Chapter 5: Speciation Mechanisms and Behavior Barry Sinervo © 1997

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 5: Speciation Mechanisms and Behavior Barry Sinervo © 1997 Chapter 5: Speciation Mechanisms and Behavior Species are groups of actually or potentially interbreeding populations, which are reproductively isolated from other such Barry Sinervo © 1997-2007 groups. Mayr 1942 BIOLOGICAL ISOLATING MECHANISMS....................................................................Bi....o..l.o..g..i.ca....l. .I..s..o..l.a..ti...ng.... .M....ec...1ha nisms Modes of Speciation Classified by Geography..............................................................................................3 Diagnosing Models of Speciation from Clinal Variation ...................................E..rn....s.t.. ..May........r.'.s. ...(1...9..4..2..).. ..fo....rmu4 lation of the biological species concept clarified a vexing question for evolutionary biologists: What is a PARAPATRIC VERSUS ALLO-PARAPATRIC SPECIATION ....................................................................................4 Ring Species in Gulls ............................................................................................s.p...eci....es....?.. .May........r'..s. ..v..i.ew..... .o..f.. .t5h e species concept has widespread acceptance A Paint Experiment in Gull Species Recognition................................................o..w...i.n..g.. .t..o.. .i.t.s.. .s..i.mp.....l..i.ci...t.y.... .N..6ev ertheless, the manner in which species arise by the process of natural selection remains controversial. The problem is Ring Species in Salamanders and the Evolution of Mimicry......................Error! Bookmark not defined. that the process of speciation takes a very long time to complete, and it SYMPATRIC SPECIATION ......................................................................................................................................6 occurs on a very large geographic scale. In addition to Mayr's definition Polyploidy ........................................................................................................................................................9 additional genetic concepts are also useful in delimiting species. Character Displacement in Mate Calling and Female Preference..............................................................9 Production of Asexual Parthenogenetic Species.................................................Hy.....bri.....d... .s..teri......l.i.ty.... .d..efi.....n..i.tel10y separates two species, although it is not the Multiple-Niche Polymorphism in Insects and Host-Plant Preference...............s.o..l..e. ...cri....t.eri....o...n... ..H...y..b..ri..d... .s1teri0 lity is a special instance of reproductive SYMPATRIC VERSUS ALLOPATRIC SPECIATION .......................................................i.s..o..l.a..ti..o...n.... .In... ..cas.....es... ..o..f. .rep... 1ro1 ductive isolation between species the barriers Assortative Mating is a Stringent Condition for Sympatric Speciation.............t.o.. ...mat......i.n..g.. ...d..o.. ..n..o...t. ..j.u..s..t 11h ave to be due to incompatibility between Cultural Inheritance of Song and Speciation in Darwin's Finches ...................g..en....o..mes....... ..T...h..e.. ..b..l.o..ck....s.. ..co1u2l d arise at various levels. These ecological, Deme Recognition Female Choice for Natal Song .............................................beha........v..i.o...ra...l..,. ....p..hy....s..i.o..l..o..g1ica3 l, morphological or genetic isolating Reinforcement and Sympatric Speciation............................................................m...echa........ni....s.m....s.,. ...w...h..i.ch.... ..s..erv14e to limit gene flow between species, are SPECIATION AND SMALL POPULATION SIZE ............................................................cat.....eg...o...ri..zed...... .i.n.. .t.er....ms.... .o...f. .p1re6- vs. post-mating mechanisms (Endler, 1977): Founder Effect Speciation ........................................................................................................................... 16 A) Premating isolating mechanisms -- prevent union of gametes that Runaway Process, Sexual Selection, and Speciation................................................................................. 16 produce a zygote STUDY QUESTIONS FOR CHAPTER 5 ................................................................................................................ 17 1. mates do not meet (seasonal or habitat isolation) 2. mates meet but do not mate (ethological or behavioral isolation) 3. mates meet but no sperm transfer occurs (mechanical isolation) B) Post-mating isolating mechanisms -- varying degrees of hybrid sterility or fitness (which are largely due to gene interactions). 1. sperm transferred but dies before fertilization 2. zygote dies during development 3. zygote produces an F1 adult that has reduced viability (survival) 4. hybrid is viable, but it is partially or completely sterile (fecundity) or the F2 is in some way deficient. 79 Asking the following questions reveals the answer to the adaptive value played a major role in promoting the process of speciation (Dobzhansky, of pre- versus post-mating isolating mechanisms. Which of the two 1941, Butlin, 1987). mating isolation mechanisms is the most effective at reducing the risk of What are the right conditions? This is a difficult question to answer. It producing low fitness offspring? Which mechanisms are most efficient requires an understanding of the field of population genetics and the in terms of time and lost reproductive opportunity? crucial parameter is how much gene flow occurs from areas where each An organism that mates with a different "semispecies" may produce low semispecies exists in its pure form. A second parameter has to do with viability offspring and this individual would have lower fitness the degree of genetic similarity between the two semispecies. compared to an organism that discriminates against such semispecies Gene flow is the movement of animals between what are referred to as and mates with members of its own semispecies. Evolving species populations of interbreeding animals. Rates of gene flow are usually discrimination mechanisms is clearly an advantage over one that only expressed as the proportion of individuals in a population that move possess post-mating isolating mechanisms. Such behavioral from one population to another generation. If gene flow between the discrimination ability should evolve rapidly in the area of incipient region of contact between the two semispecies and the rest of the speciation, under the right conditions. For these reasons, the study of semispecies ranges is too high, then the two semispecies will become behavior is central to understanding the processes of speciation. homogenized into one species even if interbreeding yields relatively low An example of premating isolation is found in the flour beetle, fitness hybrids (Endler, 1977). If gene flow is low enough, then the two Tribolium confusum). When a research pairs a female from Nigeria with pure semispecies will eventually become differentiated into two species a male from a different locality (e.g., allopatric population from owing to the evolution of isolating mechanisms. The evolution of such Croatia), viable offspring result. The same is true for the reciprocal isolating mechanisms cross. However, if a researcher simultaneously pairs the female beetle is contingent upon the Figure 5.1. Hypothetical hybrid “unfitness” resulting from an incompatibility between with a male from the same population and an allopatric population, the degree of genetic genomes of the two parental species. female preferentially sires progeny by the same-locality male. The mean similarity between the relative fitness of the sympatric male, 0.425, is much higher than the two semispecies. allopatric male (0.085). Behavioral observations indicate that the female Large differences in is less likely to become quiescent during mating attempts by allopatric genetic similarity males than when she is approached by males from her population. between semispecies Biological barriers to interbreeding undoubtedly arise during the process are more likely to of speciation because such blocks have selective value. Behavioral produce unfit hybrids isolation can be the strongest form of reproductive isolation. The than small differences clearest examples of the biological species concept in action are in similarity. If the provided when two species, which have overlapping geographic ranges, two semispecies have do not interbreed owing to differences in pre-mating behaviors. One many genetic loci that species or both species refuse to engage in the mating rituals because differ in the kind of their respective stereotyped mating rituals are too different. Species allele that they might simultaneously possess both premating and post-mating isolating possess, then those mechanisms in which case the probability of interbreeding is even more alleles might not work remote. It is these cases that are most interesting from the point of view very well together. of behavioral mechanism, as natural selection on behavior may have More importantly the way many different genetic loci work together 80 may begin to breakdown. The correct operation of one genetic locus subdivision decreases gene flow. Depending on the population size, (e.g., an enzyme) may require a particular form of the enzyme or protein genetic drift can play a major role in promoting genetic differentiation. product that is produced by a different locus (e.g., epistasis) (Whitlock If population size remains low for a Figure 5.2. Models of speciation et al
Recommended publications
  • Relaxed Selection in the Wild
    TREE-1109; No of Pages 10 Review Relaxed selection in the wild David C. Lahti1, Norman A. Johnson2, Beverly C. Ajie3, Sarah P. Otto4, Andrew P. Hendry5, Daniel T. Blumstein6, Richard G. Coss7, Kathleen Donohue8 and Susan A. Foster9 1 Department of Biology, University of Massachusetts, Amherst, MA 01003, USA 2 Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003, USA 3 Center for Population Biology, University of California, Davis, CA 95616, USA 4 Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 5 Redpath Museum and Department of Biology, McGill University, Montreal, QC H3A 2K6, Canada 6 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA 7 Department of Psychology, University of California, Davis, CA 95616, USA 8 Department of Biology, Duke University, Durham, NC 02138, USA 9 Department of Biology, Clark University, Worcester, MA 01610, USA Natural populations often experience the weakening or are often less clear than typical cases of trait evolution. removal of a source of selection that had been important When an environmental change results in strong selection in the maintenance of one or more traits. Here we refer to on a trait from a known source, a prediction for trait these situations as ‘relaxed selection,’ and review recent evolution often follows directly from this fact [2]. When studies that explore the effects of such changes on traits such a strong source of selection is removed, however, no in their ecological contexts. In a few systems, such as the clear prediction emerges. Rather, the likelihood of various loss of armor in stickleback, the genetic, developmental consequences can only be understood by integrating the and ecological bases of trait evolution are being discov- remaining sources of selection and processes at all levels of ered.
    [Show full text]
  • Biological Sciences 1
    Biological Sciences 1 Biological Sciences Marine Biology The Marine Biology major provides students with a strong foundation in basic biological concepts such as genetics, ecology, cell biology and marine systems as well as chemistry and mathematics. The plan of study provides the opportunity to choose elective courses from a wide variety of courses offered at Auburn University. In addition, students are required to take summer courses offered at marine labs around the United States, including Dauphin Island Sea Lab and Gulf Coast Research Lab. Students are also encouraged to consider internships and undergraduate research. Marine Biology graduates are well-prepared for advanced study in any marine science area or employment with marine labs, various governmental and nongovernmental agencies involved with coastal management and conservation, and tourism. Microbial, Cellular and Molecular Biology The Microbial, Cellular and Molecular Biology major provides students with an excellent foundation in the areas of microbiology, cellular and molecular biology that emphasizes the understanding of life at the cellular and molecular level. The choice of a formal option within the major allows students to concentrate on a particular area of interest. Each option provides a wide variety of courses and opportunities for undergraduate research. Students selecting the Microbiology option will be well prepared for postgraduate work or career advancement in a number of areas including food, environmental and medical microbiology. Students selecting the Cell and Molecular Biology option would also be well prepared for postgraduate study or career advancement in any area of eukaryotic cell or molecular biology. Both options provide excellent preparation for students interested in biotechnology or professional programs in the health sciences.
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • Sirenian Feeding Apparatus: Functional Morphology of Feeding Involving Perioral Bristles and Associated Structures
    THE SIRENIAN FEEDING APPARATUS: FUNCTIONAL MORPHOLOGY OF FEEDING INVOLVING PERIORAL BRISTLES AND ASSOCIATED STRUCTURES By CHRISTOPHER DOUGLAS MARSHALL A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNrVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REOUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1997 DEDICATION to us simply as I dedicate this work to the memory of J. Rooker (known "Rooker") and to sirenian conservation. Rooker was a subject involved in the study during the 1993 sampling year at Lowry Park Zoological Gardens. Rooker died during the red tide event in May of 1996; approximately 140 other manatees also died. During his rehabilitation at Lowry Park Zoo, Rooker provided much information regarding the mechanism of manatee feeding and use of the perioral bristles. The "mortality incident" involving the red tide event in southwest Florida during the summer of 1996 should serve as a reminder that the Florida manatee population and the status of all sirenians is precarious. Although some estimates suggest that the Florida manatee population may be stable, annual mortality numbers as well as habitat degradation continue to increase. Sirenian conservation and research efforts must continue. ii ACKNOWLEDGMENTS Research involving Florida manatees required that I work with several different government agencies and private parks. The staff of the Sirenia Project, U.S. Geological Service, Biological Resources Division - Florida Caribbean Science Center has been most helpful in conducting the behavioral aspect of this research and allowed this work to occur under their permit (U.S. Fish and Wildlife Permit number PRT-791721). Numerous conversations regarding manatee biology with Dr.
    [Show full text]
  • Assessing Symbiont Extinction Risk Using Cophylogenetic Data 2 3 Jorge Doña1 and Kevin P
    1 Assessing symbiont extinction risk using cophylogenetic data 2 3 Jorge Doña1 and Kevin P. Johnson1 4 5 1. Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 6 1816 S. Oak St., Champaign, IL 61820, USA 7 8 *Corresponding authors: Jorge Doña & Kevin Johnson; e-mail: [email protected] & [email protected] 9 10 Abstract: Symbionts have a unique mode of life that has attracted the attention of ecologists and 11 evolutionary biologists for centuries. As a result of this attention, these disciplines have produced 12 a mature body of literature on host-symbiont interactions. In contrast, the discipline of symbiont 13 conservation is still in a foundational stage. Here, we aim to integrate methodologies on symbiont 14 coevolutionary biology with the perspective of conservation. We focus on host-symbiont 15 cophylogenies, because they have been widely used to study symbiont diversification history and 16 contain information on symbiont extinction. However, cophylogenetic information has never been 17 used nor adapted to the perspective of conservation. Here, we propose a new statistic, 18 “cophylogenetic extinction rate” (Ec), based on coevolutionary knowledge, that uses data from 19 event-based cophylogenetic analyses, and which could be informative to assess relative symbiont 20 extinction risks. Finally, we propose potential future research to further develop estimation of 21 symbiont extinction risk from cophylogenetic analyses and continue the integration of this existing 22 knowledge of coevolutionary biology and cophylogenetics into future symbiont conservation 23 studies and practices. 24 25 Keywords: coevolution, coextinction risk, conservation biology, cophylogenies, host-symbiont 26 interactions, parasites.
    [Show full text]
  • What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science
    What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science, Vol. 63, No. 2. (Jun., 1996), pp. 262-277. Stable URL: http://links.jstor.org/sici?sici=0031-8248%28199606%2963%3A2%3C262%3AWIASAW%3E2.0.CO%3B2-H Philosophy of Science is currently published by The University of Chicago Press. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ucpress.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Aug 21 14:59:32 2007 WHAT IS A SPECIES, AND WHAT IS NOT?" ERNST MAYRT I analyze a number of widespread misconceptions concerning species.
    [Show full text]
  • Systematics in Palaeontology
    Systematics in palaeontology THOMAS NEVILLE GEORGE PRESIDENT'S ANNIVERSARY ADDRESS 1969 CONTENTS Fossils in neontological categories I98 (A) Purpose and method x98 (B) Linnaean taxa . x99 (e) The biospecies . 202 (D) Morphology and evolution 205 The systematics of the lineage 205 (A) Bioserial change 205 (B) The palaeodeme in phyletic series 209 (e) Palaeodemes as facies-controlled phena 2xi Phyletic series . 2~6 (A) Rates of bioserial change 2~6 (B) Character mosaics 218 (c) Differential characters 222 Phylogenetics and systematics 224 (A) Clade and grade 224 (a) Phylogenes and cladogenes 228 (e) Phylogenetic reconstruction 23 I (D) Species and genus 235 (~) The taxonomic hierarchy 238 5 Adansonian methods 240 6 References 243 SUMMARY A 'natural' taxonomic system, inherent in evolutionary change, pulses of biased selection organisms that themselves demonstrate their pressure in expanded and restricted palaeo- 'affinity', is to be recognized perhaps only in demes, and permutations of character-expres- the biospecies. The concept of the biospecies as sion in the evolutionary plexus impose a need a comprehensive taxon is, however, only for a palaeontologically-orientated systematics notional amongst the vast majority of living under which (in evolutionary descent) could organisms, and it is not directly applicable to be subsumed the taxa of the neontological fossils. 'Natural' systems of Linnaean kind rest moment. on assumptions made a priori and are imposed Environmentally controlled morphs, bio- by the systematist. The graded time-sequence facies variants, migrating variation fields, and of the lineage and the clade introduces factors typological segregants are sources of ambiguity into a systematics that cannot well be accommo- in a distinction between phenetic and genetic dated under pre-Darwinian assumptions or be fossil grades.
    [Show full text]
  • Maria Triantafyllidou
    The limits of species recognition: heterospecific song learning in pied flycatchers Maria Triantafyllidou Degree project in biology, Bachelor of science, 2016 Examensarbete i biologi 15 hp till kandidatexamen, 2016 Biology Education Centre and Department of Ecology and Genetics/Animal Ecology, Uppsala University Supervisors: Dr. Anna Qvarnström and Dr. David Wheatcroft ABSTRACT The closely related species pied flycatcher (Ficedula hypoleuca) and collared flycatcher (F. albicollis) co-occur on the Swedish island of Öland, where they compete over similar resources. The majority of male pied flycatchers have been found to incorporate elements of the collared flycatcher song in their repertoire. Given that birdsong is partly inherited and partly learned, the relative contribution of genetic predispositions versus acoustic stimuli varies across different species. The results show that in pied flycatchers, song acquisition is tightly correlated with imprinting, and can therefore be greatly influenced by heterospecific tutors in their surroundings, i.e. male collared flycatchers. I found that pied males are capable of not only memorizing collared song elements, but also producing them with high fidelity. Thus, I infer that pied flycatchers are characterized by a high degree of vocal plasticity. INTRODUCTION The importance of sexual signals in speciation It is largely recognized that sexual signals play a key role in mate recognition as they indicate species identity and mate quality. It has been increasingly appreciated that they also play a significant role in patterns of speciation (Slabbekoorn and Smith 2002, Ritchie 2007, Verzijden et al. 2012). That is linked with the fact that sex traits evolve quickly and are therefore likely to diverge among closely related species, eventually leading to reproductive isolation (Qvarnström et al.
    [Show full text]
  • Evolution and Stability of Ring Species
    Evolution and Stability of Ring Species 1 Ayana de Brito Martins Marcus A. M. de Aguiar 2,3 Yaneer Bar-Yam 3 1 Instituto de Biociências, Universidade de São Paulo 2 Instituto de Física, Universidade Estadual de Campinas 3 New England Complex Systems Institute Ring Species REPRODUCTIVE ISOLATION Ring species in nature Phylloscopus Irwin et al. 2005 Geographical barriers Geographical barriers POPULATION Geographical barriers Geographical barriers The model GENES AGENT 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 POSITION IN SPACE X(AGENT), Y(AGENT) The model L CARRYING CAPACITY MUTATION RATE The model: Time evolution Tn Tn+1 DISCRETE GENERATIONS The model: Time evolution Tn Tn+1 DISCRETE GENERATION The model: Time evolution Tn Tn+1 DISCRETE GENERATIONS The model: Time evolution Tn Tn+1 DISCRETE GENERATIONS The model: Time evolution Tn Tn+1 Tn+2 DISCRETE GENERATIONS The model: population growth Tn Tn+1 The model: population growth Tn Tn+1 The model: population growth Tn Tn+1 The model: Reproduction BREEDING NEIGHBORHOOD S The model: Reproduction BREEDING NEIGHBORHOOD S The model: Reproduction THERE IS A CRITICAL GENETIC DISTANCE ABOVE WHICH INDIVIDUALS DO NOT REPRODUCE INDIVIDUAL 0 0 1 1 0 0 0 0 0 0 ... 0 0 0 1 0 0 0 1 0 0 NEIGHBOR 1 ≠ ≠ ≠ ≠ ≠ ≠ 1 0 1 1 0 0 1 0 0 1 ... 0 0 1 1 0 0 0 0 1 0 ADDITIVE EFFECT The model: Reproduction The model: Reproduction ! The model: Reproduction RECOMBINATION 1 0 0 0 1 0 0 0 0 0 ..
    [Show full text]
  • The Tempo and Mode of Evolution Reconsidered Stephen Jay Gould
    Punctuated Equilibria: The Tempo and Mode of Evolution Reconsidered Stephen Jay Gould; Niles Eldredge Paleobiology, Vol. 3, No. 2. (Spring, 1977), pp. 115-151. Stable URL: http://links.jstor.org/sici?sici=0094-8373%28197721%293%3A2%3C115%3APETTAM%3E2.0.CO%3B2-H Paleobiology is currently published by Paleontological Society. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/paleo.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Sun Aug 19 19:30:53 2007 Paleobiology.
    [Show full text]
  • Modelling the Evolution and Expected Lifetime of a Deme's Principal Gene
    Letters in Biomathematics, 2015 Vol. 2, No. 1, 13–28, http://dx.doi.org/10.1080/23737867.2015.1040859 RESEARCH ARTICLE Modelling the evolution and expected lifetime of a deme’s principal gene sequence B.K. Clark∗ Department of Physics, Illinois State University, Normal, IL, USA (Received 3 April 2015; accepted 10 April 2015) The principal gene sequence (PGS), defined as the most common gene sequence in a deme, is replaced over time because new gene sequences are created and compete with the current PGS, and a small fraction become PGSs. We have developed a set of coupled difference equations to represent an ensemble of demes, in which new gene sequences are introduced via chromosomal inversions. The set of equations used to calculate the expected lifetime of an existing PGS include inversion size and rate, recombination rate and deme size. Inversion rate and deme size effects are highlighted in this work. Our results compare favourably with a cellular automaton-based representation of a deme. Keywords: inversion; recombination; gene sequence; stasipatric speciation 1. Introduction Chromosomal inversions are examples of a broader group of chromosomal rearrangements. Stasipatric speciation is when chromosomal inversions are the primary mechanism of speciation (White, 1978); however, examples of speciation typically include chromosomal inversions only as a contributing factor. Examples are ubiquitous, including Drosophila (Ayala & Coluzzi, 2005; Noor, Grams, Bertucci, & Reiland, 2001; Ranz et al., 2007), sunflowers (Rieseberg, 2001; Rieseberg et al., 2003), and primates (Ayala & Coluzzi, 2005; Lee, Han, Meyer, Kim, & Batzer, 2008; Navarro & Barton, 2003a, 2003b), for example. Suppressed recombination of inverted chromosome segments has been investigated as a speciation mechanism (Ayala & Coluzzi, 2005; Navarro & Barton, 2003a, 2003b), and the precise role of inversions in speciation is still debated (Faria & Navarro, 2010).
    [Show full text]
  • What Is a Population? an Empirical Evaluation of Some Genetic Methods for Identifying the Number of Gene Pools and Their Degree of Connectivity
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 2006 What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity Robin Waples NOAA, [email protected] Oscar Gaggiotti Université Joseph Fourier, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Waples, Robin and Gaggiotti, Oscar, "What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity" (2006). Publications, Agencies and Staff of the U.S. Department of Commerce. 463. https://digitalcommons.unl.edu/usdeptcommercepub/463 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Molecular Ecology (2006) 15, 1419–1439 doi: 10.1111/j.1365-294X.2006.02890.x INVITEDBlackwell Publishing Ltd REVIEW What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity ROBIN S. WAPLES* and OSCAR GAGGIOTTI† *Northwest Fisheries Science Center, 2725 Montlake Blvd East, Seattle, WA 98112 USA, †Laboratoire d’Ecologie Alpine (LECA), Génomique des Populations et Biodiversité, Université Joseph Fourier, Grenoble, France Abstract We review commonly used population definitions under both the ecological paradigm (which emphasizes demographic cohesion) and the evolutionary paradigm (which emphasizes reproductive cohesion) and find that none are truly operational.
    [Show full text]