to verify the taxonomic status of Hydrodynastes gigas (Duméril, Bibron & Duméril, 1854), given its wide distribution throughout South America, including the validity of the recently described Hydrodynastes melanogigas Franco, Fernandes & Bentim, 2007. Methods. We performed a phylogenetic analysis of Bayesian Inference with mtDNA 16S and Cytb, and nuDNA Cmos and NT3 concatenated (1,902 bp). In addition, we performed traditional morphometric analyses, meristic, hemipenis morphology and coloration pattern of H. gigas and H. melanogigas. Results. According to molecular and morphological characters, H. gigas is widely Submitted 19 May 2020 distributed throughout South America. We found no evidence to support that H. Accepted 9 September 2020 gigas and H. melanogigas species are distinct lineages, therefore, H. melanogigas is a Published 25 November 2020 junior synonym of H.
    [Show full text]
  • A New Computing Environment for Modeling Species Distribution
    EXPLORATORY RESEARCH RECOGNIZED WORLDWIDE Botany, ecology, zoology, plant and animal genetics. In these and other sub-areas of Biological Sciences, Brazilian scientists contributed with results recognized worldwide. FAPESP,São Paulo Research Foundation, is one of the main Brazilian agencies for the promotion of research.The foundation supports the training of human resources and the consolidation and expansion of research in the state of São Paulo. Thematic Projects are research projects that aim at world class results, usually gathering multidisciplinary teams around a major theme. Because of their exploratory nature, the projects can have a duration of up to five years. SCIENTIFIC OPPORTUNITIES IN SÃO PAULO,BRAZIL Brazil is one of the four main emerging nations. More than ten thousand doctorate level scientists are formed yearly and the country ranks 13th in the number of scientific papers published. The State of São Paulo, with 40 million people and 34% of Brazil’s GNP responds for 52% of the science created in Brazil.The state hosts important universities like the University of São Paulo (USP) and the State University of Campinas (Unicamp), the growing São Paulo State University (UNESP), Federal University of São Paulo (UNIFESP), Federal University of ABC (ABC is a metropolitan region in São Paulo), Federal University of São Carlos, the Aeronautics Technology Institute (ITA) and the National Space Research Institute (INPE). Universities in the state of São Paulo have strong graduate programs: the University of São Paulo forms two thousand doctorates every year, the State University of Campinas forms eight hundred and the University of the State of São Paulo six hundred.
    [Show full text]
  • Managing Midas
    Managing MIDAs Managing MIDAs Harmonising the management of Multi-Internationally Designated Areas: Ramsar Sites, World Heritage sites, Biosphere Reserves and UNESCO Global Geoparks Thomas Schaaf and Diana Clamote Rodrigues INTERNATIONAL UNION FOR CONSERVATION OF NATURE WORLD HEADQUARTERS Rue Mauverney 28 1196 Gland, Switzerland Tel +41 22 999 0000 Fax +41 22 999 0002 www.iucn.org IUCN IUCN (International Union for Conservation of Nature) IUCN is a membership Union composed of both government and civil society organisations. It harnesses the experience, resources and reach of its more than 1,300 Member organisations and the input of more than 16,000 experts. IUCN is the global authority on the status of the natural world and the measures needed to safeguard it. www.iucn.org Ramsar Convention The Convention on Wetlands, called the Ramsar Convention, is an intergovernmental treaty that provides the framework for national action and international cooperation for the conservation and wise use of wetlands and their resources. Its mission is “the conservation and wise use of all wetlands through local and national actions and international cooperation, as a contribution towards achieving sustainable development throughout the world”. Under the “three pillars” of the Convention, the Contracting Parties commit to: work towards the wise use of all their wetlands; designate suitable wetlands for the list of Wetlands of International Importance (the “Ramsar List”) and ensure their effective management; and cooperate internationally on transboundary wetlands, shared wetland systems and shared species. www.ramsar.org NIO M O UN IM D R T IA A L • World Heritage Convention P • W L O A I R D L D N H O E M R I E TA IN G O The 1972 Convention concerning the Protection of the World Cultural and Natural Heritage recognises that certain E • PATRIM United Nations World Educational, Scientific and Heritage places on Earth are of “outstanding universal value” and should form part of the common heritage of humankind.
    [Show full text]
  • The Archaea Community Associated with Lava-Formed Gotjawal Forest Soil in Jeju, Korea
    Journal of Agricultural Chemistry and Environment, 2014, 3, 96-102 Published Online August 2014 in SciRes. http://www.scirp.org/journal/jacen http://dx.doi.org/10.4236/jacen.2014.33012 The Archaea Community Associated with Lava-Formed Gotjawal Forest Soil in Jeju, Korea Jong-Shik Kim1*, Man-Young Jung2, Keun Chul Lee3, Dae-Shin Kim4, Suk-Hyung Ko4, Jung-Sook Lee3, Sung-Keun Rhee2 1Gyeongbuk Institute for Marine Bioindustry, Uljin, Republic of Korea 2Department of Microbiology, Chungbuk National University, Cheongju, Republic of Korea 3Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea 4Research Institute for Hallasan, Jeju, Republic of Korea Email: *[email protected] Received 22 April 2014; revised 27 May 2014; accepted 23 June 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The abundance and diversity of archaeal assemblages were analyzed in soils collected from Gyo- rae Gotjawal forest, Jeju, Korea. Gotjawal soil refers to soil derived from a lava-formed forest, cha- racterized by high organic matter content, fertility, and poor rocky soil. Using domain-specific primers, archaeal 16S rRNA gene sequences were PCR amplified for clone library construction, and a total of 185 archaeal clones were examined. The archaeal clones were affiliated with the phyla Thaumarchaeota (96.2%) and Euryarchaeota (3.8%). The most abundant thaumarchaeal group (90.3% of the clones) was the group I.1b clade, which includes soil ammonia-oxidizing arc- haea. The unique characteristics of Gotjawal soil, including basalt morphology, vegetation, and groundwater aquifer penetration, may be reflected in the archaeal community composition.
    [Show full text]
  • A Case of Communal Egg-Laying of Gonatodes Albogularis (Sauria, Sphaerodactylidae) in Bromeliads (Poales, Bromeliaceae)
    Herpetozoa 32: 45–49 (2019) DOI 10.3897/herpetozoa.32.e35663 A case of communal egg-laying of Gonatodes albogularis (Sauria, Sphaerodactylidae) in bromeliads (Poales, Bromeliaceae) Valentina de los Ángeles Carvajal-Ocampo1, María Camila Ángel-Vallejo1, Paul David Alfonso Gutiérrez-Cárdenas2, Fabiola Ospina-Bautista1, Jaime Vicente Estévez Varón1 1 Grupo de Investigación en Ecosistemas Tropicales, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 # 26-10, A.A 275, Manizales, Colombia 2 Grupo de Ecología y Diversidad de Anfibios y Reptiles, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 # 26-10, A.A 275, Manizales, Colombia http://zoobank.org/40E4D4A7-C107-46C8-BAB3-01B193722A17 Corresponding author: Valentina de los Ángeles Carvajal-Ocampo ([email protected]) Academic editor: Günter Gollmann ♦ Received 26 September 2018 ♦ Accepted 5 January 2019 ♦ Published 13 May 2019 Abstract The Neotropical Yellow-Headed Gecko Gonatodes albogularis commonly use cavities in the trees as a microhabitat for egg-laying. Here, we present the first record of this species in Colombia using the tank bromeliadTillandsia elongata as nesting sites, along with the occurrence of communal egg-laying in that microhabitat. Key Words Andean disturbed, Colombia, forests, communal egg-laying, nesting sites, Tillandsia elongata Introduction Anadia (Mendoza and Rodríguez-Barbosa 2017), Anolis (Rand 1967; Estrada 1987; Montgomery et al. 2011), Go- Tank bromeliads (Bromeliaceae) are phytotelmata that natodes (Quesnel 1957; Rivero-Blanco 1964; Vitt et al. potentially provide humidity, resources and shelter to ver- 1997; Oda 2004; Rivas Fuenmayor et al. 2006; Jablon- tebrates (Benzing 2000; Schaefer and Duré 2011; Silva ski 2015), Gymnodactylus (Cassimiro and Rodrigues et al.
    [Show full text]
  • Benefit What Is the JEJU MICE CARD? JEJU MICE CARD란?
    Benefit What is the JEJU MICE CARD? JEJU MICE CARD란? JEJU MICE CARD is a trans portation card that makes it easy to use bus (including re gular bus, limousine bus, City 12/18 Tour Bus, etc) on Jeju Island. You can comfortably recharge the card at all of theses con venience stores(GS25, Seven Eleven, CU). JEJU MICE CARD offers all card users up to 60% discount and other benefits related to all affiliated company such as various tourist attractions, hotels, restaurants, shopping stores, etc. JEJU MICE 카드는 제주도내 시내·외 버스 및 리무진, 시티투어버스 이용시 교통 카드로 사용가능하며, GS25, 세븐일레븐, CU 편의점에서 결제가능합니다. 또한, 제주도내 관광지, 체험프로그램, 맛집, 호텔 레스토랑 등 다양한 제휴 가맹점에서 최대 60%할인 혜택과 우대서비스를 제공합니다. * It’s charged 5,000 won at first. * 기본 5,000원이 충전되어 있습니다. Transportation card 교통카드 기능 You can use it when you use the transportation. 일반버스 및 리무진, 시티투어 버스 등 버스 이용시 교통카드로 사용 가능합니다. Easy recharging and payment at CVS 편의점에서 충전 및 결제가능 You can recharge it at CVS in Jeju easily. 제주도내 편의점에서 쉽게 충전하여 사용할 수 있습니다. How to Charge 충전방법 Cash recharging only 현금충전만 가능 편의점(CVS) * You can recharge JEJU MICE CARD at CVS(SEVEN ELEVEN, GS25, CU) 제주도내 편의점에서 충전가능합니다. How to use the JEJU MICE card 카드 사용방법 When you use the transportation 대중교통 이용 Touch Payment 단말기 접촉 * Must touch the card to the card reader when get on and get off * 승/하차시 반드시 태그해야 함 Affiliated JEJUPASS member stores DC 제휴 가맹점 할인 Present your card for Discount 제주마이스카드 제시 후 할인 You can get a 10% discount when you show JEJU MICE Card at the stores in ICC JEJU.
    [Show full text]
  • Reptile Diversity in the Duas Bocas Biological Reserve, Espírito Santo, Southeastern Brazil
    ARTICLE Reptile diversity in the Duas Bocas Biological Reserve, Espírito Santo, southeastern Brazil Jonathan Silva Cozer¹³; Juliane Pereira-Ribeiro²⁴; Thais Meirelles Linause¹⁵; Atilla Colombo Ferreguetti²⁶; Helena de Godoy Bergallo²⁷ & Carlos Frederico Duarte da Rocha²⁸ ¹ Universidade Federal do Espírito Santo (UFES), Departamento de Biologia. Vitória, ES, Brasil. ² Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Departamento de Ecologia (DECOL). Rio de Janeiro, RJ, Brasil. ³ ORCID: http://orcid.org/0000-0003-4558-9990. E-mail: [email protected] ⁴ ORCID: http://orcid.org/0000-0002-0762-337X. E-mail: [email protected] (corresponding author) ⁵ ORCID: http://orcid.org/0000-0001-8186-0464. E-mail: [email protected] ⁶ ORCID: http://orcid.org/0000-0002-5139-8835. E-mail: [email protected] ⁷ ORCID: http://orcid.org/0000-0001-9771-965X. E-mail: [email protected] ⁸ ORCID: http://orcid.org/0000-0003-3000-1242. E-mail: [email protected] Abstract. The lack of information on the occurrence of species in a region limits the understanding of the composition and structure of the local community and, consequently, restricts the proposition of effective measures for species conservation. In this study, we researched the reptiles in the Duas Bocas Biological Reserve (DBBR), Espírito Santo, southeastern Brazil. We analyzed the parameters of the local community, such as richness, composition, and abundance of species. We conducted samplings from August 2017 to January 2019, through active search. We performed the samplings in nine standard plots of 250 meters in length. All individuals located in the plots or occasionally on the trails were registered.
    [Show full text]
  • Variação Geográfica Na Morfologia De Gymnodactylus Amarali (Squamata, Gekkonidae)
    Universidade de Brasília Instituto de Ciências Biológicas Departamento de Ecologia Variação Geográfica na Morfologia de Gymnodactylus amarali (Squamata, Gekkonidae) Fabricius Maia Chaves Bicalho Domingos Brasília-DF 2009 Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para download. Universidade de Brasília Instituto de Ciências Biológicas Departamento de Ecologia Variação Geográfica na Morfologia de Gymnodactylus amarali (Squamata, Gekkonidae) Fabricius Maia Chaves Bicalho Domingos Orientador: Guarino Rinaldi Colli, Ph.D. Dissertação apresentada ao Instituto de Ciências Biológicas da Universidade de Brasília como parte dos requisitos necessários para a obtenção do Título de Mestre em Ecologia Brasília-DF 2009 i FABRICIUS MAIA CHAVES BICALHO DOMINGOS Variação Geográfica na Morfologia de Gymnodactylus amarali (Squamata, Phyllodactylidae) Dissertação realizada com o apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e da Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF) e aprovada junto ao Programa de Pós Graduação em Ecologia da Universidade de Brasília como requisito parcial para obtenção do título de Mestre em Ecologia. Banca Examinadora: ________________________________ Dr. Guarino Rinaldi Colli Departamento de Zoologia, UnB (Orientador, Presidente da Banca Examinadora) ________________________________ Dr. Kátia Cristina Machado Pellegrino Departamento de Ciências Biológicas, UNIFESP (Membro Titular da Banca Examinadora) ________________________________ Dr. Reginaldo
    [Show full text]
  • Motions Issued on 8 July 2012
    Congress Document WCC-2012-9.6* Motions Issued on 8 July 2012 World Conservation Congress, Jeju, Republic of Korea 6–15 September 2012 *This document is also submitted for agenda items 1.8, 2.1.6, 3.1.6, 4.1.6 and 6.1.6. Table of Contents Title Categories 001 Strengthening the motions process and enhancing implementation of IUCN Resolutions IUCN Governance 002 Improved opportunity for Member participation in IUCN IUCN Governance 003 Prioritizing IUCN membership awareness and support IUCN Governance 004 Establishment of the Ethics Mechanism IUCN Governance Strengthening of the IUCN National and Regional Committees and the optional use of the 005 three official languages in documents for internal and external communication by IUCN IUCN Governance and its Members Cooperation with regional government authorities in the implementation of the IUCN 006 IUCN Governance Programme 2013–2016 Establishing an Indigenous Peoples’ Organization (IPO) membership and voting category 007 IUCN Governance in IUCN Increasing youth engagement and intergenerational partnership across and through the 008 IUCN Governance Union 009 Encouraging cooperation with faith-based organizations and networks IUCN Governance 010 Establishment of a strengthened institutional presence of IUCN in North-East Asia IUCN Governance 011 Consolidating IUCN’s institutional presence in South America IUCN Governance 012 Strengthening IUCN in the insular Caribbean IUCN Governance 013 IUCN’s name IUCN Governance 014 Implementing Aichi Target 12 of the Strategic Plan for Biodiversity 2011–2020
    [Show full text]
  • Redalyc.On the Geographical Differentiation of Gymnodactylus Geckoides Spix, 1825 (Sauria, Gekkonidae): Speciation in the Bras
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Vanzolini, Paulo Emilio On the geographical differentiation of Gymnodactylus geckoides Spix, 1825 (Sauria, Gekkonidae): speciation in the Brasilian caatingas Anais da Academia Brasileira de Ciências, vol. 76, núm. 4, dez, 2004, pp. 663-698 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32776405 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2004) 76(4): 663-698 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc On the geographical differentiation of Gymnodactylus geckoides Spix, 1825 (Sauria, Gekkonidae): speciation in the Brasilian caatingas PAULO EMILIO VANZOLINI* Museu de Zoologia da Universidade de São Paulo, Cx. Postal 42694, 04299-970 São Paulo, SP, Brasil Manuscript received on October 31, 2003; accepted for publication on April 4, 2004. ABSTRACT The specific concept of G. geckoides was initially ascertained based on a topotypical sample from Salvador, Bahia. Geographic differentiation was studied through the analysis of two meristic characters (tubercles in a paramedian row and fourth toe lamellae) and color pattern of 327 specimens from 23 localities. It is shown that the population from the southernmost locality, Mucugê, is markedly divergent in all characters studied. A Holocene refuge model is proposed to explain the pattern.
    [Show full text]
  • Human Influence, Regeneration, and Conservation of the Gotjawal Forests
    Journal of Marine and Island Cultures (2013) 2, 85–92 Journal of Marine and Island Cultures www.sciencedirect.com Human influence, regeneration, and conservation of the Gotjawal forests in Jeju Island, Korea Hong-Gu Kang a,*, Chan-Soo Kim b, Eun-Shik Kim c,* a Department of Forest Resources, Graduate School, Kookmin University, Seoul 136-702, Republic of Korea b Warm-Temperate and Subtropical Forest Research Center, Korea Forest Research Institute, Jeju 697-050, Republic of Korea c Department of Forestry, Environment, and Systems, Kookmin University, Seoul 136-702, Republic of Korea Received 29 October 2013 Available online 5 December 2013 KEYWORDS Abstract Gotjawal, a uniquely formed forest vegetation on the lava terrain located at eastern and Conservation; western parts of Jeju Island, covers 6% of the island’s land surface. The Gotjawal forests play Ecosystem services; important roles in establishing the biological and cultural diversity while maintaining ecosystem ser- Gotjawal forests; vices. Recently, with the recognition of the diverse ecological and cultural values of the Gotjawal Human influence; forests, efforts to conserve the forests were conducted by adopting the resolutions of the Jeju World Jeju Island; Conservation Congress of the IUCN held in 2012. Despite its precious values, the Gotjawal forest is Regeneration being threatened by the developmental activities of large scale constructions projects. To under- stand the recent regeneration of the Gotjawal forests, ecological studies have been conducted at the Hankyeong-Andeok Gotjawal Terrain, which is located in the western part and occupies the largest area of the Gotjawal Terrain of Jeju Island. Major vegetation in the area includes the decid- uous broad-leaved forests (Acer palmatum–Styrax japonicus community), mixed deciduous and evergreen broad-leaved forests (Neolitsea aciculata–Styrax japonicus community), and evergreen broad-leaved forests (Quercus glauca community).
    [Show full text]