05GRAMIGNA:ARGENTI 10-12-2008 15:52 Pagina 25

Geologica Romana 41 (2008), 25-34

THE PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A COASTAL MARINE ENVIRONMENT OF SEVEN MILLION YEARS AGO (SOUTHERN , )

Pierparide Gramigna, Adriano Guido, Adelaide Mastandrea & Franco Russo

Dipartimento di Scienze della Terra, Università della Calabria, via P. Bucci, Cubo 15b, I - 87036 Rende (Cosenza), Italy [email protected]

ABSTRACT - The paleontological site of Cessaniti is situated in the inland of area and it is famous for the excellent preservation and relevance of its fossil content together with the wonderful panoramas of Tyrrhenian sea. The locality is well known since nineteenth century for the richness of the fauna and flora preser- ved in the sediments. The fossil assemblages contain invertebrate (corals, bivalve, gastropods, brachiopods, echi- noids such as Clypeaster ssp., benthic and planktonic foraminifers) and vertebrate faunas (proboscideans, rhino- ceroses, giraffids, bovids, sirenids, marine turtles and fish remains). Unfortunately the access to the outcrops is strongly limited due to their locations in cultivated quarries. The fossils are preserved in calcarenites which now days are loose through diagenetic processes. This makes the fossil collection quite easy due to the low degree of cementation. The succession is constituted of a paralic system that evolves toward an open marine environment recording the Tortonian transgression. The fossils of Cessaniti site bear a relevant role in earth science research particularly in phylogenetic studies and paleogeographic reconstructions; they have also great importance for the popular scientific divulgation and museology.

KEY WORDS: paleontological site, vertebrate and invertebrate fossils, paleoenvironment, upper Miocene, Cessaniti, Calabria, Italy.

RIASSUNTO - Il sito di Cessaniti, posto nell’entroterra del comprensorio di Vibo Valentia (Calabria meridio- nale), coniuga la rilevanza paleontologica dei suoi reperti con i meravigliosi aspetti paesaggistici delle coste che lo contornano. Il sito è noto sin dall’Ottocento per la straordinaria ricchezza e l’ottimo stato di conservazione dei suoi fossi- li. Attualmente, gran parte dell’area è coltivata per l’estrazione di materiali inerti. I fossili sono conservati in calcareniti rese incoerenti dai processi diagenetici e quindi facilmente estraibili dalla matrice. Tale facilità del recupero, inusuale in sedimenti così antichi, rappresenta un tratto di eccezionalità del sito. La successione di Cessaniti registra la fase di trasgressione marina avvenuta circa 7 milioni di anni fa (Tortoniano superiore). L’arretramento della linea di costa, verso l’altipiano del M.te Poro causò una forte varia- zione del paleoambiente che venne trasformato da un sistema lagunare ad un sistema francamente marino. Cessaniti ha fornito migliaia di fossili, tra cui splendidi esemplari di echinidi (principalmente Clypeaster), grandi molluschi (tra cui Glycimeris, Chlamys, Pecten, Conus, Buccinum e Ancilla) e numerosi e ben preservati brachiopodi (Terebratula sinuosa). Da questo sito provengono numerosi resti di mammiferi marini e terrestri, ben conservati ma disarticolati e dis- persi. Tra i vertebrati marini sono stati rinvenuti sirenidi (Metaxytherium serresii), tartarughe (Trionix sp.), pesci marini tropicali (oltre venti specie di tetraodontiformi), razze (Myliobatis sp.) e denti di squalo (Carcharodon sp.). Tra i mammiferi terrestri sono presenti: proboscidati (Stegotetrabelodon cf. syrticus), rinoceronti (Diceros primae- vus), bovidi e giraffidi (Samotherium). I fossili di Cessanti, oltre all’importanza che rivestono nelle indagini filogenetiche e nelle ricostruzioni paleo- geografiche e paleoecologiche, hanno una grande valenza museologico-divulgativa. Si tratta di reperti in un così perfetto stato di conservazione che li rende testimonianze uniche della vita nel Miocene superiore nel bacino Mediterraneo. Cessanti apre una finestra su un ambiente costiero di 7 milioni di anni fa: fondali pieni di vita, mari abitati da squali e dugonghi, terre popolate da grandi mammiferi ormai scomparsi. Queste caratteristiche fanno di Cessaniti un “unicum” nel panorama geo-paleontologico calabrese di valore scientifico nazionale ed internazionale, da preservare e proporre come geosito.

PAROLE CHIAVE: sito paleontologico, fossili di invertebrati e vertebrati, paleoambienti, Miocene superiore, Cessaniti, Calabria, Italia.

INTRODUCTION Barbera & Tavernier, 1987,1990; Grasso et al., 1996; Numerous studies have been performed on geology Papazzoni & Sirotti, 1999; Ferretti et al., 2001, 2003; and paleontology of Cessaniti area (e.g. , 1959; Rook et al., 2006; Carone & Domning, 2007). The site is 05GRAMIGNA:ARGENTI 10-12-2008 15:52 Pagina 26

26 Geologica Romana 41 (2008), 25-34 GRAMIGNA et al.

Fig. 1 - Geological scheme of Cessaniti area. - Schema geologico dell’area di Cessaniti.

located in some quarries (Cava Brunia, Cava Forcone) paleontological - paleoecological research (i.e., Barbera along the road that connects the Vibo Valentia airport & Tavernier, 1987,1990). It comprises the following with the Cessaniti village (Fig. 1, 2). A geological mapping of the Cessaniti area has been carried out by Nicotera (1959), allowing an accurate reconstruction of the stratigraphy of the Northern sector of Monte Poro area. The Author also recognized the main regional events of the Upper Miocene stratigraphy: (a) the widespread occurrence of shallow marine arenites rich in molluscan and echinoid remains during Tortonian; (b) the onset of the pelagic tripolaceous sedi- mentation at the beginning of Messinian; (c) the occur- rence of the so-called “Calcare di Base ”, witnessing the onset of the evaporitic sedimentation. These events, well documented in the literature of Middle - Upper Miocene of Mediterranean area (Selli, 1957; Ogniben, 1973), are easily recognizable in the study site. Fig. 2 - Panoramic view of the Brunia quarry near Cessaniti village. The stratigraphic succession, established by Nicotera - Vista panoramica di Cava Brunia localizzata in prossimità di (1959), has been used as reference section in several Cessaniti. 05GRAMIGNA:ARGENTI 10-12-2008 15:52 Pagina 27

PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A... Geologica Romana 41 (2008), 25-34 27

Fig. 3 - Stratigraphic succession of the studied area. - Successione stratigrafica dell’area di studio.

intervals: The thickness of unit b), c) and d) are thin (from a few Crystalline basement; meters to 10-15 m). Poorly sorted conglomerate with clasts deriving from Grey to yellowish, poorly cemented, fossiliferous the underlying substratum. sandstones. According to Nicotera (1959) this unit can Dark coloured shales and arenaceous shales, alternat- reach the thickness of 150 m and includes all the sands ed to light grey coarse sandstones. The interval contains with fully marine faunas (Clypeaster ssp., Pecten ssp. a fauna dominated by Cerithium ssp. and ostreids. and several species of other mollusc, brachiopods, ben- Poorly cemented, almost unfossiliferous sandstones. thic foraminifers and coralline red algae). 05GRAMIGNA:ARGENTI 10-12-2008 15:53 Pagina 28

28 Geologica Romana 41 (2008), 25-34 GRAMIGNA et al.

Fig. 4 - a) Shale lagoonal horizont at the base of Cessaniti succession; b) small oyster bioconstruction (Crassostrea gryphoides) at the top of lagoon- al horizont. - a) Orizzonte argillitico lagunare affiorante alla base della successione di Cessaniti; b) particolare di una biocostruzione a grosse ostreidi (Crassostrea gryphoides).

Thin-bedded marls and shales, upwards grading into The fossil assemblages are rich and differentiated. tripolaceous marls, rich in planktonic microfauna (main- Among invertebrates the most famous, common and best ly foraminifers). preserved fauna belong to echinoids, represented mainly “Evaporitic”, unfossiliferous limestones; it corre- by the genera Clypeaster and Echinolampas (Checchia sponds to the so-called “Calcare di Base”. Rispoli, 1925; Imbesi Smedile, 1958). Bivalves are also The succession is affected by significant facies present with the genera Amusium, Pecten, Chlamys, changes, due to the paleotopography and the diachro- Glycymeris, etc. Gastropods are less frequent and nous timing of the transgression. Sometimes the inter- restricted to particular beds, among them have been rec- vals before the regional transgression (b, c, and d) are ognized specimens belonging to the genera Cerithium, lacking and the basement is overlain directly by marine Conus, Buccinum and Ancilla, the last three preserved as fossiliferous sandstones of unit e. Moreover true coral moulds. In the upper part of the succession brachiopods, reefs, reaching the thickness of about 15 m, are interca- lated within the sandstones of unit e.

Fig. 5 - Low angle cross lamination typical of the flood tidal delta deposits. Fig.6 - Well preserved echinoid shells of the genus Clypeaster sp. - Laminazioni incrociate a basso angolo tipiche dei corpi tidali. - Echinidi (Clypeaster sp.) ben preservati nella matrice arenacea. 05GRAMIGNA:ARGENTI 10-12-2008 15:53 Pagina 29

PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A... Geologica Romana 41 (2008), 25-34 29

mainly Terebratula, are relatively common and forms be schematized in four units (Fig. 3): decimeter thick beds (Gaetani & Saccà, 1983). Also ben- thic foraminifera are widely represented, in particular Unit 1 are present banks constituted only by Heterostegina papyracea. The base of the succession is represented by an interval Among the vertebrate fauna numerous fossils of ter- made up of dark-coloured shales alternated to gray coarse restrial mammals have been recovered like pro- sandstones, yielding an oligotypic brackish water assem- boscideans (Stegotetrabelodon cfr. syrticus), rhinoceros- blage dominated by Cerithium ssp. and ostreids es (Diceros primaevus), bovids and giraffids (Samo- (Crassostrea spp.; Fig. 4); subordinately are also present therium sp.). The marine vertebrate fauna is represented fish remains and undeterminable plant debris. Specimens by sirenids (Metaxytherium serresii), turtles (Trionix of Crassostrea gryphoides, densely packed, form small sp.), tropical marine fishes (more than twenty species of banks (Fig. 4), interpreted as “string reef” sensu Stenzel tetraodontiforms), rays (Myliobatis sp.) and sharks (1971). The prominent character of this unit is the (Carcharodon sp.) (Barone 1990). absence of fully marine organisms. Dominance of alter- All these data point to a sedimentary basin deeply nated marl/silt laminae at the top of shale interval indi- influenced by riverine inputs and continental runoff. cates a low energy environment. Furthermore the occur- The paleontological and sedimentological characteris- rence of lignite layers suggests coastal marshes and tics permit to consider the Cessaniti site a “unicum” in swamps bordering the lagoons. These data imply a the calabrian geo-paleontological panorama. restricted depositional environment, with periodical inputs of freshwater, such as marginal marine lagoons with limited access to ocean waters. GEOLOGICAL AND PALEONTOLOGICAL In the upper part follows poorly cemented, meter thick BACKGROUND not fossiliferous sandstone bed. The low angle cross-lam- The stratigraphic succession of the Cessaniti area can inated structure of this interval indicates that sandstones represent flood-tidal delta into the mud lagoonal environ- ment (Fig. 5). Poorly sorted conglomerates, interpretable as “fan delta” deposit, locally occur.

Unit 2

This unit, which furnished a large part of the famous fossil assemblages, is mainly constituted by gray sand- stones that lies above the previously unit through a sharp, erosional contact, marked by the concentration of pebble and oyster shell lags (Ostrea edulis var. lamel- losa). Granitoid pebbles are decimeter in size, well rounded and often encrusted by serpulids. Just above the erosional marine surface, fully marine fossil assemblage, including echinoids (mainly Clypeaster), molluscs and internal moulds of gas- Fig. 7 - Great pectinids of the genus Macrochlamys. tropods, occur (Figs. 6, 7, 8). This boundary marks the - Pettinidi (Macrochlamys sp.) di grosse dimensioni. onset of truly marine fauna above lagoonal deposits. Occasionally this lag is represented by clay pockets, with shells of Crassotrea sp. or Ostrea edulis var. lamel- losa. This surface is evident across all the outcrops of Cessaniti area (i.e. for a lateral extension of several hun- dreds of meters; Neri et al., 2005). The shells of the lag were exhumed and redistributed from the oyster banks through a process of shoreface erosion (Rogers & Kidwell, 2000). We interpreted this surface as a shoreface ravinement surface (Fig. 9). The ravinement surface is constituted by coarse conglomerate deposits of coastal origin, created by the action of waves (Stamp, 1921). The ravinement process represents the first stage of the transgression and marks the landward migration of the shoreline. Swift (1968) named the ravinement sur- face as “wave ravinement surface”. Generally the ravine- ment surface is associated with a bone bed frequently Fig. 8 - Internal mould of gasteropod of the genus Conus. - Modello interno di gasteropode (Conus sp.). represented by sirenid vertebrae (Metaxytherium sp.) 05GRAMIGNA:ARGENTI 10-12-2008 15:53 Pagina 30

30 Geologica Romana 41 (2008), 25-34 GRAMIGNA et al.

Fig. 9 - Shoreface ravinement surface in the Cessaniti site. - Superficie di “ravinement” nel sito di Cessaniti.

Fig. 10 - a, c) Metaxytherium serresii: a, lateral view of skull; c, mandible in dorsal view. b, d) Samotherium sp.: b, upper left dental arcade in occlusal view; d, left metatarsal in anterior view. - a, c) Metaxytherium serresii: a, cranio in vista laterale sinistra, manca gran parte della porzione superiore; c, mandibola in veduta dorsale. b, d) Samotherium sp.: b, arcata dentaria superiore sinistra in veduta occlusale; d) metatarsale sinistro in veduta anteriore. 05GRAMIGNA:ARGENTI 10-12-2008 15:53 Pagina 31

PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A... Geologica Romana 41 (2008), 25-34 31

Fig. 11 - Densely packed tests of Heterostegina papyracea in the upper part of the succession. - Accumulo bioclastico a macroforaminiferi (Heterostegina papyracea) nella parte alta della successione.

and other bone fragments (Fig. 10). This peculiar sedi- mentological aspect could have allowed the good preser- vation and the recovery of the very rich vertebrate and invertebrate fauna of this site. The depositional style of this unit is dominated by same CU (coarsening upward) cycles a few meters thick. Each cycle (up to 3m) evolves from amalgamated to strongly bioturbated sandstones. The depositional struc- tures consist of badly preserved hummochy and planar or low-angle cross laminations. This unit records a lower Fig. 12 - Bioconstruction dominated by Porites sp. cropping out near the Cessaniti site. shoreface depositional environment. - Biocostruzione a Porites sp. in prossimità della località fossilifera di Cessaniti. Unit 3 Tarbellastraea reussiana and Siderastraea (Romano et The subsequent unit, observable on the road toward al., 2007) (Fig. 12). This unit compared to the previous Cessaniti village, is made of yellowish poorly cemented one shows a thinner grain size, a higher autochthonous sandstones, with a depositional style quite similar to the carbonate component, and the occurrence of planktonic previous unit. The boundary with the underlying unit is represented by a sandy clay level, usually badly exposed; it does not yield marine fauna and possibly records par- alic deposits separating two marine sequences. The fos- sil assemblage include Clypeaster ssp., Echinolampas ssp., Terebratula sp., Macrochlamys, and a great number of benthic foraminifera, mainly Heterostegina papyra- cea (Papazzoni & Sirotti 1999) (Fig. 11). The abundance of Heterostegina indicates open marine conditions rather than a restricted environment (Hottinger, 1977, Hallock & Glenn, 1986; Hohennegger, 1995). Recent Hetero- stegina commonly colonizes sea bottoms with hard or soft substratum at depth between 20-200 m (Hottinger, 1977; Hohenneger, 1994,1995; Hohenneger et al., 1999). Field observations revealed the presence of Heterostegina banks, characterized by plurimetric scale cross bedding structures, which indicate elevates hydraulic energy conditions as the occurrence of thick shelled Clypeaster. This unit passes laterally to a oligotypic patch reef Fig. 13 - SEM photomicrograph of an echinoid skeleton. Growth of about 30 m in thickness, localized near the studied site syntaxial calcite in the skeleton pore spaces (originally filled by organ- ic matter). (few hundreds of meters), and characterized by the dom- - Immagine al SEM di uno scheletro di echinide. Crescita sintassiale inance of Porites calabricae and the presence of di calcite nei pori originariamente riempiti da materia organica. 05GRAMIGNA:ARGENTI 10-12-2008 15:53 Pagina 32

32 Geologica Romana 41 (2008), 25-34 GRAMIGNA et al.

Fig. 14 - Paleoenvironmental reconstruction of Cessaniti area during the upper Miocene. a) In the first stage of the Tortonian transgression the envi- ronment were characterized by marginal lagoon associated with the sandy barrier. b) Final stage of Tortonian transgression. The relatively sea level rise determined the landward migration of the paleo- coastline and the consequent drowning of the coastal system and the establishing of truly marine condition. - Ricostruzione paleoambientale dell’area di Cessaniti durante il Miocene superiore. a) Nella fase iniziale della trasgressione tortoniana l’ambien- te fu caratterizzato da una laguna con barra sabbiosa. b) successivamente l’innalzamento relativo del livello marino determinò l’arretramento della linea di costa e l’istaurarsi di condizioni francamente marine. 05GRAMIGNA:ARGENTI 10-12-2008 15:53 Pagina 33

PALEONTOLOGICAL SITE OF CESSANITI: A WINDOW ON A... Geologica Romana 41 (2008), 25-34 33

foraminifers. These characteristics suggest clearly barred by a sandy island (“barrier island complex”) (Fig. marine depositional conditions. 14a). The salinity was low, permitting the settlement of an oligotypic fauna constituted mainly of gastropods and Unit 4 giant ostreids. A rapid sea level rise determined the onset of truly marine conditions, marked by an erosional sur- The uppermost part of the succession, very badly face (shoreface ravinement surface) which records the exposed, sometimes completely covered and marked by landward migration of the paleo-coastline. In the succes- an abrupt contact, is made of thin-bedded blue hemipelag- sive stage the permanence of high stand sea level condi- ic marls and shales rich in planktonic microfauna. This tions is testified by the occurrence of open marine fauna, unit, named “Marne ad Orbulina”, upwards grades into like brachiopods and planktonic organisms (Fig. 14b). tripolaceous marls followed by a limestone interval, Nevertheless the depositional environments were not so attributable to the Lower Messinian “Calcare di Base”. deep: the development of small patch reefs and the occurrence of echinoid assemblages suggest deposition- al conditions in the photic zone, particularly in DIAGENETIC HISTORY shoreface/offshore transition settings. The final stage of the transgression triggered a rapid drowning, recorded The great importance of the Cessaniti site is due to the by the deposition of blue hemipelagic marls (“Marne ad excellent preservation of fossils and their easy collection Orbulina”). for the low sandstone cementation. To better understand the phenomenon we carried out a diagenetic research performed through the micromorphological and geo- CONCLUSION chemical analyses of the Clypeaster skeletons. The choice of echinoids is due to their great number and very Cessaniti site open a window on a coastal environment well preservation. Firstly we recognized that the skele- 7 million years old. The fossil assemblages are rich, dif- tons preserved their original mineralogy (Mg-calcite), ferentiated and well preserved thanks to the particular then we delineated the diagenetic history which can be diagenetic history. summarized as follows: Among invertebrates the most famous and best pre- Death of organisms and rapid burial of their skeletons served are echinoids, represented mainly by the genera in a semipermeable mixture of sandy/muddy sediments. Clypeaster. Molluscs (bivalves and gastropods) are also The fast burial together with the abundance of organic present. In the upper part of the succession, brachiopods matter in the skeletons permitted the good preservation and benthic foraminifera constitute sedimentary accu- of microstructure and original mineralogy. mulation geometries (carpets, lens, banks). Growth of syntaxial calcite in the skeleton pore spaces Fossils of terrestrial mammals occur. Among them (originally filled by organic matter) together with the have been recognized proboscideans, rhinoceroses, sand cementation made the mineralized remains hard bovids and giraffids. These fossils suggest the presence, and resistant to the lithostatic pressure through the time near the coast, of a proximal woodland ecosystem like a (Fig.13). savanna. Marine vertebrate fauna is represented firstly Late partial dissolution of the calcite filling the pores by sirenids, tropical marine fishes and sharks. and the carbonate cement among particles made the fos- It’s to be hoped that paleontological deposits very rich, sils easy to extract from the sediment. This dissolution well preserved and varied like Cessaniti would be pro- phase is still working. tected and make attractive for a cultural tourism and edu- In summary this sequence of diagenetic events makes cation of citizens. All that means also to respect the the Cessaniti site an open space laboratory for paleonto- treasures of Nature and to preserve the record of the logical studies and paleoenvironmental reconstructions. ancient life.

ACKNOWLEDGEMENTS - The Authors would like to PALEOENVIRONMENTAL EVOLUTION remember the great contribution to this research made by Claudio Neri, recently deceased. We thanks Filippo Barattolo The Cessaniti succession records the history of the (Università Federico II, Napoli) and Roberto Coccioni Tortonian transgression in southern Italy. In the early (Università Carlo Bo, Urbino) for their advices and comments stage the coastal area consisted of a marginal lagoon that greatly improved this paper.

REFERENCES

Barbera C. & Tavernier A. (1987) - Osservazioni paleoambien- sione miocenica di Vibo Valentia. In Robba, E. (ed.), Atti tali su un banco di ostriche del Tortoniano di Capo Quarto Simp. Ecol. Paleoecol. Com. Bent., Sorrento 1988, Vaticano (Calabria, Italia). Atti Congr. S.I.M., Sorrento 29- Mus. Reg. Sci. Nat. Torino, 233-245. 31 maggio 1987, Lavori S.I.M., 23, 409-416. Barone G. (1990) - Tetraodontiformi del Tortoniano di Barbera C. & Tavernier A. (1990) - Paleoecologia della succes- Cessaniti. Notiz. di Mineral. e Paleontologia, 65, 57-62. 05GRAMIGNA:ARGENTI 10-12-2008 15:53 Pagina 34

34 Geologica Romana 41 (2008), 25-34 GRAMIGNA et al.

Carone G. & Domning D. (2007) - Metaxytherium serresii Neri C., Gramigna P., Guido A., Perri E., Rao A. & Romano C. (Mammalia: Sirenia): new pre-Pliocene record, and impli- (2005) - Paleoenvironmental evolution of the Upper cations for Mediterranean paleoecology before and after Miocene fossil-bearing site of Cessaniti (Central Calabria). the Messinian Salinity Crisis. Bollettino della Società Abstract V Giornata di Paleontologia, Urbino, 20-22 Paleontologica Italiana, 46, 55-92. Maggio 2005. Checchia Rispoli G. (1925) - Illustrazione dei Clipeastri mio- Nicotera P. (1959) - Rilevamento geologico del versante setten- cenici della Calabria, seguita da uno studio sulla morfolo- trionale del M. Poro (Calabria). Mem. Note Ist. Geol. Appl. gia interna e sulla classificazione dei Clipeastri. Mem. P. Napoli, 7: 92. Serv. alla descr. Carta geol. d’It., 9, pp. 75. Ogniben L. (1973) - Schema geologico della Calabria in base Ferretti M. P., Rook L. & Torre D. (2003) - Stegotetrabelodon ai dati moderni. Geol. Romana, 12, 243-585. (Proboscidea, Elephantidae) from the Late Miocene of Papazzoni C.A. & Sirotti A. (1999) - Heterostegina papyracea Southern Italy. Journal of Vertebrate Paleontology, 23, Sequenza, 1880, from the Upper Miocene of Cessaniti 659-666. (Vibo Valentia, Calabria, Southern Italy). Boll. Soc. Ferretti M. P., Torre D. & Rook L. (2001) - The remains from Paleont. It., 38: 15-21. Cessaniti (Calabria, Southern Italy) and their bearing on Rogers R.R. & Kidwell S.M. (2000) - Associations of Late Miocene biogeography of the genus. The World of Vertebrate Skeletal Concentrations and Discontinuity Elephants - International Congress, Rome 2001, 633-636. Surfaces in Terrestrial and Shallow Marine Records: A test Gaetani M. & Saccà D.(1983) - Brachiopodi neogenici e plei- in the Cretaceous of Montana. Journal of Geology, 108, stocenici della provincia di Messina e della Calabria meri- 131-154. dionale. Geologica Romana, 22, 1-43. Romano C., Neri C., Russo A., Russo F. & Stolarcki J. (2007) Hallock P. & Glenn E. C. (1986) - Larger foraminifera: a tool - Le biofacies e la storia diagenetica delle biocostruzioni for paleoenvironmental analysis of Cenozoic carbonate del Miocene Superiore, affioranti lungo le coste tirreniche depositional facies. Palaios, 1, 55-64. dell’Italia meridionale. Geologica Romana, 40, 77-96. Hohenegger J. (1994) - The distribution of living larger Rook L., Gallai G. & Torre D. (2006) - Lands and endemic Foraminifera NW of Sesoko-Jima, Okinawa, Japan. mammals in the Late Miocene of Italy: contraints for pale- Marine Ecology, 15, 291-334. oegeographic outlines of Thyrrenian area. Paleogeography, Hohenegger J. (1995) - Depth estimation by proportions of liv- Paleoclimatology, Paleoecology, 238, 263-269. ing larger foraminifera. Marine Micropaleontology, 26, 31- Selli R (1957). Sulla trasgressione del Miocene nell’Italia 47. Meridionale. Giornale di Geologia, 26, 1-54. Hohenegger J., Yordanova E., Yoshikatsu N. & Tatzreiter F. Stamp L.D. (1921) - On cycles of sedimentation in the Eocene (1999) - Habitats of larger foraminifera on the upper reef strata of the Anglo-Franco-Belgiam basin. Geological slope of Sesoko Island, Okinawa, Japan. Marine Magazine, 58, 108-114. Micropaleontology, 36, 109-168. Swift D.J.P. (1968). Coastal erosion and transgressive stratig- Hottinger L. (1977) - Distribution of larger Peneroplidae, raphy. Journal of Geology, 76, 444-456. Borelis, and Numulitidae in the Gulf of Elat, Red Sea. Utrecht Micropaleontological Bulletin, 15, 35-109. Imbesi Smedile M. (1958) - Clipeastri aquitaniani, elveziani e tortoniani della Calabria. Paleontographia Italica, 43, 1-47. Accettato per la stampa: Ottobre 2008