CRAY SV1 Series Service Update Bulletin

Total Page:16

File Type:pdf, Size:1020Kb

CRAY SV1 Series Service Update Bulletin CRAY® SV1 Series Service Update Bulletin CRAY® SV1 Series Systems Last Modified: Today June 1998 System Description The new CRAY SV1 series product line provides the following performance enhancements over the successful CRAY J90 product line: • Significantly improved vector and scalar performance • Improved CPU data paths • Improved cache performance • Enhanced instruction set CRAY SV1 series mainframes use the same power, cooling, and control mechanisms and the same memory module design as CRAY J90 series mainframes. The CRAY SV1 processor module is a field-upgradable replacement for the CRAY J90 or CRAY J90se processor module. The I/O system used with the CRAY SV1 can be either the current VME I/O system on upgraded CRAY J90 series systems or scalable I/O architecture (SIO), which is standard on all new CRAY SV1 series systems. SWS Functionality The SWS-ION 3.9 release introduces some of the features required for the CRAY SV1 mainframe, but it is not fully supported yet. Therefore, although the following commands are present, they should not be used: • bootsv1(8) • checksv1(8) • clearsv1(8) • dumpsv1(8) • haltsv1(8) The CRAY SV1 type is provided in the topology(5) file. However, it should not be used yet. Silicon Graphics Proprietary 1 6/16/98 System Configurations CRAY® SV1 Series Service Update Bulletin System Configurations CRAY SV1-1A System The CRAY SV1-1A system is 16 -processor mainframe cabinet (4 x 4 backplane). Each system has a minimum of 3 cabinets: 1 processing cabinet and 2 peripheral (PC-10) cabinets. The system can include 1 or 2 additional PC-10 cabinets, for a maximum of 4 PC-10 cabinets per system. Silicon Graphics Engineering must approve requests for configurations that include more than 2 additional PC-10 cabinets. The first two PC-10 cabinets must be physically joined to the processing cabinet. Additional PC-10 cabinets may be aligned on either side of the processing cabinet. CRAY SV1-1 System The CRAY SV-1 system is 32 -processor mainframe cabinet (8 x 8 backplane). Each system has a minimum of 3 cabinets: 1 processing cabinet and 2 peripheral (PC-10) cabinets. The system can include 1 or 2 additional PC-10 cabinets, for a maximum of 4 PC-10 cabinets per system. Silicon Graphics Engineering must approve requests for configurations that include more than 2 additional PC-10 cabinets. The first 2 PC-10 cabinets must be physically joined to the processing cabinet. Additional PC-10 cabinets may be aligned on either side of the processing cabinet. CRAY SV1 SuperCluster System The CRAY SV-1 SuperCluster systems have a minimum of 6 cabinets: 4 processing cabinets and 2 peripheral cabinets. This configuration of 6 cabinets is called a cell. Each processing cabinet within a cell is called a node. Each node contains one 8 x 8 backplane with 8 memory modules and 4 to 8 processor modules. The SuperCluster can be expanded to contain 8 cells or 32 processor cabinets with an appropriate number of peripheral cabinets. The number of peripheral cabinets is based on the customer’s configuration requirements. 2 Silicon Graphics Proprietary 6/16/98 CRAY® SV1 Series Service Update Bulletin Processor Module Enhancements Processor Module Enhancements The CRAY SV1 processor module includes two major enhancements: increased vector and scalar performance and increased operating frequency. The CRAY SV1 system is expected to provide approximately 4 times the scalar performance and approximately 5 to 6 times the vector performance of CRAY J90 series systems. These performance improvements result from implementing IBM 6S CMOS ASIC technology, adding a 256-Kbyte cache, increasing the operating frequency, and increasing the number of vector pipes from 1 to 2. The dual-pipe design of the CPU remains compatible with current CRAY J90 series systems, CRAY Y-MP series systems, and CRAY C90 series systems running in Y-MP mode. Increased Operating Frequency The operating frequency for the enhanced portions of the CRAY SV1 CPU has been increased. The enhanced portion of the CPU includes all ASICs except the CI ASIC, which controls I/O and each clock ASIC (MC0 and MC1). Increased Vector Performance The CRAY SV1 vector performance is approximately 5 to 6 times greater than that of a CRAY J90 series system. The CRAY SV1 CPU vector functional units communicate directly with the 256-Kbyte cache with sufficient bandwidth to perform 4 load operations and 2 store operations in each clock period. Increased Scalar Performance The CRAY SV1 scalar performance is approximately 4 times greater than that of a CRAY J90 series system. This improvement results from the use of a large local cache and an increased clock frequency. Improved Cache The CRAY SV1 CPU contains a much larger 256-Kbyte cache, which caches all vector and scalar instruction data. The 128-word cache for the PC ASIC will be removed to simplify the design. This does not have any effect on compatibility with CRAY J90 series or CRAY J90se series processor modules. Silicon Graphics Proprietary 3 6/16/98 Processor Module Enhancements CRAY® SV1 Series Service Update Bulletin Improved CPU Data Paths The CPU data paths to memory operate at the increased clock frequency. This does not increase memory bandwidth, but it does increase the efficiency of the memory subsystem. ASIC Modifications The IBM 6S CMOS ASIC technology enabled designers to combine the PC and VU ASICs into a single ASIC (PV) and also to combine the VA and VB ASICs into a single ASIC (VAB). The PV ASIC contains all the logic for the A and S registers, local real-time clock, instruction buffers, B and T registers, performance monitor, issue control, scalar functional units, vector registers, and associated vector and floating-point arithmetic units. The VAB ASIC contains all the logic to control memory access and arbitrate memory conflicts; send scalar, vector, and I/O requests to memory; and distribute memory read data to the requesting functional unit. Instruction Set Enhancements The dual-pipe design of the CRAY SV1 processor module enables designers to incorporate the bit matrix multiply (BMM) functional unit. The BMM instructions (070ij6, 074ij6) perform a logical multiplication of two matrices, designated A and B, which produces a single-bit result for each pair of elements that are multiplied. This instruction is normally disabled. The execution of this instruction is enabled by setting a configuration bit. If the instruction occurs while disabled, the processor executes a floating-reciprocal instruction. The vector BMM execute instruction (174ij6) is implemented to share ports with the floating-add functional unit. The execution of this instruction is enabled by setting a configuration bit. This instruction is normally disabled. If the instruction occurs while it is disabled, the processor executes a parity instruction. The vector load BMM register instruction (1740j4) is implemented in hardware and loads a maximum of 64 BMM registers. The BMM functional unit shares ports with the floating-add functional unit. This instruction is normally disabled. The execution of this instruction is enabled by setting a configuration bit. If the instruction occurs while it is disabled, the processor executes a floating-reciprocal instruction. 4 Silicon Graphics Proprietary 6/16/98 CRAY® SV1 Series Service Update Bulletin Processor Module Enhancements The vector leading zero instruction (174ij3) is implemented to share the floating-reciprocal/pop/parity functional unit. This instruction is normally disabled. The execution of this instruction is enabled by setting a configuration bit. If the instruction occurs while it is disabled, the processor executes floating-reciprocal instruction. Interchangeability The CRAY SV1 processor module can replace, or co-exist with, either a CRAY J90 or CRAY J90se processor module with no restrictions in any CRAY J90 series chassis. The CRAY SV1 systems use the scalable I/O architecture. It will also be possible to install CRAY SV1 processor modules in a CRAY J90 series system that includes a VME I/O subsystem. Multistreaming Processor The multistreaming processor (MSP) tightly couples four CRAY SV1 CPUs together by way of software (refer to Figure 1). Hardware modifications are not required to implement the MSP. A CRAY SV1 node can contain a maximum of 6 MSPs and a CRAY SV1 cell can contain a maximum of 24 MSPs. The MSP has 8 vector pipes with a peak performance of approximately 4 Gflops. Figure 1. Multistreaming Processor MSP MSP CPUCPU CPU CPU SV1 CPUCPU CPU CPU Processor MEMORY Modules CPUCPU CPU CPU CPUCPU CPU CPU Silicon Graphics Proprietary 5 6/16/98 Service and Support Strategy CRAY® SV1 Series Service Update Bulletin Service and Support Strategy Customer and Professional Services has implemented several support service offerings. Refer to the Customer and Professional Services web site at: http://www.csd.sgi.com/prod/sptservice/ This document is the property of Silicon Graphics, Inc. The use of this document is subject to specific license rights extended by Silicon Graphics, Inc. to the owner or lessee of a Silicon Graphics, Inc. computer system or other licensed party according to the terms and conditions of the license and for no other purpose. Silicon Graphics, Inc. Unpublished Proprietary Information — All Rights Reserved. Autotasking, CF77, CRAY, CRAY-1, Cray Ada, CraySoft, CRAY Y-MP, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice, SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, CRAY-2, Cray Animation Theater, CRAY APP, CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS, Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY T3D, CRAY T3E, CRAY T3E-900, CRAY T90, CrayTutor, CRAY X-MP, CRAY XMS, CSIM, CVT, Delivering the power .
Recommended publications
  • UNICOS® Installation Guide for CRAY J90lm Series SG-5271 9.0.2
    UNICOS® Installation Guide for CRAY J90lM Series SG-5271 9.0.2 / ' Cray Research, Inc. Copyright © 1996 Cray Research, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Cray Research, Inc. Portions of this product may still be in development. The existence of those portions still in development is not a commitment of actual release or support by Cray Research, Inc. Cray Research, Inc. assumes no liability for any damages resulting from attempts to use any functionality or documentation not officially released and supported. If it is released, the final form and the time of official release and start of support is at the discretion of Cray Research, Inc. Autotasking, CF77, CRAY, Cray Ada, CRAYY-MP, CRAY-1, HSX, SSD, UniChem, UNICOS, and X-MP EA are federally registered trademarks and CCI, CF90, CFr, CFr2, CFT77, COS, Cray Animation Theater, CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, Cray NQS, CraylREELlibrarian, CraySoft, CRAY T90, CRAY T3D, CrayTutor, CRAY X-MP, CRAY XMS, CRAY-2, CRInform, CRIlThrboKiva, CSIM, CVT, Delivering the power ..., DGauss, Docview, EMDS, HEXAR, lOS, LibSci, MPP Apprentice, ND Series Network Disk Array, Network Queuing Environment, Network Queuing '!boIs, OLNET, RQS, SEGLDR, SMARTE, SUPERCLUSTER, SUPERLINK, Trusted UNICOS, and UNICOS MAX are trademarks of Cray Research, Inc. Anaconda is a trademark of Archive Technology, Inc. EMASS and ER90 are trademarks of EMASS, Inc. EXABYTE is a trademark of EXABYTE Corporation. GL and OpenGL are trademarks of Silicon Graphics, Inc.
    [Show full text]
  • Unix and Linux System Administration and Shell Programming
    Unix and Linux System Administration and Shell Programming Unix and Linux System Administration and Shell Programming version 56 of August 12, 2014 Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010, 2011, 2012, 2013, 2014 Milo This book includes material from the http://www.osdata.com/ website and the text book on computer programming. Distributed on the honor system. Print and read free for personal, non-profit, and/or educational purposes. If you like the book, you are encouraged to send a donation (U.S dollars) to Milo, PO Box 5237, Balboa Island, California, USA 92662. This is a work in progress. For the most up to date version, visit the website http://www.osdata.com/ and http://www.osdata.com/programming/shell/unixbook.pdf — Please add links from your website or Facebook page. Professors and Teachers: Feel free to take a copy of this PDF and make it available to your class (possibly through your academic website). This way everyone in your class will have the same copy (with the same page numbers) despite my continual updates. Please try to avoid posting it to the public internet (to avoid old copies confusing things) and take it down when the class ends. You can post the same or a newer version for each succeeding class. Please remove old copies after the class ends to prevent confusing the search engines. You can contact me with a specific version number and class end date and I will put it on my website. version 56 page 1 Unix and Linux System Administration and Shell Programming Unix and Linux Administration and Shell Programming chapter 0 This book looks at Unix (and Linux) shell programming and system administration.
    [Show full text]
  • The Gemini Network
    The Gemini Network Rev 1.1 Cray Inc. © 2010 Cray Inc. All Rights Reserved. Unpublished Proprietary Information. This unpublished work is protected by trade secret, copyright and other laws. Except as permitted by contract or express written permission of Cray Inc., no part of this work or its content may be used, reproduced or disclosed in any form. Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable. Autotasking, Cray, Cray Channels, Cray Y-MP, UNICOS and UNICOS/mk are federally registered trademarks and Active Manager, CCI, CCMT, CF77, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Ada, Cray Animation Theater, Cray APP, Cray Apprentice2, Cray C90, Cray C90D, Cray C++ Compiling System, Cray CF90, Cray EL, Cray Fortran Compiler, Cray J90, Cray J90se, Cray J916, Cray J932, Cray MTA, Cray MTA-2, Cray MTX, Cray NQS, Cray Research, Cray SeaStar, Cray SeaStar2, Cray SeaStar2+, Cray SHMEM, Cray S-MP, Cray SSD-T90, Cray SuperCluster, Cray SV1, Cray SV1ex, Cray SX-5, Cray SX-6, Cray T90, Cray T916, Cray T932, Cray T3D, Cray T3D MC, Cray T3D MCA, Cray T3D SC, Cray T3E, Cray Threadstorm, Cray UNICOS, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray X-MP, Cray XMS, Cray XMT, Cray XR1, Cray XT, Cray XT3, Cray XT4, Cray XT5, Cray XT5h, Cray Y-MP EL, Cray-1, Cray-2, Cray-3, CrayDoc, CrayLink, Cray-MP, CrayPacs, CrayPat, CrayPort, Cray/REELlibrarian, CraySoft, CrayTutor, CRInform, CRI/TurboKiva, CSIM, CVT, Delivering the power…, Dgauss, Docview, EMDS, GigaRing, HEXAR, HSX, IOS, ISP/Superlink, LibSci, MPP Apprentice, ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RapidArray, RQS, SEGLDR, SMARTE, SSD, SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, TurboKiva, UNICOS MAX, UNICOS/lc, and UNICOS/mp are trademarks of Cray Inc.
    [Show full text]
  • CRAY T90 Series IEEE Floating Point Migration Issues and Solutions
    CRAY T90 Series IEEE Floating Point Migration Issues and Solutions Philip G. Garnatz, Cray Research, Inc., Eagan, Minnesota, U.S.A. ABSTRACT: Migration to the new CRAY T90 series with IEEE floating-point arith- metic presents a new challenge to applications programmers. More precision in the mantissa and less range in the exponent will likely raise some numerical differences issues. A step-by-step process will be presented to show how to isolate these numerical differences. Data files will need to be transferred and converted from a Cray format PVP system to and from a CRAY T90 series system with IEEE. New options to the assign command allow for transparent reading and writing of files from the other types of system. Introduction This paper is intended for the user services personnel and 114814 help desk staff who will be asked questions by programmers and exp mantissa users who will be moving code to the CRAY T90 series IEEE from another Cray PVP architecture. The issues and solutions Exponent sign presented here are intended to be a guide to the most frequent problems that programmers may encounter. Mantissa sign What is the numerical model? Figure2: Cray format floating-point frames and other computational entities such as workstations and New CRAY T90 series IEEE programmers might notice graphic displays. Other benefits are as follows: different answers when running on the IEEE machine than on a system with traditional Cray format floating-point arithmetic. • Greater precision. An IEEE floating-point number provides The IEEE format has the following characteristics: approximately 16 decimal digits of precision; this is about one and a half digits more precise than Cray format numbers.
    [Show full text]
  • System Programmer Reference (Cray SV1™ Series)
    ® System Programmer Reference (Cray SV1™ Series) 108-0245-003 Cray Proprietary (c) Cray Inc. All Rights Reserved. Unpublished Proprietary Information. This unpublished work is protected by trade secret, copyright, and other laws. Except as permitted by contract or express written permission of Cray Inc., no part of this work or its content may be used, reproduced, or disclosed in any form. U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE: The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014. All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable. Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable. Autotasking, CF77, Cray, Cray Ada, Cray Channels, Cray Chips, CraySoft, Cray Y-MP, Cray-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice, SSD, SuperCluster, UNICOS, UNICOS/mk, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, Cray APP, Cray C90, Cray C90D, Cray CF90, Cray C++ Compiling System, CrayDoc, Cray EL, CrayLink,
    [Show full text]
  • CRAY XMS Minisupercomputer System
    Intro~ucin~ t~B ~~A~ XM~ Minisu~Brcom~ufBr ~~stBm Cray Research, the supercomputer leader; now offers an unsurpassed range of computing options, from a leading price/performance system to the world's most powerful supercomputer. The CRAY XMS delivers the balanced Cray Research 64-bit vector architecture via the powerful and easy-to-use UNICOS operating system . With the CRAY XMS system, Cray Research now offers you a clear pathway to the unlimited power of large­ scale supercomputing. The CRAY XMS system will meet your needs for: D A system suited to departmental budgets D A pathway to Cray Research large-scale supercomputer systems D A cost-effective UNICOS application development platform D A powerful system in a secure environment The CRAY XMS system is compact, easy to install, and inexpensive to operate. Its low power requirements, high reliability, and high serviceability minimize operating costs. And it offers the most throughput performance in its price range for multi-user technical computing requirements. Reliable. high-performance software The CRAY XMS system runs the same powerful operating system used by the entire Cray Research product line: the UNICOS operating system . Based on UNIX System V, the UNICOS operating system is easy to use and is the most fully featured, highest-performance UNIX- based operating system available. The UNICOS user environment delivers a highly productive combination of optimizing compilers and easy-to-use tools. The CFn Fortran compiling system and Standard C compiler, along with a variety of library routines and utilities, make the Cray Research programming environment the most dependable and productive software environ­ ment available.
    [Show full text]
  • Cray Supercomputers Past, Present, and Future
    Cray Supercomputers Past, Present, and Future Hewdy Pena Mercedes, Ryan Toukatly Advanced Comp. Arch. 0306-722 November 2011 Cray Companies z Cray Research, Inc. (CRI) 1972. Seymour Cray. z Cray Computer Corporation (CCC) 1989. Spin-off. Bankrupt in 1995. z Cray Research, Inc. bought by Silicon Graphics, Inc (SGI) in 1996. z Cray Inc. Formed when Tera Computer Company (pioneer in multi-threading technology) bought Cray Research, Inc. in 2000 from SGI. Seymour Cray z Joined Engineering Research Associates (ERA) in 1950 and helped create the ERA 1103 (1953), also known as UNIVAC 1103. z Joined the Control Data Corporation (CDC) in 1960 and collaborated in the design of the CDC 6600 and 7600. z Formed Cray Research Inc. in 1972 when CDC ran into financial difficulties. z First product was the Cray-1 supercomputer z Faster than all other computers at the time. z The first system was sold within a month for US$8.8 million. z Not the first system to use a vector processor but was the first to operate on data on a register instead of memory Vector Processor z CPU that implements an instruction set that operates on one- dimensional arrays of data called vectors. z Appeared in the 1970s, formed the basis of most supercomputers through the 80s and 90s. z In the 60s the Solomon project of Westinghouse wanted to increase math performance by using a large number of simple math co- processors under the control of a single master CPU. z The University of Illinois used the principle on the ILLIAC IV.
    [Show full text]
  • Performance of Various Computers Using Standard Linear Equations Software
    ———————— CS - 89 - 85 ———————— Performance of Various Computers Using Standard Linear Equations Software Jack J. Dongarra* Electrical Engineering and Computer Science Department University of Tennessee Knoxville, TN 37996-1301 Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831 University of Manchester CS - 89 - 85 June 15, 2014 * Electronic mail address: [email protected]. An up-to-date version of this report can be found at http://www.netlib.org/benchmark/performance.ps This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract DE-AC05-96OR22464, and in part by the Science Alliance a state supported program at the University of Tennessee. 6/15/2014 2 Performance of Various Computers Using Standard Linear Equations Software Jack J. Dongarra Electrical Engineering and Computer Science Department University of Tennessee Knoxville, TN 37996-1301 Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831 University of Manchester June 15, 2014 Abstract This report compares the performance of different computer systems in solving dense systems of linear equations. The comparison involves approximately a hundred computers, ranging from the Earth Simulator to personal computers. 1. Introduction and Objectives The timing information presented here should in no way be used to judge the overall performance of a computer system. The results reflect only one problem area: solving dense systems of equations. This report provides performance information on a wide assortment of computers ranging from the home-used PC up to the most powerful supercomputers. The information has been collected over a period of time and will undergo change as new machines are added and as hardware and software systems improve.
    [Show full text]
  • Performance of Various Computers Using Standard Linear Equations Software
    ———————— CS - 89 - 85 ———————— Performance of Various Computers Using Standard Linear Equations Software Jack J. Dongarra* Electrical Engineering and Computer Science Department University of Tennessee Knoxville, TN 37996-1301 Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831 University of Manchester CS - 89 - 85 September 30, 2009 * Electronic mail address: [email protected]. An up-to-date version of this report can be found at http://WWW.netlib.org/benchmark/performance.ps This Work Was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract DE-AC05-96OR22464, and in part by the Science Alliance a state supported program at the University of Tennessee. 9/30/2009 2 Performance of Various Computers Using Standard Linear Equations Software Jack J. Dongarra Electrical Engineering and Computer Science Department University of Tennessee Knoxville, TN 37996-1301 Computer Science and MatHematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831 University of Manchester September 30, 2009 Abstract This report compares the performance of different computer systems in solving dense systems of linear equations. The comparison involves approximately a hundred computers, ranging from the Earth Simulator to personal computers. 1. Introduction and Objectives The timing information presented here should in no way be used to judge the overall performance of a computer system. The results reflect only one problem area: solving dense systems of equations. This report provides performance information on a wide assortment of computers ranging from the home-used PC up to the most powerful supercomputers. The information has been collected over a period of time and will undergo change as new machines are added and as hardware and software systems improve.
    [Show full text]
  • IRIS Failsafetm DMF Administrator's Guide
    IRIS FailSafeTM DMF Administrator’s Guide Document Number 007–3906–001 Copyright © 1998 Silicon Graphics, Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Silicon Graphics, Inc. LIMITED AND RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR 52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-1389. Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice, SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS, Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP, CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS, ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE, SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are trademarks of Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc.
    [Show full text]
  • Cray the Supercomputer Company
    April 6, 1972 1993 2004 Cray Research, Inc. (CRI) opens in Chippewa Falls, WI 1986 Signs first medical research customer Forms Cray Research Superservers Acquires OctigaBay Systems Corp. (National Cancer Institute) Announces Cray EL92™ and Cray EL98™ systems Announces Cray XD1™ supercomputer Signs first chemical industry customer (DuPont) Signs first South African customer Announces Cray XT3™ supercomputer Signs first Australian customer (DoD) (South Africa Weather Service) Announces Cray X1E™ supercomputer 1973 Signs first SE Asian customer Opens business headquarters in Bloomington, MN (Technological Univ. of Malaysia) Announces Cray T3D™ 1987 massively parallel processing (MPP) system 2006 Opens subsidiary in Spain Signs first financial customer (Merrill Lynch) Announces Cray XT4™ supercomputer 1975 America’s Cup-winning yacht “Stars & Stripes” Announces massively multithreaded Powers up first Cray-1™ supercomputer designed on Cray X-MP system Cray XMT™ supercomputer Ships 200th system Exceeds 1 TBps on HPCC benchmark Becomes Fortune 500 company 1994 test on Red Storm system Establishes Cray Academy Announces Wins $200M contract to deliver 1976 Tera Computer Company founded Cray T90™ world’s largest supercomputer to Delivers first Cray-1 system supercomputer, Oak Ridge National Laboratory (ORNL) (Los Alamos National Laboratory) first wireless system Wins $52M contract with National Energy Research Issues first public stock offering Signs first Chinese Scientific Computing Center Receives first official
    [Show full text]
  • I Grandi Computer Del Museo Degli Strumenti Per Il Calcolo Di Pisa
    INFORMATICA - Prof. Claudio Maccherani -a.s. 2005/2006 Prof. Claudio Maccherani ITC “Vittorio Emanuele II” Perugia Anno scolastico 2005-2006 I Grandi Computer del Museo degli Strumenti per il Calcolo di Pisa. C.E.P.......................................................................................................................................................................................2 BULL GAMM3......................................................................................................................................................................3 CINAC (OLIVETTI ELEA 9104).................................................................................................................................4 TAU 2......................................................................................................................................................................................5 CRAY.......................................................................................................................................................................................6 APE..........................................................................................................................................................................................7 NCUBE....................................................................................................................................................................................8 Istituto Tecnico Commerciale “Vittorio Emanuele II” – P.le Anna Frank,
    [Show full text]