Reptile Diversity in the Duas Bocas Biological Reserve, Espírito Santo, Southeastern Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Reptile Diversity in the Duas Bocas Biological Reserve, Espírito Santo, Southeastern Brazil ARTICLE Reptile diversity in the Duas Bocas Biological Reserve, Espírito Santo, southeastern Brazil Jonathan Silva Cozer¹³; Juliane Pereira-Ribeiro²⁴; Thais Meirelles Linause¹⁵; Atilla Colombo Ferreguetti²⁶; Helena de Godoy Bergallo²⁷ & Carlos Frederico Duarte da Rocha²⁸ ¹ Universidade Federal do Espírito Santo (UFES), Departamento de Biologia. Vitória, ES, Brasil. ² Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Departamento de Ecologia (DECOL). Rio de Janeiro, RJ, Brasil. ³ ORCID: http://orcid.org/0000-0003-4558-9990. E-mail: [email protected] ⁴ ORCID: http://orcid.org/0000-0002-0762-337X. E-mail: [email protected] (corresponding author) ⁵ ORCID: http://orcid.org/0000-0001-8186-0464. E-mail: [email protected] ⁶ ORCID: http://orcid.org/0000-0002-5139-8835. E-mail: [email protected] ⁷ ORCID: http://orcid.org/0000-0001-9771-965X. E-mail: [email protected] ⁸ ORCID: http://orcid.org/0000-0003-3000-1242. E-mail: [email protected] Abstract. The lack of information on the occurrence of species in a region limits the understanding of the composition and structure of the local community and, consequently, restricts the proposition of effective measures for species conservation. In this study, we researched the reptiles in the Duas Bocas Biological Reserve (DBBR), Espírito Santo, southeastern Brazil. We analyzed the parameters of the local community, such as richness, composition, and abundance of species. We conducted samplings from August 2017 to January 2019, through active search. We performed the samplings in nine standard plots of 250 meters in length. All individuals located in the plots or occasionally on the trails were registered. To evaluate sample effort to characterize the reptile community, we performed an accumulation curve of species, and to update the DBBR reptile list, we used as secondary data specimens deposited in collections and previously published studies. Considering primary and secondary data, we recorded 38 species, one chelonia, 13 lizards, and 24 snakes. Our study showed a richness of 15 additional species to the previous list of reptiles, increasing by about 40% the known richness to the area. We concluded that the DBBR holds a high richness of reptile species, representing 12% of the richness of reptiles of the Atlantic Forest and with a considerable number of endemic species in this biome. This suggests that the DBBR is an important forest fragment constituting a reservoir of the biodiversity of the reptiles of the Atlantic Forest. Keywords. Atlantic Forest; Abundance; Reptilia; Richness; Rainforest. INTRODUCTION 2014; Sinervo et al., 2010). Knowledge about spe- cies diversity across landscapes in different bi- Reptiles are widely distributed and occur in omes is an important step for conservation, assist- different habitats, being present in all continents ing in monitoring wildlife, especially in protected except for Antarctica (Di-Bernardo et al., 2003). areas, and providing important information to Currently, approximately 11,000 reptile species understand the species diversity and distribution are known in the world. Among these, 10,671 pattern (Zaher et al., 2011). species are from squamate reptiles (Uetz & Hošek, The lack of detailed information on reptile 2019). In a study aiming to categorize the conser- groups limits fine-scale understanding of the vation status of 1,500 reptile species distributed composition and structure of the local commu- across the globe, about 20% of the species were nity and, consequently, restricts the proposition categorized as endangered, with a high number of effective measures for the conservation of the of species currently under population decline oc- species of the group (Rocha et al., 2004). A recent curring in tropical forests (Marques et al., 2010). study revealed that the patterns of richness and Habitat fragmentation, overexploitation (veg- distribution of tetrapods might not characterize etable, mineral, and animal), and poaching, com- the patterns of the group of reptiles, especially bined with the risks of global climate change and lizards (Roll et al., 2017). In this study, Roll et al., regional changes in precipitation have promoted used data from global reptile distribution to an- a significant erosion of biodiversity (Joly et al., alyze reptile diversity patterns, and they iden- Pap. Avulsos Zool., 2020; v.60: e20206040 ISSN On-Line: 1807-0205 http://doi.org/10.11606/1807-0205/2020.60.40 ISSN Printed: 0031-1049 http://www.revistas.usp.br/paz ISNI: 0000-0004-0384-1825 http://www.scielo.br/paz Edited by: Pedro Murilo Sales Nunes Received: 03/10/2019 Accepted: 02/06/2020 Published: 28/08/2020 Pap. Avulsos Zool., 2020; v.60: e20206040 Cozer, J.S. et al.: Reptile diversity in the Duas Bocas Biological Reserve 2/9 tified priority areas for the conservation of this group future strategies and additional conservation actions for (e.g., the world’s arid, grassland, and savannah habitats). reptiles in the DBBR and surroundings remnants. Also, the study pointed out that the unique patterns of reptile diversity have important implications for their conservation (Roll et al., 2017). Thus, the proposition of MATERIAL AND METHODS specific strategies and actions for reptiles in a given re- gion depends on prior knowledge of the parameters of Study area communities in different areas, including understanding the distribution of reptile species in a larger geographical Duas Bocas Biological Reserve (DBBR) is in the area (Rocha et al., 2009; Roll et al., 2017). municipality of Cariacica (20°14 04 and 20°18 30 S, ′ ″ ′ ″ Duas Bocas Biological Reserve (DBBR) constitutes one 40°28 01 and 40°32 07 W) in the State of Espírito ′ ″ ′ ″ of the largest remnants of the Atlantic Forest of the State Santo, Southeastern Brazil (Fig. 1). The Reserve has an of Espírito Santo (ES). It houses the protective forests of area of 2,910 ha, with altitudes varying between 200 the water sources of the region of the municipality of and 738 m a.s.l., constituting one of the most import- Cariacica in ES (IEMA, 2018). DBBR has a high diversity of ant forest fragments of the Atlantic Forest of the state species, mainly due to the protection of the forests for of Espírito Santo, for harboring a rich and diverse fauna, the preservation of its springs and holding a consider- with rare and endangered species (IEMA, 2018). In the able number of species that are currently in danger of reserve, the humid tropical climate predominates with extinction (Tonini et al., 2010). Despite the socio-envi- relatively well-distributed rainfalls throughout the year. ronmental importance of the DBBR, there are currently The relative air humidity is higher than 70%, an average few studies available on the local fauna and flora, and, annual rainfall of approximately 1,500 mm, and an aver- particularly for the reptiles, the only information relies age annual temperature of 22°C (Feitoza, 1986). on a study that presented a previous list of non-volant The DBBR has two main trails denominated the tetrapods of the region (Tonini et al., 2010). In the present Represa Velha and Alto Alegre (Fig. 1). Represa Velha trail study, we sought to analyze the reptile local community is 3,500 m long and between 202 m and 213 m a.s.l. It parameters such as the richness, composition, and abun- is composed of secondary forest areas, where banana, dance and complement the list of reptiles species provid- coffee, and pasture crops are introduced, besides a pre- ed by Tonini et al. (2010) to provide subsidies to support dominance of jackfruit (Artocarpus heterophyllus) (Boni Figure 1. Location of Duas Bocas Biological Reserve, Cariacica, Espírito Santo, southeastern Brazil. Tracks and stars represent sampling areas of this study, with tracks representing the location of the trails and the stars representing the location of the plots. Cozer, J.S. et al.: Reptile diversity in the Duas Bocas Biological Reserve Pap. Avulsos Zool., 2020; v.60: e20206040 3/9 et al., 2009; Novelli, 2010). Alto Alegre trail is 4,000 m long we used the species recorded in the study that inven- and is 543 m a.s.l. It is composed of a forest with little ev- toried the Tetrapods in the area (Tonini et al., 2010) and idence of disturbance, with a high density of large trees data of specimens deposited in scientific collections and that provides a higher coverage of the leaf litter over the included in the “Species Link” (www.splink.cria.org.br). To soil (Boni et al., 2009; Novelli, 2010). define endemism, we used Tozetti et al. (2017) and Costa & Bérnils (2018). Data collection and analysis RESULTS We sampled the reptiles for 18 consecutive months, from August 2017 to January 2019, with monthly cam- In this study, we recorded 29 reptile species being paigns of three to four days, through active search one species of turtle, ten lizards, and 18 snakes (Table 1, during the daytime periods (08:00-14:00 hours), twi- Figs. 2 and 3). Among the lizards, species of the fam- light (17:00-18:00 hours), and nighttime (18:00-23:00 ily Gymnophthalmidae (two species) were predom- hours). Samplings were carried out in nine plots estab- inant and, among the snakes, species of the families lished along the forest and standardized with 250 me- Dipsadidae (seven species) and Colubridae (four species) ters in length, with a distance of at least 250 meters be- predominated. Our sampling efforts added 15 species to tween adjacent plots. The active search of the reptiles the DBBR list of reptiles, two lizards, and 13 snakes. was conducted by two observers (who remained the The estimated rarefaction curve of the species did not same throughout the study), who throughout each plot, obtain asymptote, and the Bootstrap richness estimator sought individuals on the trees, on the leaf litter, on the showed the lowest standard deviation in relation to the trunks, or under tree bark, on logs fallen, on the edge observed richness.
Recommended publications
  • De Los Reptiles Del Yasuní
    guía dinámica de los reptiles del yasuní omar torres coordinador editorial Lista de especies Número de especies: 113 Amphisbaenia Amphisbaenidae Amphisbaena bassleri, Culebras ciegas Squamata: Serpentes Boidae Boa constrictor, Boas matacaballo Corallus hortulanus, Boas de los jardines Epicrates cenchria, Boas arcoiris Eunectes murinus, Anacondas Colubridae: Dipsadinae Atractus major, Culebras tierreras cafés Atractus collaris, Culebras tierreras de collares Atractus elaps, Falsas corales tierreras Atractus occipitoalbus, Culebras tierreras grises Atractus snethlageae, Culebras tierreras Clelia clelia, Chontas Dipsas catesbyi, Culebras caracoleras de Catesby Dipsas indica, Culebras caracoleras neotropicales Drepanoides anomalus, Culebras hoz Erythrolamprus reginae, Culebras terrestres reales Erythrolamprus typhlus, Culebras terrestres ciegas Erythrolamprus guentheri, Falsas corales de nuca rosa Helicops angulatus, Culebras de agua anguladas Helicops pastazae, Culebras de agua de Pastaza Helicops leopardinus, Culebras de agua leopardo Helicops petersi, Culebras de agua de Peters Hydrops triangularis, Culebras de agua triángulo Hydrops martii, Culebras de agua amazónicas Imantodes lentiferus, Cordoncillos del Amazonas Imantodes cenchoa, Cordoncillos comunes Leptodeira annulata, Serpientes ojos de gato anilladas Oxyrhopus petolarius, Falsas corales amazónicas Oxyrhopus melanogenys, Falsas corales oscuras Oxyrhopus vanidicus, Falsas corales Philodryas argentea, Serpientes liana verdes de banda plateada Philodryas viridissima, Serpientes corredoras
    [Show full text]
  • On the Geographical Differentiation of Gymnodactylus Geckoides Spix, 1825 (Sauria, Gekkonidae): Speciation in the Brasilian Caatingas
    Anais da Academia Brasileira de Ciências (2004) 76(4): 663-698 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc On the geographical differentiation of Gymnodactylus geckoides Spix, 1825 (Sauria, Gekkonidae): speciation in the Brasilian caatingas PAULO EMILIO VANZOLINI* Museu de Zoologia da Universidade de São Paulo, Cx. Postal 42694, 04299-970 São Paulo, SP, Brasil Manuscript received on October 31, 2003; accepted for publication on April 4, 2004. ABSTRACT The specific concept of G. geckoides was initially ascertained based on a topotypical sample from Salvador, Bahia. Geographic differentiation was studied through the analysis of two meristic characters (tubercles in a paramedian row and fourth toe lamellae) and color pattern of 327 specimens from 23 localities. It is shown that the population from the southernmost locality, Mucugê, is markedly divergent in all characters studied. A Holocene refuge model is proposed to explain the pattern. A decision about the rank to be attributed to the Mucugê population is deferred until more detailed sampling is effected and molecular methods are applied. Key words: speciation, Holocene refuges, lizards: ecology, lizards: systematics. INTRODUCTION Both the description and the figure are very good. The Gymnodactylus geckoides complex has one of The type locality, environs of the city of Bahia (the the most interesting distributions of all cis-Andean present Salvador), is satisfactorily explicit, and the lizards. It occurs in such diversified areas as the animal is still fairly common there. semi-arid caatingas of northeastern Brazil, the Cen- Fitzinger (1826: 48), in a rather confused note tral Brazilian cerrados, which are mesic open forma- on gekkonid systematics, placed geckoides in his tions, and the humid Atlantic coast.
    [Show full text]
  • A Morphological and Molecular Study of Hydrodynastes Gigas (Serpentes, Dipsadidae), a Widespread Species from South America
    A morphological and molecular study of Hydrodynastes gigas (Serpentes, Dipsadidae), a widespread species from South America Priscila S. Carvalho1,2, Hussam Zaher3, Nelson J. da Silva Jr4 and Diego J. Santana1 1 Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil 2 Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio preto, São Paulo, Brazil 3 Museu de Zoologia da Universidade de São Paulo, São Paulo, São Paulo, Brazil 4 Escola de Ciências Médicas, Farmacêuticas e Biomédicas, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil ABSTRACT Background. Studies with integrative approaches (based on different lines of evidence) are fundamental for understanding the diversity of organisms. Different data sources can improve the understanding of the taxonomy and evolution of snakes. We used this integrative approach to verify the taxonomic status of Hydrodynastes gigas (Duméril, Bibron & Duméril, 1854), given its wide distribution throughout South America, including the validity of the recently described Hydrodynastes melanogigas Franco, Fernandes & Bentim, 2007. Methods. We performed a phylogenetic analysis of Bayesian Inference with mtDNA 16S and Cytb, and nuDNA Cmos and NT3 concatenated (1,902 bp). In addition, we performed traditional morphometric analyses, meristic, hemipenis morphology and coloration pattern of H. gigas and H. melanogigas. Results. According to molecular and morphological characters, H. gigas is widely Submitted 19 May 2020 distributed throughout South America. We found no evidence to support that H. Accepted 9 September 2020 gigas and H. melanogigas species are distinct lineages, therefore, H. melanogigas is a Published 25 November 2020 junior synonym of H.
    [Show full text]
  • A New Computing Environment for Modeling Species Distribution
    EXPLORATORY RESEARCH RECOGNIZED WORLDWIDE Botany, ecology, zoology, plant and animal genetics. In these and other sub-areas of Biological Sciences, Brazilian scientists contributed with results recognized worldwide. FAPESP,São Paulo Research Foundation, is one of the main Brazilian agencies for the promotion of research.The foundation supports the training of human resources and the consolidation and expansion of research in the state of São Paulo. Thematic Projects are research projects that aim at world class results, usually gathering multidisciplinary teams around a major theme. Because of their exploratory nature, the projects can have a duration of up to five years. SCIENTIFIC OPPORTUNITIES IN SÃO PAULO,BRAZIL Brazil is one of the four main emerging nations. More than ten thousand doctorate level scientists are formed yearly and the country ranks 13th in the number of scientific papers published. The State of São Paulo, with 40 million people and 34% of Brazil’s GNP responds for 52% of the science created in Brazil.The state hosts important universities like the University of São Paulo (USP) and the State University of Campinas (Unicamp), the growing São Paulo State University (UNESP), Federal University of São Paulo (UNIFESP), Federal University of ABC (ABC is a metropolitan region in São Paulo), Federal University of São Carlos, the Aeronautics Technology Institute (ITA) and the National Space Research Institute (INPE). Universities in the state of São Paulo have strong graduate programs: the University of São Paulo forms two thousand doctorates every year, the State University of Campinas forms eight hundred and the University of the State of São Paulo six hundred.
    [Show full text]
  • Chec List Lizard Fauna
    Check List 10(6): 1290–1299, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.biotaxa.org/cl) Journal of species lists and distribution Lizard fauna (Squamata, Sauria) from Serra do Ouro PECIES S Branco, southern Espinhaço Range, Minas Gerais, Brazil OF 1, 2 2, 3 2 ISTS António Jorge do Rosário Cruz *, Leandro de Oliveira Drummond , Virginia Duarte Lucena , L Adriele Prisca de Magalhães 1, 2, Caryne Aparecida de Carvalho Braga 1, 2, 3, Jaqueline Malta Rolin 2 and Maria Rita Silvério Pires 1, 2 1 Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Programa de Pós-graduação em Ecologia de Biomas Tropicais. CEP 35400-000. Ouro Preto, MG, Brasil. 2 Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Departamento de Evolução, Biodiversidade e Meio Ambiente. CEP 35400-000. Ouro Preto, MG, Brasil. 3 Universidade Federal do Rio de Janeiro, Departamento de Ecologia, Laboratório de Vertebrados. CP 68020, Ilha do Fundão. CEP 21941-901, Rio de Janeiro, RJ, Brazil. * Corresponding author. E-mail: [email protected] Abstract: The present study evaluated the lizard fauna in Serra do Ouro Branco, Minas Gerais, Brazil, a transition area between the Atlantic Forest and Cerrado. Data was collected using pitfall traps, active and occasional encounters, and through information from zoological collections and the literature. Field sampling was performed in two stages over a period of 36 months: from December 2006 to December 2008, and from January to December 2010. The study area is home to 15 species belonging to eight families: Anguidae, Gekkonidae, Gymnophthalmidae, Leiosauridae, Polychrotidae, Mabuyidae, Teiidae, and Tropiduridae.
    [Show full text]
  • Natural History Notes 657
    NATURAL HISTORY NOTES 657 its way back to the rock from which the pair had first emerged, and disappeared underneath it. The struggle, from emergence to end, lasted just over 1.5 minutes (90 seconds), 68 seconds of which were recorded, and can be viewed online at: http://www. californiaherps.com/movies/pskiltonianusfightwacr517.mp4. We remained in the vicinity for another 30 minutes. At 1115 h, the male, which had returned to the rock, stuck its head out from under the rock’s edge and sat, looking around, until we departed. The weather during this encounter was sunny and warm, with 10% high cloud cover and a light (2–3 kph) breeze from the south. The air temperature 2 cm above the soil surface ranged from 28 to 33°C, and the temperature under the rock from which the pair of P. skiltonianus originally emerged was 17.6°C. Although male combat has not been described for P. skilto- nianus, it is well known in several other species of North Ameri- can skinks, including P. fasciatus and P. laticeps (Fitch 1951. Her- petologica 7:77–80; Cooper and Vitt 1987. Oecologia 72:321–326; FIG. 1. Plica umbra ochrocollaris in a defensive posture, inflated and Griffith 1991. J. Herpetol. 25:24–30). In these species, the greatest immobile. frequency of male fighting occured during the breeding season, commensurate with the onset of hormone-mediated seasonal sexual dimorphism which includes the development of red co- released on the vegetation. Motionlessness is usually exhibited loration on the heads of male skinks (Fitch 1954.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Analysis of Diet Composition and Morphological Characters of The
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [General Section]: 111–121 (e172). Analysis of diet composition and morphological characters of the little-known Peruvian bush anole Polychrus peruvianus (Noble, 1924) in a northern Peruvian dry forest 1Antonia Beuttner and 2,*Claudia Koch 1Universität Tübingen, Geschwister-Scholl-Platz, 72074 Tübingen, GERMANY 2Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Adenauerallee 160, 53113 Bonn, GERMANY Abstract.—Analyses of diet composition are an important element of studies focusing on biological diversity, ecology, and behavior of animals. Polychrus peruvianus was found to be a quite abundant lizard species in the northern Peruvian dry forest. However, our knowledge of the ecology of this species remains limited. Herein, we analyze the species dietary composition and the morphological features that may be related to the feeding behavior. Our results show that P. peruvianus is a semi-herbivorous food generalist, which also consumes faunistic prey. All age groups prefer mobile prey as sit-and-wait predators. However, during ontogenesis, plant material becomes the main component in the diet of adult specimens. Keywords. Iguania, bite force, ontogenetic change, foraging strategy, stomach contents, food niche, feeding behavior, Marañón river Citation: Beuttner A, Koch C. 2019. Analysis of diet composition and morphological characters of the little-known Peruvian bush anole Polychrus peruvianus (Noble, 1924) in a northern Peruvian dry forest. Amphibian & Reptile Conservation 13(1) [General Section]: 111–121 (e172). Copyright: © 2019 Beuttner and Koch. This is an open access article distributed under the terms of the Creative Commons Attribution License [At- tribution 4.0 International (CC BY 4.0): https://creativecommons.org/licenses/by/4.0/], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Redalyc.Comparative Studies of Supraocular Lepidosis in Squamata
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Cei, José M. Comparative studies of supraocular lepidosis in squamata (reptilia) and its relationships with an evolutionary taxonomy Multequina, núm. 16, 2007, pp. 1-52 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42801601 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 COMPARATIVE STUDIES OF SUPRAOCULAR LEPIDOSIS IN SQUAMATA (REPTILIA) AND ITS RELATIONSHIPS WITH AN EVOLUTIONARY TAXONOMY ESTUDIOS COMPARATIVOS DE LA LEPIDOSIS SUPRA-OCULAR EN SQUAMATA (REPTILIA) Y SU RELACIÓN CON LA TAXONOMÍA EVOLUCIONARIA JOSÉ M. CEI † las subfamilias Leiosaurinae y RESUMEN Enyaliinae. Siempre en Iguania Observaciones morfológicas Pleurodonta se evidencian ejemplos previas sobre un gran número de como los inconfundibles patrones de especies permiten establecer una escamas supraoculares de correspondencia entre la Opluridae, Leucocephalidae, peculiaridad de los patrones Polychrotidae, Tropiduridae. A nivel sistemáticos de las escamas específico la interdependencia en supraoculares de Squamata y la Iguanidae de los géneros Iguana, posición evolutiva de cada taxón Cercosaura, Brachylophus,
    [Show full text]
  • A Taxonomic Framework for Typhlopid Snakes from the Caribbean and Other Regions (Reptilia, Squamata)
    caribbean herpetology article A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata) S. Blair Hedges1,*, Angela B. Marion1, Kelly M. Lipp1,2, Julie Marin3,4, and Nicolas Vidal3 1Department of Biology, Pennsylvania State University, University Park, PA 16802-5301, USA. 2Current address: School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7450, USA. 3Département Systématique et Evolution, UMR 7138, C.P. 26, Muséum National d’Histoire Naturelle, 57 rue Cuvier, F-75231 Paris cedex 05, France. 4Current address: Department of Biology, Pennsylvania State University, University Park, PA 16802-5301 USA. *Corresponding author ([email protected]) Article registration: http://zoobank.org/urn:lsid:zoobank.org:pub:47191405-862B-4FB6-8A28-29AB7E25FBDD Edited by: Robert W. Henderson. Date of publication: 17 January 2014. Citation: Hedges SB, Marion AB, Lipp KM, Marin J, Vidal N. 2014. A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata). Caribbean Herpetology 49:1–61. Abstract The evolutionary history and taxonomy of worm-like snakes (scolecophidians) continues to be refined as new molec- ular data are gathered and analyzed. Here we present additional evidence on the phylogeny of these snakes, from morphological data and 489 new DNA sequences, and propose a new taxonomic framework for the family Typhlopi- dae. Of 257 named species of typhlopid snakes, 92 are now placed in molecular phylogenies along with 60 addition- al species yet to be described. Afrotyphlopinae subfam. nov. is distributed almost exclusively in sub-Saharan Africa and contains three genera: Afrotyphlops, Letheobia, and Rhinotyphlops. Asiatyphlopinae subfam. nov. is distributed in Asia, Australasia, and islands of the western and southern Pacific, and includes ten genera:Acutotyphlops, Anilios, Asiatyphlops gen.
    [Show full text]
  • Early German Herpetological Observations and Explorations in Southern Africa, with Special Reference to the Zoological Museum of Berlin
    Bonner zoologische Beiträge Band 52 (2003) Heft 3/4 Seiten 193–214 Bonn, November 2004 Early German Herpetological Observations and Explorations in Southern Africa, With Special Reference to the Zoological Museum of Berlin Aaron M. BAUER Department of Biology, Villanova University, Villanova, Pennsylvania, USA Abstract. The earliest herpetological records made by Germans in southern Africa were casual observations of common species around Cape Town made by employees of the Dutch East India Company (VOC) during the mid- to late Seven- teenth Century. Most of these records were merely brief descriptions or lists of common names, but detailed illustrations of many reptiles were executed by two German illustrators in the employ of the VOC, Heinrich CLAUDIUS and Johannes SCHUMACHER. CLAUDIUS, who accompanied Simon VAN DER STEL to Namaqualand in 1685, left an especially impor- tant body of herpetological illustrations which are here listed and identified to species. One of the last Germans to work for the Dutch in South Africa was Martin Hinrich Carl LICHTENSTEIN who served as a physician and tutor to the last Dutch governor of the Cape from 1802 to 1806. Although he did not collect any herpetological specimens himself, LICHTENSTEIN, who became the director of the Zoological Museum in Berlin in 1813, influenced many subsequent workers to undertake employment and/or expeditions in southern Africa. Among the early collectors were Karl BERGIUS and Ludwig KREBS. Both collected material that is still extant in the Berlin collection today, including a small number of reptile types. Because of LICHTENSTEIN’S emphasis on specimens as items for sale to other museums rather than as subjects for study, many species first collected by KREBS were only described much later on the basis of material ob- tained by other, mostly British, collectors.
    [Show full text]
  • Hunting of Herpetofauna in Montane, Coastal and Dryland Areas Of
    Herpetological Conservation and Biology 8(3):652−666. HSuebrpmeittotelodg: i1c6a lM Caoyn s2e0r1v3at;i Aonc caenpdt eBdi:o 2lo5g Oy ctober 2013; Published: 31 December 2013. Hunting of Herpetofauna in Montane , C oastal , and dryland areas of nortHeastern Brazil . Hugo Fernandes -F erreira 1,3 , s anjay Veiga Mendonça 2, r ono LiMa Cruz 3, d iVa Maria Borges -n ojosa 3, and rôMuLo roMeu nóBrega aLVes 4 1Universidade Federal da Paraíba, Departamento de Sistemática e Ecologia, Postal Code 58051-900, João Pessoa, Paraíba, Brazil, e-mail: [email protected] 2Universidade Estadual do Ceará, Departamento de Ciências Veterinárias, Postal Code 60120-013, Fortaleza, Ceará, Brazil 3Universidade Federal do Ceará, Núcleo Regional de Ofiologia da UFC (NUROF-UFC), Departamento de Biologia, Postal Code 60455-760, Fortaleza, Ceará, Brazil 4Universidade Estadual da Paraíba, Departamento de Biologia, Postal Code 58109753, Campina Grande, Paraíba, Brazil abstract.— relationships between humans and animals have played important roles in all regions of the world and herpetofauna have important links to the cultures of many ethnic groups. Many societies around the world use these animals for a variety of purposes, such as food and medicinal use. Within this context, we examined hunting activities involving the herpetofauna in montane, dryland, and coastal areas of Ceará state, northeastern Brazil. We analyzed the diversity of species captured, how each species was used, the capture techniques employed, and the conservation implications of these activities on populations of those animals. We documented six hunting techniques and identified twenty-six species utilized (including five species threatened with extinction) belonging to 15 families as important for food (21 spp.), folk medicine (18 spp.), magic-religious purposes (1 sp.), and other uses (9 spp.).
    [Show full text]