<<

PRECOPULATORYMATEGUARDINGBEHAVIORINCLAM:

ACASEOFINTERSEXUALCONFLICT

AdissertationsubmittedtoKentStateUniversity

incooperationwithTheUniversityofAkron

inpartialfulfillmentoftherequirements

forthedegreeofDoctorofPhilosophy

by

ChiaraBenvenuto

December2008

i Dissertationwrittenby

ChiaraBenvenuto B.Sc./M.Sc.(Laurea),UniversitàdegliStudidiFirenze,1999 Ph.D.,KentStateUniversity,2008

Approvedby

______,Chair,DoctoralDissertationCommittee Dr.StephenC.Weeks ______,Coadvisor,DoctoralDissertationCommittee Dr.WalterR.Hoeh ______,Members,DoctoralDissertationCommittee Dr.MarkW.Kershner ______, Dr.LisaE.Park ______, Dr.DavidC.Riccio Acceptedby ______,Chair,DepartmentofBiologicalSciences Dr.JamesL.Blank ______,Dean,CollegeofArtsandSciences Dr. JohnR.D.Stalvey

i

TABLEOFCONTENTS

LISTOFFIGURES...... vi

LISTOFTABLES ...... viii

ACKNOWLEDGMENTS...... ix

CHAPTERS

I.GENERALINTRODUCTION ...... 1

Sexualselectionandsexualconflict ...... 1

Componentsofsexualconflict...... 5

Theoutcomeofthewarofthe:whowins? ...... 9

Testingsexualconflict ...... 13

Mateguardingandsexualconflict...... 20

PrecopulatorymateguardinginCrustacea ...... 22

Modelsofmateguarding ...... 25

Parker’smodel(1974)...... 26

WicklerandSeibt’smodels(19791981) ...... 27

Grafen&Ridley’smodel(1983) ...... 28

Hunte,Myers,andDoyle’smodel(1985)...... 29

Yamamura’smodel(1987) ...... 30

ElwoodandDick’smodel(1990) ...... 30

Jormalainen,Tuomi,andYamamura’smodel(1994) ...... 31

ii

YamamuraandJormalainen’smodel(1996)...... 32

Jormalainen’smodel(1998)...... 32

Härdling,Jormalainen,andTuomi’smodel(1999)...... 35

Härdling,Kokko,andElwood(2004)...... 36

Anempiricalapproach:theeconomicsofmateguarding...... 37

Mateguardinginanandrodioeciousspecies:how

fitintotheequation ...... 40

Thestudysystem...... 42

Overviewofresearchobjectives...... 43

II.MATERECEPTIVITYASSESSMENTANDPRECOPULATORYMATE

GUARDINGBEHAVIORINTHECLAMSHRIMP EULIMNADIATEXANA ...... 46

Abstract ...... 46

Introduction...... 47

Materialsandmethods ...... 54

Project1Trackingfocal ...... 56

Project2Moltinghormoneasasolublecue...... 57

Project3Moltinghormoneasadirectcontactcue...... 58

Results...... 61

Project1Tracking...... 61

Project2Moltinghormoneasasolublecue...... 63

Project3Moltinghormoneasadirectcontactcue...... 64

iii

Discussion ...... 70

Acknowledgements...... 79

III.INTERSEXUALCONFLICTDURINGMATEGUARDINGINTHE

ANDRODIOECIOUSCLAMSHRIMP EULIMNADIATEXANA ...... 80

Abstract ...... 80

Introduction...... 81

Materialsandmethods ...... 85

Mateguardingcosts ...... 85

Theeffectofsize...... 86

Compromisedandoptimalguardingtimes ...... 87

Results...... 90

Mateguardingcosts ...... 90

Theeffectofsize...... 92

CompromisedandOptimalGuardingTime...... 93

Discussion ...... 96

Acknowledgements...... 105

IV.MATEGUARDINGBEHAVIORINCLAMSHRIMP:THEINFLUENCEOF

MATINGSYSTEMONINTERSEXUALCONFLICT...... 106

Abstract ...... 106

Introduction...... 107

Materialsandmethods ...... 112

iv

Rearinginthelaboratory...... 112

Mateguardingin Limnadiabadia ...... 113

Compromisedmateguardingtimeacrossspecies ...... 114

Statisticalanalyses ...... 114

Results...... 115

Mateguardingin Limnadiabadia ...... 115

Compromisedmateguardingtimeacrossspecies ...... 117

Discussion ...... 120

Acknowledgements...... 128

V.MATEGUARDINGBEHAVIORINCLAMSHRIMP:AFIELDAPPROACH.129

Abstract ...... 129

Introduction...... 130

Materialsandmethods ...... 135

Results...... 140

Mateguardingtime ...... 140

Maletimebudgets...... 145

Maletakeovers ...... 147

Discussion ...... 148

Acknowledgements...... 154

VI.GENERALDISCUSSIONANDCONCLUSIONS ...... 156

REFERENCES ...... 164

v

LISTOFFIGURES

Figure1.1 Variationinmaximumacceptableconflictcostsformalesand inrelationtotime(moltcycle)...... 33 Figure2.1 SchemeofthearenausedinProject1and2...... 55 Figure2.2 Meandistancefromoriginofcoordinates(control)and thechamberwithopposite(stimulus)...... 62 Figure2.3 Totaldistancetraveledbyeachsexinabsence(control)and presenceofotherclamshrimp(stimulus) ...... 63 Figure2.4 Numberofmateguardingattemptsperformedbymales onreceptiveandnonreceptivehermaphrodites...... 65 Figure2.5 Numberofmateguardingattemptsperformedbymales onhermaphroditesperformingdifferentbehaviors...... 66 Figure2.6 Interactionbetweenkickingbehaviorand receptivitystateonnumberofmateguardingattempts ...... 67 Figure2.7 Interactionbetweenhermaphroditekickingbehaviorand treatmentonnumberofmateguardingattempts...... 67 Figure2.8 Numberofmateguardingattemptsperformedbymales onhermaphroditesperformingdifferentbehaviors (analyzedseparately)...... 69 Figure2.9 Schemeoftheinteractionsbetweenthesexesduringmateguarding...... 78 Figure3.1 Reductioningutfullnessasafunctionofmateguardingduration...... 91 Figure3.2 Correlationofsizedifferencebetweenthesexes withmateguardingtime...... 92 Figure3.3 Meanmateguardingtimeforthreesizecategories...... 93 Figure3.4 Meanmateguardingtimeforeachtypeofexperiment ...... 95

vi

Figure3.5 Meanguardingtimeforeachtypeofexperimentaccountingforthe receptivitystateofthehermaphrodite...... 95 Figure3.6 Variationinhermaphrodites’lengthofreceptivityamongtreatments ..... 96 Figure4.1 Meanguardingtimeforeachtypeoftreatmentin Limnadiabadia ...... 116 Figure4.2 Meanguardingtimeforfourspeciescharacterizedby twosystems ...... 119 Figure4.3 Meanguardingtimeformatingsystems...... 119 Figure5.1 Leverageplotofmeanmalesizeandlengthofmateguarding...... 143 Figure5.2 Leverageplotofmeanrelativefemaledensityandlength ofmateguarding...... 143 Figure5.3 Correlationbetweenpopulationdensityandsizeformales andfemales...... 144 Figure5.4 Relationshipbetweenmaleandfemalesizeforcouples observedinmateguardingbehavior ...... 145 Figure5.5 Effectoffemalereceptivityonmateguardingduration ...... 146 Figure5.6 Effectofmatingresultonmateguardingduration ...... 146 Figure5.7 Maletimebudget...... 147 Figure5.8 Maleandfemalesizeintrios...... 148 Figure6.1 Flowchartofpossibleinteractionsbetweensexes...... 157

vii

LISTOFTABLES

Table1.1 Traditionalmodelsofsexualselection...... 3

Table1.2 Predictionsfromdifferentmodelsofsexualselection...... 16

Table1.3 Costsofmating...... 17

Table1.4 Dataofmateguardingfromliterature...... 2425

Table2.1 RepeatedmeasuresMANOVAresultsformeandistancefrom referencesideandtotaldistancetraveled...... 62

Table2.2 FullfactorialANOVAformateguardingattempts ...... 65

Table2.3 TwowayANOVAformateguardingattempts...... 69

Table3.1 BlockedonewayANCOVAonvariationofgutfullness betweenthesexes...... 91

Table4.1 OnewayANOVAonmateguardingtime...... 116

Table4.2 Comparisonamongthefourspeciesfortypeofmatingsystem ...... 117

Table4.3 TwowayANCOVAonmateguardingtimeamongspecies...... 118

Table4.4 Analysisofthestrengthofintersexualconflictsduringmate guardingindioecious vs .androdioeciousspecies...... 125

Table5.1 Summaryofdatafromthefield ...... 136

Table5.2 Statisticalanalyses...... 141

viii

ACKNOWLEDGEMENTS

Thisthesiswouldhavenotbeenpossiblewithouttheencouragement,support,and helpofmanypeople.Itisapleasureformetothankallofthemhere.

Firstandforemost,Iwouldliketothankmyadvisor,Dr.StephenWeeks.Steve, thankyousomuchforyourinspiration,foryourcontinuoussupport,forfindingalways thetimeformyneverendinglistsofquestions,andforreadingthisthesisoverandover.

Youhavebeenmuchmorethananadvisortome,youhavebeenarealmentor.Iwishto thankalsoallmycommitteemembers.Dr.RandyHoeh,Dr.MarkKershner,Dr.Lisa

Park,thankyousomuch,forallyourtime,yourcomments,andhelpfulfeedback.

IamdeeplyindebtedtoDr.BrentonKnottandallthepeopleattheSchoolof

AnimalBiologyattheUniversityofWesternAustralia,inPerth.Brenton,thanksforthe wonderfulhospitality,yourexpertise,thewineandBriecheese,allthedinners,andthe endlessconversationon.Thanksforsharingyourloveforclassicalmusic.I canothearapiecenow,withoutthinkingofyou.Yourhelpmovedbeyondmy permanenceDownUnder:Iamverygratefulforallthereviewsonmypapersandthesis.

Kerry,Debra,Danny,Magdalena,Wally,Bonnie,Rob,youallmademytimespentin

WAaninvaluableexperience.

IwasveryluckytospendthreesummersworkinginLasCruces,NM.Iandthe restofthe“clamshrimpcrew”wereexceptionallywelcomedbyDr.NaidaZuckerand

Dr.RichardSpellenberg,andadoptedinDr.MicheleNishiguci’slab.NaidaandRich,

ix

thankyousomuchforyourhelp,yourhumor,yourgreatparties,thetripstoMexico,and forcomingtotheseminarwhereIpresentedmydata(thatwasthebestsurpriseever!)

Nish,youandyourlabassistedussomuchwithallthefieldtroubleandyourwonderful companyhelpedussurviveallthefrustrationswhenthingswerenotworkingright.

Vinod,Bryan,TuShun,Will,thankyousomuchforyourfriendship.Andthanksaredue totherestofthefriends,toalltheDepartmentofBiologyatNMSU(thanksforthelab space)andtoEddieGarciaandallthepeopleattheJornadaLTER.

IntheseyearsIhavealsobenefitedalotfromtheextensiveknowledgeand expertiseoffacultymembersatKentStateUniversityandtheUniversityofAkron.I wouldliketothankthemall,andinparticularDr.JoelDuff,Dr.FranciscoMoore,Dr.

PeterNiewiarowski,Dr.BrianBagatto,Dr.ToddBlackledge,Dr.PatrickLorch,which wereagreathelpformanyofmystatistical,behavioral,andmethodologicalquestions.

ThanksalsotoDr.RobertHuber,“Lobsterman,”atBowlingGreenStateUniversity,for showingmethepossibilitiesofJava.

Mylifewouldhavebeenmiserableandevenmorecomplicatedwithoutthehelp, support,andfriendshipofSadieandAlissa,preciouscompanionsinthelabandfield adventures.Sadie,wehavesharedsomanyadventuresfromtheverybeginning.Youare atrueandwonderfulfriend.IwonderwhatIwouldhavedonewithoutyou.Alissa,Iwill neverforgetthecrazylastmonthofouradventureinAustralia!Iwouldliketoexpress mythankstotheothermembers,pastandpresent,oftheclamshrimpcrew.Tom,thanks forallyourgreatadvicetorearclamshrimp;Christine,thanksforyourhelpwiththe

x

behavioralobservations;andBeth,thankforyourdedicationandyoucheerfulmoodin thelab.

IenjoyedthecompanyofgreatfriendsintheDepartmentofBiologyatthe

UniversityofAkron,everyday,fromearlymorningtolatenight,duringtheweekends andholidays.Thankyouallsomuch,inparticulartothestudents(residentsorvisiting) oftheFifthFloor.Kb,Drew,Cecilia,Jackie,Steph,Chris,Jarod,Ben,Hope,Lara,Tim,

Mike,Pete,Stephanie,Brian,Jen,Erin,andalltheothers;wehavedrunkendlesscupsof coffeetogether,andlaughedsomuchandcomplainedabouteverything!Thankyou,I willmissyouallverymuch.Ashley,thanksforallyourhelpwithteaching;Iwasso scaredwhenIstarted!

Myroommateshavebeenincrediblypatientwithme.Taneisha,thanksforbeing thewonderfulfriendyouare,ontopofbeingmypersonalanalyst!AlissaandBrynyour companyhavebeensuchareliefduringweeksofstress,andwhenIwastiredand worried.AndthankstotheRunninggroup,whohelpedmetoreleasemystressinthebest way.Carol,withoutyourtrainingIwouldhavenoteverthoughtoffinishingamarathon!

Youhavebeenatthefinishlineofallmymarathons,includingthelastone(thewriting marathon):thanks!

Thisthesiswasimprovedbyconversationswithalargenumberoffaculty membersandfellowstudents.Iwouldliketoacknowledgeallofthemandallthemany undergraduatestudentsthathavehelpedwithmanyexperiments(andarereported throughoutthethesisinspecificchapters).Imightnothaveincludedeverysinglename

xi

here,butIhavegreatappreciationandrecognitionofallthepeoplewhohelpedinone wayoranotherduringmytimespentintheUSpreparingandwritingmydissertation.All ofyouhaveplayedadecisiveroleinmylife,andnotjustinmyacademiccareer.

Finally,butmostimportantlyIwishtothankmyentirefamilyinItaly,whose constantencouragementandlove,telephonecalls,emails,letters,postcards,parcels,and videoshavehelpedmetocontinuethisendeavor.Graziedicuore.InparticularIwould liketothankmyparentsandmysisterfortheirincrediblesupportoveralltheseyears.

MygrandmaPiaisnotheretoseetheendofthisadventure,butshehasalwaysbeen supportiveandhappyformeevenifIwasfarawayfromhome.

Toyouallmymostheartfeltthanks.

xii

I.GENERALINTRODUCTION

Sexualselectionandsexualconflict

ThetheoryofsexualselectionwasproposedbyDarwin(1859)inordertoaddress theofextrememalesecondarysexualcharactersanddisplaysthatarecostlyto malesbutimportantforsuccessfulmating.Darwinclearlydifferentiatedtheconceptof sexualselectionfromthatofnaturalselection:

“[SexualSelection]depends,notonastruggleforexistence,butonastrugglebetweenthemales

forpossessionofthefemales;theresultisnotdeathtotheunsuccessfulcompetitor,butfeworno

offspring. Sexualselectionis,therefore,lessrigorousthannaturalselection.Generally,themost

vigorousmales,thosewhicharebestfittedfortheirplacesinnature,willleavemostprogeny.But

inmanycases,victorywilldependnotongeneralvigour,butonhavingspecialweapons,confined

tothemalesex” (Darwin,1859chapterIVpage88).

Sincethen,sexualselectionhasbeencharacterizedasaselectiveprocessbasedon varianceinreproductivesuccess(Darwin,1871;Wade,1979;Arnold&Wade,1984a;

Arnold&Wade,1984b;Shuster&Wade,2003).

“[Sexualselection]dependsontheadvantagewhichcertainindividualshaveoverothersofthe

samesexandspeciessolelyinrespectof” (Darwin,1871chapterVIIIpage224).

Darwin’soriginalanalysisofsexualselectionfocusedondirectintramalecompetition andfemalechoice.Thesecondofthesetwomechanismsespeciallyencounteredaninitial formalresistance(e.g.,Wallace,1889;andseereviewinO'Donald,1980;Andersson,

1994),andcriticismcontinuedovertime(e.g.,Huxley,1938a;Huxley,1938b).Fisher

(1930)supportedtheideaoffemalechoiceandpostulatedamechanisma runaway

1 2

process thatcanexplaintheevolutionandmaintenanceofexaggeratedphenotypesin malesmerelybyfemalepreference.Henevertheoreticallyformalizedtheconcept

(O'Donald,1980),buthisinsightwasfundamentalforthedevelopmentofmodernsexual selectiontheories(Andersson,1994).Anotherimportantmilestonewasastudyby

Bateman(1948)whereheconsideredandthedifferenceinenergeticcosts sustainedbymalesandfemalesinproducinggametes.Trivers(1972)extendedthisidea beyondgameticproductiontototalparentalinvestment(gestation,nourishment, protection,etc.),recognizinganasymmetrybetweensexuallyreproducingparentswhen onesexprovidesmoreparentalcarethantheother.

Differencesbetweenthesexesarenotlimitedtotraitslinkedtogeneralparental effortorsize,energy,andmotilityofgametes.Othertraits,includingbehavioraltraits, candifferbetweenthesexes.Moreover,sexualselectionmodels(whichuntilrecently consideredfemalechoiceasmarginalandconfinedtomatechoice)recentlystartedto confermoreimportancetotheroleoffemalesinshapingtheevolutionofmorphological andbehavioralsecondarysexualcharacters.Femaleinputalsoincludesmatingresistance

e.g.,studiesonfruitflies(Wigby&Chapman,2004)andcrustaceans(Jormalainen&

Merilaita,1995;Sparkesetal.,2000)and“crypticfemalechoice”(Eberhard,1996), whereinthechoiceisperformedbythefemaleafter,selectingwhichspermto useforfertilizingeggs.Inthislattercase,asexualpartnernotrejectedduringcopulation canbelaterrejectedtosiretheoffspring.

Throughtime,manymodelsofsexualselectionhavebeenproposed,eachone addressingthetopicfromadifferentperspectivebutfocusingonsingleparametersata

3

time.Thisisnotsurprising,duetothecomplexityandextremevariabilityofthesubject.

Table1.1presentsalistofsomeclassicmodelsofsexualselection(formoredetailed reviewsseeKirkpatrick,1987;Kirkpatrick&Ryan,1991;Andersson,1994).

TABLE 1.1 TRADITIONALMODELSOFSEXUALSELECTION

SELECTION SELECTION MODEL MECHANISM ON ♀ ON ♂ REFERENCES PREFERENCE TRAITS Materialbenefits (nuptial gift,parentalcare, protection,high Directincreasein Direct (Thornhill,1976; fertilizationsuccess, survivalandfecundity Direct positive Priceetal.,1993) avoidanceof forfemales parasites/disease transmission) Arbitrarypreference (Fisher,1930; byfemales/offspring Runawayprocessand Indirect Weatherhead& attractiveness– Direct “sexysonhypothesis” positive Robertson,1979; linkagedisequilibrium Lande,1981) –geneticcorrelation (Zahavi,1975; GoodGenes:Handicap– Zahavi,1977; Indirect Parasite–Honest Offspringquality Direct Hamilton&Zuk, positive indicator 1982)

Briefsummaryofsometraditionalmodelsofsexualselection,withashortoutlineofthe evolutionarymechanismsandexplicitmentionofthedirectionofselectiononfemalepreference andtheresultingselectiononmaletraits.Directselection:selectiononfemalepreferenceis influencedbybenefitstotheindividualunderselectionherself;indirectselection:selectionon femalepreferenceisinfluencedbybenefitstotheoffspringoftheindividualunderselection.

InTable1.1,theterms“direct”and“indirect”areusedtospecifyifselectiononfemale preferenceisinfluencedbybenefitstotheindividualunderselectionherselfortoher offspring(Kirkpatrick,1996).Inthissecondcategoryareincludedmechanismsofchoice forarbitrarytraitsthatresultsinincreasedmaleoffspringattractivenesstofemales

4

(“sexyson”),possiblystartedbysensoryexploitationprocesses(Ryan,1990),ortraits indicatinghighqualityofmales(“goodgenes”).Inallthesemodelsitisassumedthat thereisapositivecorrelationbetweenmaleandfemalebenefits.

Thebriefandincompletesummaryoutlinedhereinismeanttopointoutthe developmentofsexualselectiontheoryandtounderscoreanhistoricalchangein perspective.Neverthelessapluralisticapproachisnecessarytoidentify,characterize,and definesexualselectionmorecompletelyatdifferentlevels(behavioral,morphological, andmolecular).Itislikelythatthehypothesesformulatedthusfararenotsufficientto explainallcasesofsexualselection,andpossiblythesehypothesesarenotmutually exclusive.

Recently,increasedattentionhadbeendevotedtosexuallyantagonisticselection, determinedbytherecognitionof“intersexualconflicts.”Thisisnotanovelidea,butthe recenttheoreticalmodelsandtheuseofempiricalinnovativetoolshaverenewedinterest inthetopic.Interestingly,Fisher(1930),inhisanalysisofsexualselection,pointedout thatthetwomechanismsidentifiedbyDarwin(thebattleofthemalesandthe“ bold hypothesis” offemalepreference)involvecompetition“ confinedtomembersofasingle sex ”(page132).Competitioncanalsoarisebetweenthetwosexes.Bateman(1948) introducedananalysisofsexualdifferences(atleastforgameteproduction),Williams

(1966)statedthat“ inevitablythereisakindofevolutionarybattleofthesexes ”(page

184),andTrivers(1972)consideredparentalconflictsoverinvestmentonthe production/careofoffspring.Dawkins(1976)reinforcedtheidea,inhistheoryofgene

5

selfishness,andParker(1979)formalizedtheconceptdefiningsexualconflictas“ a conflictbetweentheevolutionaryinterestsofindividualsofthetwosexes. ”

Althoughtheconceptisnotnew,intersexualconflicthasrecentlybecomethe subjectofmuchdebate(Arnqvist&Rowe,2002;Cameronetal.,2003;Chapmanetal.,

2003;Cordero&Eberhard,2003;Pizzari&Snook,2003;Arnqvist,2004;Pizzari&

Snook,2004;Arnqvist&Rowe,2005;Eberhard,2005;Hosken&Stockley,2005;

Chapman,2006;Parker,2006).Thisdebatefocusesonhowtotestintersexual antagonisticselectionandhowtountangleitfromotherformsofsexualselection.Inthe nextsectionsIwilldefineintersexualconflict,analyzeitsoutcome,andreviewthe proposedmethodstotestit.

Componentsofsexualconflict

Sexualselectionwasinitiallydevelopedtoaddresstheevolutionofextrememale secondarysexualtraitsandextravagantdisplays(Darwin,1859;Darwin,1871;

Andersson,1994).Classicalmodels(Table1.1)focusedonthisevidentresultofsexual selection,lookingforevolutionarymechanismstoexplainthedevelopmentofsuchtraits, whichareoftencostlytothemalebutimportantforsuccessfulmating.Thegeneralidea isthatfemaleswhoareattractedtothesemalesaregoingtogainabenefit(director indirect).Thereisapositivefeedbackthatenhancesmaleandfemale.The alternativeviewofantagonisticselectionconsidersadifferentscenario:theincreasein fitnessofonesexdoesnotnecessarilymeananincreaseinfitnessintheoppositesex

(Daly,1978;Parker,1979).Conflictsarethenexpectedbetweenmates.Ingeneral,even

6

relatedindividualswhosharegenesarepronetoexperienceconflicts(e.g.,parent offspring,Trivers,1974;Wade&Shuster,2002).Conflictsareevengreaterbetween unrelatedmates.

Aquantitativeparadoxappearswhencomparingsexualselectiontonatural selection:howcansexualselection,actingatthemicroevolutionarylevel,producesuch strongmacroevolutionaryresults,whenitopposesnaturalselection,whichisastronger evolutionaryprocess?This“quantitativeparadoxofsexualselection”( sensu Shuster&

Wade,2003)canbesolvedbyanalyzingfitnessvariancebetweenthesexes:“ thegreater thevarianceinfitness,thestrongertheforceofselection ”(Shuster&Wade,2003;

Shuster,2007).Similarly,sexualconflictscanbeaddressedbyanalyzingthefitness covariancebetweenthesexes(Price,1970):sexallowsforanegativecovariancebetween thesexes(thefitnessofonesexincreasesattheexpensesoftheother).This,then, introducesantagonisticselection(Partridge&Hurst,1998)andtheresultingantagonistic .Theuncouplingoffitnessbetweenthesexescanincreasevariance,sothat sexualselectioncanhaveastrongerinfluencethannaturalselection.

Sexenhancesconflictbecausesexuallyreproducingorganismscombinetheir genesduringsyngamywhileinasexuallyreproducingorganismsthereisnomixingof genesbut,rather,genesareperpetuatedunaltered(withtheexceptionofmutations)and thusthereislesspotentialforconflict(Partridge&Hurst,1998).Moreover,genetic recombination,throughcrossingover,furtherchangestherelationshipsbetweengeneson thesamechromosome.Inthisway,allelesonthesamechromosomearenotpersistently associatedwithoneanotherorwithnonhomologousalleles;thisflexibilityenhances

7

geneticvariationintheoffspring,creatingdifferentgeneticcombinationsandallowing allelestocoevolveinoppositedirections(Rice&Holland,1997;Partridge&Hurst,

1998).Genescanthusdivergeinresponsetodifferentselectivepressures.

Geneticconflictscanoccurinthesameindividual(intragenomicconflicts betweenallelesornonallelicgenes)orbetweendifferentindividuals(intergenomic conflicts).Onecanidentifyanintragenomicconflictwhen“ thespreadofonegene createsthecontextforthespreadofanothergene,expressedinthesameindividual,and havingoppositeeffect ”(Hurstetal.,1996,page325).Thereisalongseriesofstudieson thistopic,rangingfrommeioticdrive,segregationdistorters,anduniparentally transmittedgenes(excellentreviewinHurstetal.,1996)torecentstudiesongenomic imprinting(Haig,2000),wherecertaingenesareexpresseddifferentlydependingontheir parentalorigin,eithermaternalorpaternal(carryinganimprintfromtheprevious generation).

Asfarasintergenomicconflictsareconcerned,intralocusconflictswillemergein allelescarriedbybothsexesbutwithsexlimitedexpression,orwithdifferentoptimain thetwosexes;interlocusconflictsmanifestingenesatdifferentloci,specificforsexual behaviors,differentialexpressioningenitalorgans,orgametes(Rice&Holland,1997;

Rice,1998).Withfewexceptions(e.g.,Chippindaleetal.,2001),recentstudiesonsexual selectionhavefocusedonInterlocusContestEvolution(Rice&Holland,1997).The mechanismpostulatedissimilartoaRedQueenprocess(Rice&Holland,1997;Rice,

1998)involvinganarmsracewithanantagonisticcoevolutionofmoleculesand receptors,possiblyinitiatedbysensoryexploitation.Theendresultresemblesthe

8

Fisherianrunawayprocess:malestakeadvantageofasensorybiasinfemales,females evolveresistancetostimulationinordertocounteractthismanipulation,malesneedto increasetheirsignaltoovercomefemaleresistance,ina chaseaway sexualselection scenario(Rice&Holland,1997;Holland&Rice,1998).Inthismodel,directcostsand theiravoidance,ratherthandirectorindirectbenefits,aredrivingselection.Insupportof theirthesisof“ antagonisticseduction ,”HollandandRice(1998)providedareviewof studiesencompassingavarietyoftaxa,from,to,to,to.Since then,manymorestudieshavetakenintoconsiderationthehypothesisofacoevolutionary armsracebetweensexes(Arnqvist&Rowe,2002;Rowe&Arnqvist,2002;Pizzari&

Snook,2003;Arnqvist,2004;Eberhard,2004;Pizzari&Snook,2004;Wigby&

Chapman,2004;Eberhard,2005;Friberg,2005;Fribergetal.,2005;Rice&Holland,

2005;Roweetal.,2005).

Intersexualantagonisticcoevolutionisthoughttobeparticularlystronginsexual organismswithapromiscuousmatingsystemandinternalfertilization(Rice,1998).In thissituationathreewayinteractionissometimesidentifiedbetween“maleoffence,” femaleresistance(whichhasbeendescribedbefore),and“maledefense”orinhibitionof thefemalepropensitytomateagainwithothermales(Rice&Holland,1997;Rice,1998;

Rice,2000).Hereintherunawayprocessshould,bydefinition,produceanaccelerated rateofevolution.Thishasactuallybeenobserved,forexample,intheevolutionofmale genitaliainspecieswithinternalfertilization(Eberhard,1985;Eberhard,1996)andin proteinsingametes(e.g.,Landryetal.,2003:spermeggbindingproteinsinseaurchins).

9

Evolutionaryconflictsarethoughttobeeverpresentandtheycanplayarolein speciation(Parker&Partridge,1998;Rice,1998;Martin&Hosken,2003),theevolution ofgeneticsystems(Hurstetal.,1996),andtheevolutionofmatingstrategies(Eberhard,

2005).Thisantagonismcaninfluencetheevolutionofdisplays,therateof mating,fertilizationprocesses,precopulatoryandpostcopulatoryinteractions,thechoice ofmatingtimeandplace,theriskofpredation,and/ortransmissionofparasites/diseases.

Ofcoursethisantagonisticcoevolutionaffectstheinteractionsbetweenthesexesandcan resultinanarmsracebetweenmalesandfemales.

Theoutcomeofthewarofthesexes:whowins?

Intersexualconflictspresentalltheelementsforanarmsrace:isthereawinner?

Conflictresolutionisnotalwayspossible.Sometimesthearmsracewillcontinuein cyclesoftemporarysuccessforonesex,untilacounterspreads.Thiscycling ispredictedtodependonthefrequencyoftheappearanceofnewmutations(Partridge&

Hurst,1998).

Theoreticallytherearedifferentpossibleoutcomesforintersexualconflicts.

Traditionally,twooutcomeshavebeenconsidered.Outcome1Resolutionofthe conflict:eitherthereisawinner(onesexovercomestheother)orabalance(ormore likelyacompromise)isreached.Inthiscase,anevolutionarilystablestrategy( sensu

MaynardSmith,1982)isachieved.Outcome2Escalation(runawayprocess),with andcounteradaptations:thelimitisreachedwhenthetraitorbehaviorunder

10

selectionresultsinfitnessdisadvantageforatleastonesex.Thisisthemechanism involvedintheevolutionofextrememalesecondarysexualcharacters.

Itisnoteasytodifferentiatebetweenoutcomes1and2becausetheapparent resolutionoftheconflictcouldmerelybeamomentofstasisduringtheescalation trajectory.Theterm“resolution”itselfdoesnotimplythattheconflictisover.Itmay onlyrefertotheevolutionofanadaptationinonesexanditsrelativeefficacycompared toanadaptationintheothersex(Arnqvist&Rowe,2005).Apossiblewaytodistinguish thetwooutcomesistolookatthemorphologicalcharactersunderselection:usually extrememalesecondarysexualcharactersevolveundertherunawayprocess.Also, resolution(Outcome1)issometimesreachedthroughtheevolutionofanoveltraitwhile escalation(Outcome2)oftenresultsinacontinuousmodificationofthemaleandfemale traitsunderselection.

Recentlyanalternativeresultofthe“battleofthesexes”hasbeenproposed

(Roweetal.,2005).Insteadofanongoingarmsracedeterminedbyfemalebiases,inthe formofpreference(ashypothesedinclassicalmodels)orresistance(aspostulatedinthe antagonisticcoevolutionmodel),Rowe etal .(2005)proposedtheevolutionof

“indifference”asafemaleresponsetomalesignals.Femalesensitivitytomaletraitscan changewithtime.Inthiscasethereisnolongeracorrelatedresponsetovariationin signalandescalationisthenlesslikelytoevolve.Theirviewofmalefemaleinteraction ismorecomplexthanpreviouslypostulated:femalesensitivity(andthusthepossibilityof beingmanipulated)canincreaseordecrease,ascanfemaleresistance,malepersistence, andtheexpressionofcertainmaletraits(Roweetal.,2005).Inthiscasetheescalation

11

canbearrested(sincefemalesarenolongerpositivelyfeedingbackintotheprocess),can progress(ifmalestrytoobtainthedesiredresponse,exceedingthefemalethresholdof susceptibility),orcanshifttodifferenttraits(untilfemaleindifferenceevolvesforthat traitaswell).

Malesusuallyinvestlessthanfemalesinoffspringandattempttofertilizemany femaleswhiletryingtoinhibitrematingoftheirmates.Therefore,theyoftenstartthe cycleofcoevolvingantagonism:theyevolveadaptationsthatenhancetheirownfitnessat theexpensesoffemalefitness(Rice,2000).Femalesthenneedtoevolvecounter adaptationsandinthemeantimemalesaregainingmorefitness.

Femalessometimescan(atleasttemporarily)winthebattle.Thiscanhappen whensexualselectionis“lessrigorousthannaturalselection”(Darwin,1859chapterVI, page88).Therelativestrengthofnatural vs .sexualselectionprobablyfluctuates,but whennaturalselectionisstronger,itwillactdifferentlyonthetwosexes:the extravaganceofmalecharacterswillberestrained,whileaweakercontrolbynatural selectionwillactonfemaleattractionorresistance(Holland&Rice,1998).Exaggerated maleornamentscanbehighlycostlytomalesandcanreducemaleviabilityandtherefore areunderstrongselectivepressure.Femalechoosinessisnotasdeleterioustofemales, andselectionisnotasstrong.Whenthishappens,itiseasierforfemalesto“win”the battleofthesexes.

Femalescangainapartialadvantageevenwhentheylose,inaformofFisherian payoffs, via hersons(Eberhard,2005):theirmaleoffspringgainfitnessattheexpenseof femaleoffspring’sfitness.Thisisbecausethemaleoffspringofafemalewillinheritthe

12

traitsthatweredetrimentaltothefemaleherself,butthatnowaregoingtobe advantageoustohersons,formatingsuccess.Theprocessissimilartothesexyson hypothesisortheFisherianmodel(i.e.,theindirectbenefitmodels),butstartswithan initialdirectreductioninfemalefitness.Anetbalancebetweenthecostsinvolvedin matingandthedirectandindirectfitnessbenefitsthroughoffspringneedtobecalculated.

Apartialgainforfemalesisnotalwaysachieved.Insomecases,femalescannot possiblywin:thegaininfitnessthroughtheoffspringstillcannotcompensatethelossof fitnessduetomalematingbehavior,asinthecaseofsexualharassmentorsexual coercion.Inthissituationthebeststrategyforthefemalesistotrytominimizecosts

(Wilcox,1984;CluttonBrock&Parker,1995).

Accordingtogametheoryandoptimalitymodels,theoutcomeofsuchawarof attritionisdeterminedbyrelative“power”(Parker&Partridge,1998),i.e.,howmuch onesexis“superior”totheotherandhowmuchdifferenceincostsofcontestthereis betweenthesexes.Togetherwithrelative“power,”the“valueofwinning”(Parker&

Partridge,1998)playsamajorrole.Thisvaluerepresentshowimportantvictoryis, calculatedinfitnessdifferencesbetweenamatingsuccessorfailure.Abilityof assessmentoftheotherside’sarmamentispresupposed.Onthecontrary,runaway processesareunpredictable:thedirectionoftheprocessdependsonthecounter adaptationstakenfromthecontendersinvolved,soitisdifficulttomakepredictionson whothewinnerwillbe(Kirkpatrick&Ryan,1991).

Themajorprobleminaddressingintersexualconflictwiththesametoolsusedin anyothertypeofconflict(i.e.,lookingforawinnerorapplyinggamestrategyrules)is

13

thatthisconflictisdifferentfromanyotherinteractionbecauseofthemixingofthe oftheparentsintheoffspring.Thismixingproducesauniquesituationnot foundinotherinteractions.Inreality,thebattleisatthegeneticlevelandnosinglesex canactuallywin;butallelesrelatedtomalepersistenceorfemaleresistancecan(Rice,

2000;Arnqvist&Rowe,2005;Cordero&Eberhard,2005).

Therecognitionofconflictscanbeparticularlyhardifweareobservingthe situationinamomentoftemporarycompromise,whenfitnesseffectsofadaptationsand counteradaptationsbalanceoneanother.Residualsofpastconflictscanstillbepresent andaphylogeneticapproachisrecommendedtodetectvariationsbetweencloselyrelated species(Holland&Rice,1998;Arnqvist&Rowe,2002).Whentheprocessbecomes extraordinarilycostlyandreducesthetotalfitnessofonesex,aresolutionis advantageousforbothsexesbecausetheaveragefitnessofthetwosexesisnot independent.Diversificationofmorphologicaltraitsiseasytoperceiveandassess,but manyothertraitscanbeundersexualselectionpressure.Atthemolecularlevel,costsare probablylowerandarmracesareexpectedtolastlongerthanatthemorphologicalor behaviorallevel(Hosken&Stockley,2005).Behavioraltraitsareparticularlyimportant andtheycanvaryfromcourtshipdisplaystomatingstrategies.

Testingsexualconflict

Sexualconflictsareubiquitous,butdotheyplayaroleasaselectiveforceandif so,howbigarole(Partridge&Hurst,1998;Hosken&Snook,2005)?Testingthemodels istherealchallenge.Thereisalackofresolvingpowerbetweendifferentmodels.

14

Moreover,differentmechanismsdepictedbydifferentmodelscanactconcomitantly.

Also,itishardtotestsexualselectionmodelsbecauseitisnoteasytomeasurefitness,

“theeffectivedesignforreproductivesurvival ”(Williams,1966page158),andnet fitnessinparticular(inclusiveofthefitnessoftheoffspring,asimpliedinthe“sexyson” hypothesis).

Sexualselectionwithdirectbenefitsinvolvesamaterialcontributionbythemale

(intermsoffood,energy,protection,parentalcare,etc.)thatincreasesfemale reproductiveoutput;indirectbenefitsarethosewhichenhancefemalefitnessthroughthe fitnessofoffspring.Directselectionisconsideredeasiertotest(Kirkpatrick&Ryan,

1991):directbenefitsareeasiertomeasureandofteninvolvecostsformalesandfitness increasesforfemales.Indirectselectionhypothesespredictthatmaletraitsandfemale preferencecoevolvetogether(eitherinamutualisticorantagonisticfashion)inawaythat enhancesoffspringsurvivalandreproduction.TheseparationbetweentheFisherian modelandallthegoodgenesmodelsissomewhatarbitrary.Thereisaforceddistinction inindirectbenefitsthroughsexycharacteristics(arbitrarytraitsthatareattractiveto females)andindirectbenefitsthroughtraitsfavoringsurvival.Sincebothmodelsassume anincreaseinreproductivefitnessintheoffspring,thereshouldbenoreasonto differentiatetheprocesses(Esheletal.,2000;Kokkoetal.,2003)eventhoughnot everybodyagrees(Cameronetal.,2003).Also,sensorybias(anexploitationofthe femalesensorysystembyexaggeratedmaletraits)caninitiateanyoftheindirectmodels, aswellastheantagonisticcoevolutionmodel,andrunawayprocessescanbeconsistent withdifferenthypothesesofindirectselection.

15

Inaverysimplisticandmisleadingway,directandgoodgenesmodelsareseenas adaptationistmodels,whiletheFisherianrunawaymodelstartswithan“arbitrary” preference(andforthisreasonhasbeenconsidereda“nonadaptationist”model)and continuesbecauseofgeneticcorrelation(bylinkagedisequilibrium,physicallinkage,or pleiotropiceffects;Kokkoetal.,2003).Inreality,thetwohypothesesarenotmutually exclusive,especiallyintheviewofsexualselectionasacontinuum(Kokkoetal.,2002).

Astraditionallyposed,sexysonandFisherianmodelscouldbeattheendofaspectrum, butinrealitytherearemanyintermediatesituationsthatassumevariablelevelsof viabilityversusattractivenessoftheoffspring(Kokkoetal.,2002;2003).

Inordertotestmodels,thereistheneedtoidentifyaclearnullhypothesisthat canseparateoutcomesduetosexualconflictsversusotherprocesses.Inacoevolving chainofdevelopment,eachtraitinfluencesanadjustmentofanothertraitintheopposite sex.Thereforetherateofevolutioningenesinvolvedinreproductiveaspectsisexpected tobefasterthanothergenesnotinvolvedinreproductiveaspects(Rice,1998).Holland andRice(1998)differentiatedtheirchaseawaymodelfromother,similarinteracting mechanisms(suchastheFisherianrunawaymodel)becauseoftheantagonisticnatureof theinteraction:adaptationsinthetwosexesevolveinopposition,ratherthaninself corroboration.Becauseofthiscontrast,theypredictastationaryorslowprogressionin thedevelopmentoftraits,ratherthanareinforcing,almostexponentialsequence.

Phylogeneticreconstructionsneedtobeemployedtodistinguishthechaseawaymodel, becausebothmaleandfemaleadaptationsaredynamicandstudyingthematastaticpoint oftimecanconfoundtheoverallcoevolutionaryprocess(Holland&Rice,1998;Arnqvist

16

&Rowe,2002).Also,suchawarofattritionshouldresultinadecreaseoffemalefitness, ratherthantheincreaseassumedbyothermodels.

Itisimportanttostateclearlythepredictionsexpectedfromthemodel(Table

1.2).Problemswiththisapproachhavebeenoutlinedrecently(Roweetal.,2005):if thereisaweakselectiononfemalesensorysystems,femalefitnessmightbeleft unalteredeveninthepresenceofsexualconflicts.Otherapproacheshavebeenusedto testthepredictionsofsexuallyantagonisticmodels:measuringcosts,usingacomparative approach,usingartificialselection,analyzingdifferentpopulationsandpopulation crosses.Iwilloutlinethesebrieflybelow.

TABLE 1.2 EXPECTEDPREDICTIONSFROMDIFFERENTMODELSOFSEXUALSELECTION

MODEL MECHANISM COSTSOF BENEFITTO ♀ REPRODUCTION COSTTO ♂ Directbenefits Directpositiveselection Direct  > increasein COSTTO ♀ fitness Runawayprocess, COSTTO ♂ Indirect  “sexyson Indirectpositiveselection.Self > increasein hypothesis,”Good reinforcingmechanism.Fastprocess COSTTO ♀ fitness Geneshypothesis Indirect  Directnegativeselection.Antithetic COSTTO ♂ possible Antagonisticselection mechanism.Stationaryorslow < decreasein process COSTTO ♀ fitness Briefsummaryofdifferencesbetweentraditionalmodelsofsexualselectionandantagonistic selection.

1)Measuringcosts Themaindifficultyfortestingandseparatingtraditionalsexual selectionfromsexualconflictliesintheproblemwithidentifyingthecostsinvolvedin reproductionandassigningtheirrelativevaluebetweenthesexes.

17

TABLE 1.3 COSTSOFMATING

COSTS ♂ ♀ ♂REFERENCES ♀REFERENCES (Chapmanetal.,1995; Seminalfluid Gems&Riddle,1996;Rice, Physiological Y toxicity 1996;Civetta&Clark, 2000) (Manning,1975;Elwood (Parker,1979;Arnqvist, Energyexpenditure Y Y &Dick,1990; 1989;Rowe,1994; Jormalainenetal.,2001) Jormalainenetal.,2001) Riskof (Daly,1978;Kirkpatrick& transmissionof Y Y Ryan,1991;Chapmanetal., parasites,diseases 1995) (Rowe,1994;Watson& Behavioral Lossoftimeor Lighton,1994;Clutton (CluttonBrock& energycausedby Y Y Brock&Parker,1995; Langley,1997) persistentcourtship CluttonBrock&Langley, 1997;Watsonetal.,1998) (Ridley&Thompson, Takeoversbyother Y 1979;Jormalainenetal., males 1994a) Carryingapartner Y Y (Watsonetal.,1998) (Roweetal.,1994) Reductionin fecundity Y (Jormalainenetal.,1994a) Postcopulatory refractoryperiod Y (Hunteetal.,1985) Fecundity Lossdueto (Parker,1974;Hunteet withdrawalfor Y al.,1985) furthersearching Restrictedfeeding (Robinson&Doyle, Y suboptimaldiet 1985) (Grafen&Ridley,1983; Jormalainen&Merilaita, 1993;Jormalainenetal., Energeticcostof Resistance Y 1994a;Jormalainen& resistance Merilaita,1995;Sparkeset al.,2000;Sparkesetal., 2002) Survival Y (Friberg&Arnqvist,2003) Restrictedfeeding Y Y (Sparkesetal.,1996) (Roweetal.,1994) suboptimaldiet Survival (Strong,1973;Parker,1979; (Strong,1973;Ridley& Wickler&Seibt,1981; Increasedpredation Y Y Thompson,1979;Wickler Arnqvist,1989;Rowe, risks &Seibt,1981) 1994;Roweetal.,1994; Arnqvist&Nilsson,2000) Schematiclistofpossiblecostsincurredbythetwosexes,withafewselectedreferences.

18

Ingeneral,matingbehavioriscostly(Daly,1978).Table1.3presentsalistofpossible costsofmatingassignedtoeachsex.Identifyingtherelativecostsisthefirststepinthe analysisofapossibleasymmetryofthecontestanditsprobableoutcome

2)Comparativeapproach Asstatedabove,antagonisticcoevolutioncanbehardto assessataspecificpointinevolutionarytime.Comparativeapproachesacrossmultiple speciescanrevealthechangeinrelativemalefemalemorphologicaladaptations

(Arnqvist&Rowe,2002).Thistypeofapproachhasbeenappliedtowaterstriders.

Theseareconsideredamodelsystem(Roweetal.,1994)forantagonistic coevolution.Theirreproductivebehavior,intheformofintersexualconflicts,hasbeen investigatedindetail(Wilcox,1984;Arnqvist,1989;Arnqvist,1994;Rowe,1994;Rowe etal.,1994;Rowe&Arnqvist,1996;Amano&Hayashi,1998;Watsonetal.,1998;

Arnqvist&Rowe,2002;Sihetal.,2002).Waterstridersengageinprematingstruggles wheremalesharassfemalesandhaveevolvedmorphologicaladaptationstograsptheir partners.Becausetheseinteractionsareparticularlycostlytofemales,femaleshave evolvedmorphologicalcounteradaptationstoreducetheefficiencyofthegrasping devicesofmales.Malepersistenceadaptationsandfemaleresistancecounteradaptations canbalanceeachother,soabehavioralcomparativestudywasperformedon15species ofwaterstriders(Arnqvist&Rowe,2002).Theauthorscompareddifferentbehavioral traitsrelatedtoprematingstrugglesamongspecies,intermsofmorphological armamentsbetweenthetwosexes,andfoundamarkedvariationintherelativelevelof arms(relatedtotheantagonism),butnotintheabsolutelevelofarms(duetothe

19

balancingeffectofadaptationsandcounteradaptations).Thusthecomparativeapproach wasabletorevealtherelativevariationinarmsraceotherwisenoteasilydetectable.

3)Artificialselection Elegantmanipulativeexperimentshavebeencarriedoutin

Drosophilamelanogaster (Rice,1992;Rice,1996;Holland&Rice,1999;Rice&

Holland,2005).Thepromiscuousmatingsystemoffruitflieshadbeenexperimentally manipulatedinordertoeithercontrolandarrestfemalecounteradaptationsinresponse tomaleoffense/defensestrategies(Rice,1996)ortoenforce(Holland&

Rice,1999;Rice&Holland,2005).Maleseminalfluidproductsaretoxictofemales

(Chapmanetal.,1995).Usingartificialselection,femalescanberestrainedtocounter adapttomaleadaptations.A“staticfemalephenotype”iscreatedbyremovingfemale offspringofexperimentalcrossingsandsubstitutingthemwithfemalesoftheoriginal femalestockwhichhavenotundergoneselection.Meanwhile,malesareartificially selected.Theresultisthatmalefitnessincreaseswhilefemalefitnessandsurvival decreases(Rice,1996).Inforcedmonogamy,bothsexeslessenthestrengthof antagonismandtheresultisreducedmalepersistenceandreducedfemaleresistancewith anincreasedreproductiverateinthepopulation.Inbothcases,theexperimental manipulationinterfereswiththeongoingarmsracebetweenmaleandfemale .

4)Analysisofdifferentpopulationsandpopulationcrosses Thesestudiesfollowthe rationalethatantagonisticcoevolutionproduceshighratesofevolutionthatarevariable indifferentpopulations(seein Idoteabaltica ,Jormalainenetal.,2000).Populations expressingdifferentsexratios,sexualdimorphism,andsynchronyinreproduction presentdifferentdegreesofaggressivenessanddifferentdynamicsinthematingcontest.

20

Adaptationsandcounteradaptationsvaryaccordingtotheframeworkofthepopulation andthesocialenvironment.Analysisinallopatricpopulationshasbeensuggested,witha similarfunctionofphylogeneticcomparisons,byHollandandRice(1998).

Thefourapproachesoutlinedabovecanbeusedtoassessandmeasuresexual conflicts.Theycanbeusedindividuallyorinacombinedfashion,dependingonthestudy system,andtheyprovideaniceframeworkofmethodologiestotestthepredictionsof theoreticalmodels.Someofthesemethodsareusedinthisthesis(measuringcosts, comparativeapproach,andanalysisofdifferentpopulations)togetherwithmanipulative experimentstomeasurenotonlythecostsbutalsotheoptimalbehaviorstomaximize benefitsforeachsex.

Mateguardingandsexualconflict

Conflictsbetweenmatesmayoccuratdifferentlevelsofbiologicalorganization: molecular(withinteractionsbetweensignalsandreceptors),morphological,orbehavioral

(courtshipdisplays,matingstrategies,etc.).Exaggeratedtraitsinmalesorconspicuous costsforfemalesareusuallygivenasexamplesofsexualconflictsandarmsraces betweenthesexes.Inparticular,morphologicaladaptationsthatallowpersistencefor malesandresistanceforfemalesareusuallychosentoaddresstheproblem.Nevertheless, differentbehaviorscanalsoevolveinresponsetoantagonisticcoevolutionbetweenthe sexes.Manyconflictscanariseovermatingdecisionsotherthanmatechoice.For example,areductioninfitnesscandependonareducedpossibilityofmating,high energeticcostsofmating,increasedriskofpredation,orsuboptimaluseoftime.

21

Evenbeforetherecentrenewedinterestinthetopic,mateguardinghasbeen consideredaninterestingcaseofintersexualconflict(Jormalainenetal.,1994b;

Yamamura&Jormalainen,1996;Jormalainen,1998;Watsonetal.,1998;Härdlingetal.,

1999;Jormalainenetal.,2000;Jormalainenetal.,2001).Mateguardingisamale strategytomonopolizemates.Itensurespaternityformaleswhenfemalesarerare

(unbalancedsexratio)ordifficulttofind,inthepresenceofhighmalemalecompetition

(intheformofspermcompetitionoracquisitionoffemales),orwhenfemalereceptivity isrestrictedintime.Mateguardingappliestoabroadvarietyoftaxa,from to,includingrotifers(Schröder,2003),(Foitziketal.,2002),water striders(Amano&Hayashi,1998),weevils(Hararietal.,2003),(Saekietal.,

2005),dungflies(Parker&Simmons,1994),(Schenketal.,2004), damselflies(Zeissetal.,1999),spiders(Schneider,1997;Prenteretal.,2003),crickets

(Batemanetal.,2001),isopods(Ridley&Thompson,1979;Jormalainenetal.,1999), amphipods(Hunte&Myers,1988;Cothran,2004),blue(Jivoff&Hines,1998b), hermitcrabs(Wadaetal.,1999),lizards(Olsson,1993;Cooper&Vitt,2002),birds

(Hasselquist&Bensch,1991;Komdeur,2001;Davis,2002),and(Henzietal.,

1998;Matsubara,2003).

Mateguardingcanbeperformedbeforematinginordertoensureamate

(precopulatorymateguarding),oraftermating,inordertopreventthefemalefromre mating(postcopulatorymateguarding).Precopulatorymateguardinginvolvesaconflict betweenthesexesoverthetiminganddurationofmating.

22

Interestingly,Parker,whoprovidedthefirsttheoreticalapproachtosexual conflict(Parker,1979),initiallyanalyzedmateguardingalmostpurelyasa“ maletime investmentstrategy ”(Parker,1974).Hedefinedthestrategyasthe“ optimumallocation oftime ”spentwithafemaleversussearchingforotherfemales,inordertomaximizethe reproductiveoutputofmales(Parker,1974),eventhoughheconsideredthat“ female rejectionresponce ”canbeeffectiveinreducingtheoptimalpersistenceduration(page

165).Parker’sanalysistookintoconsiderationdifferenttypesoffemales(i.e.,mated females vs .virgins),differentencounterrates,changesintheprobabilityofcopulation withtime,andcostssustainedbymales,inordertoanswertwomainquestions:when shouldamalestartguardingandforhowlong?However,themaximizationofmale reproductivesuccesscanresultinareductionoffemalereproductivesuccess.

Precopulatorymateguardingthuscanbeacaseofintersexualconflict(Jormalainenet al.,1994b;Rowe,1994;Yamamura&Jormalainen,1996;Amano&Hayashi,1998;

Jormalainen,1998;Watsonetal.,1998;Härdlingetal.,1999;Zeissetal.,1999;

Jormalainenetal.,2000;Plaistowetal.,2003;Cothran,2004;Härdlingetal.,2004).

PrecopulatorymateguardinginCrustacea

Precopulatorymateguardingiscommonincrustaceansbecausefemalesareoften receptiveonlyforashorttimeaftermolting(excellentreviewinJormalainen,1998).

Thusfemalesnearingmoltingarevaluableresourcestobeguardedbymales.Manyof theinitialtheoreticalmodelsofmateguardinghavebeenbasedonexperimentsin crustaceans,especiallyinamphipods(Jormalainenetal.,1994b;Jormalainen&

23

Merilaita,1995;Hatcher&Dunn,1997;Dunn,1998;Humeetal.,2002;Plaistowetal.,

2003;Cothran,2004)andisopods(Jormalainen&Merilaita,1993;Jormalainen&

Merilaita,1995;Jormalainen&Shuster,1999;Jormalainenetal.,1999;Jormalainenet al.,2000;Sparkesetal.,2000;Jormalainenetal.,2001;Sparkesetal.,2002).

Thereishighvariationinmateguardingmodesamongcrustaceans.Differenttaxa presentvariationinprecopulatoryguardingduration,thepossibilityofmaletakeovers

(i.e.,whenmalesdislodgeotherguardingmales),thepossibilityofspermcompetition andspermstorage,influenceofpreviousexperience(matinghistory)inthedecisionof howlongtoguard,highriskofpredationonguardingpairs,effectofmalesize,and efficiencyoffemaleresistance.Someparameterscanvarynotonlybetweenspeciesbut alsoamongpopulationsduetovariationinenvironmentalconditions(Jormalainenetal.,

2000).Table1.4listsmateguardingdurationandtheabovementionedparameters influencingmateguardingbehaviorsforvariousordersofCrustacea(withreferences fromtheliterature).

24

TABLE 1.4 DATAOFMATEGUARDINGFROMLITERATURE ISTORY H KEOVERS ATING ALESIZE RDER EFERENCE REDATIONONCOUPLES EMALERESISTANCE PECIES PERMCOMPETITION PERMSTORAGE P M TA F M O MGTIME R S S S Hyalellaazteca 35days N N N Y (Strong,1973;Borowsky, 1984;Cothran,2004;Pascoe etal.,2004;Wellborn& Cothran,2007;Cothran, 2008b) Gammarus 100h Y N (Jormalainen&Merilaita, zaddachi 1995) Gammarus 4days Y Y (Hunteetal.,1985;Dunhamet lawrencianus al.,1989;Dunham& Hurshman,1990) Gammaruspulex Justoveraweek Y Y N (Ward,1984b;Ward,1986; Amphipoda toalmosta Bollache&Cezilly,2004a; month Bollache&Cezilly,2004b) Gammarus 6to28days Y (Hartnoll&Smith,1980) duebenii Paracalliope Days N (Sutherlandetal.,2007) fluviatilis Artemiasalina Hourstodays (Belk,1991;Rogers,2002)

Artemiopsissp. Hourstodays (Rogers,2002)

Branchinectasp. Seconds (Rogers,2002)

Branchipodopsis Seconds (Rogers,2002) sp. Chirocephalussp. Hourstodays (Rogers,2002) Anostraca Eubranchipussp. Hourstodays (Rogers,2002) Linderiellasp. Hourstodays (Rogers,2002)

Streptocephalussp. Seconds (Rogers,2002)

Thamnocephalus Seconds (Rogers,2002) sp. Harpacticoidand Refsin(Lonsdaleetal.,1998) parasiticspp. Copepoda

25 ISTORY H KEOVERS ATING ALESIZE RDER EFERENCE REDATIONONCOUPLES EMALERESISTANCE PECIES PERMCOMPETITION PERMSTORAGE F M O MGTIME S S S P M R TA Hymenocerapicta* 140530h (Seibt&Wickler,1979; Wickler&Seibt,1981) Callinectessapidus Y Refsin(Bauer,1996;Jivoff& Hines,1998a)

Decapoda Rhyndocinetes 23180min Y Y Y Y (VanSon&Thiel,2006) typus** Lirceusfontinalis 13days Y N N Y (Sparkesetal.,2000)

Idoteabaltica 37h Y Y Y (Jormalainenetal.,1994b; Jormalainen&Merilaita, 1995) Jaeraistri; 3daysormore (Veuille,1980) J.italica; Isopoda J.nordmanni Asellusaquaticus; 100h;612days Y N Y Y/N (Manning,1975;Ridley& A.meridianus N Thompson,1979;Manning, 1980;Jormalainen& Merilaita,1995) Eulimnadiatexana Fromminutes N (Weeksetal.,2004;Weeks& upto2hours Benvenuto,2008)thisthesis Eulimnadiadahli Fromminutes Thisthesis upto3.5hours Limnadiabadia Fromminutes Y Thisthesis

Spinicaudata upto20hours Limnadopsistatei 623hours Thisthesis *ModifiedextendedMG;**“Cagestage”(maleskeepsthefemalebetweentheirpereopods) Schemeofmateguardingparametersfromdifferentspeciesfromtheliterature.MGtime:duration ofmateguarding;Takeover:possibilityformalestodislodgeothermalesduringaguardingevent;Sperm competition:possibilityforcompetitioninthefemalegenitaltract;Matinghistory:influenceofpreviousmating onsuccessivematingbehaviors;Predationoncouples:higherriskofpredationonmateguardingcouplesthan singleindividuals;Spermstorage:possibilityofspermstoragebyfemales;Malesize:effectofmalesizeon matinginteractions;Femaleresistance:undertakingvariousbehaviorsinattemptstodislodgeguardingmales. Modelsofmateguarding

Mateguardingisacomplexbehaviorthatinvolvestheinteractionsofmultiple

parameters.Manyoftheseparameterschangethroughtimeduringasinglemating

26

eventandthusthesystemishighlydynamic.Ifwelookatitfromthemaleperspective, mateguardingrepresentsacomplicateddecisionmakingprocess.Moreover,each decision(madebymalesandfemales)influencesthedecisionsoftheoppositesex.For allthesereasons,mateguardinghasbeeninvestigatedusingavarietyofdifferent approachesincludinggametheory,optimalitymodels,andevolutionarilystable strategies(Parker,1974;Seibt&Wickler,1979;Wickler&Seibt,1981;Grafen&

Ridley,1983;Yamamura,1987;Jormalainenetal.,1994b;Yamamura&Jormalainen,

1996;Jormalainen,1998;Härdlingetal.,1999;Härdlingetal.,2001;Härdlingetal.,

2004).

Abriefsummaryofsomemodelsofprecopulatorymateguardingincrustaceans isreportedbelow,whichispresentedinordertofocusattentiononchangesin perspectivesandinmethodologicalapproachestotheissueofmateguardingasan optimalmatingstrategy.

Parker’smodel(1974)

Aspreviouslymentioned,Parker(1974)wasthefirsttoinvestigatemateguarding fromatheoreticalpointofview.Heapproachedthebehaviorinanevolutionary framework,since“ timewaste(i.e.,whereanindividualspendslongerthanother individualstocompleteagivenactivity)canconstituteaconsiderableselective disadvantage ”(page157).Themainfocusofhispaperismalereproductivesuccessand theparameterstakenintoaccountareencounterfrequencywithmates,typesofmates, andthepossibilityoftakeovers(onemaledisplacinganotherduringmateguarding).The

27

modelisbasedontheassumptionsthatfemalesarenotalwaysreceptiveandmalescan assessfemalereceptivity(evenjustintheformofa“ probabilisticestimate ”).

Parkerdevelopedagraphicaloptimalitymodelinvolvingagametheoretical approach(thesuccessfulguardingtimedependsontheguardingtimeofothermalesin thepopulation).Accordingtothismodel,malesshouldoptimizetheirguardingtime, especiallyincompetitivesituations,decidingtheoptimaltimetoinvestinafemale insteadofsearchingforanother.Withhighercompetition,longerguardingtimesare expectedunlesstakeoversarecommon(inthiscasetheinvestmentgainedwithguarding canbelostifanothermaleisabletotakeovera“guarded”female).

WicklerandSeibt’smodels(19791981)

SeibtandWickler(Seibt&Wickler,1979;Wickler&Seibt,1981)focused theirmodelonthefemalelifecycle(i,interspawninterval,indays)andthefrequency offemaleencountersperday(x).Thelatterparameterisinfluencedbypopulation densityandoperationalsexratio,the“averageratiooffertilizablefemalestosexually activemalesatanygiventime”(Emlen,1976;Emlen&Oring,1977).Theirelegant andsimplemodelusedonlythosetwovariables(iandx)toseparatethreealternative malematingstrategies:partnerfidelity,mateguarding,andpuresearching.Their modelrequiressomeassumptions:bothsexesbreedcontinuously,femalereceptivityis notsynchronous,andthereisonlyonecopulationper.Mateguardingisthen advantageouswithintermediateencounterrates(lowencounterratesfavorpartner fidelity,whilehighencounterratesfavorapuresearchingstrategy).

28

Whenmalemalecompetitionistakenintoaccount,themaletacticchanges:with moremalescompetingforaccesstomates,theencounterratewithfemalesdecreasesand amateguardingstrategyismoresuccessfulthanpuresearching.Alsomaleabilityto detectreceptivefemalescaninfluencethemateguardingtactic:malesabletoassessthe timelefttofemalereceptivitycanchosespecificfemales(theonesclosertoreceptivity) inordertodecreaseguardingtime.

Grafen&Ridley’smodel(1983)

FollowingParker’sapproach(1974),GrafenandRidley(1983)proposeda mathematicalmodeltooptimizemalefitness.Intheirmodel,theinfluenceofmalesizeis takenintoconsideration.Ingeneral,sizeisimportantbecauseitisdirectlyrelatedto fecundityinfemalesandtocompetitivesuperiorityinmales(bothformalemale competitionand/ormalefemaleconflicts).Theauthorsconsideredtwodifferent scenarios:onewhereallmalesareidenticalandtheotherwheremalesdifferinsizeand competedirectly,usurpingfemalesfromsmallermales.Takeovers,alreadypostulatedby

Parker(1974),areexplicitexamplesofdirectmalemalecompetition:largermalesdonot experiencethesameoperationalsexratioassmallermalesbecausetheycangainaccess tomorereceptivefemales.Asaresult,whenmalesizeentersintothemodelitcan actuallyinfluencetheavailablesexratio.ThemainhypothesisofGrafenandRidley’s

(1983)modelisthat,whentakeoversoccur,largermalesshouldguardforashorter periodthansmallermales.Usingthesameterminologyoftheauthors,themales’

“guardingcriterion ”isoptimalwhenthe“ turnovertime ”(searchingtimeplusguarding time)isminimalandtherateofcopulationismaximal(Grafen&Ridley,1983).The

29

optimizationoftheguardingperiodisaprerogativeofthebiggermales,notinfluencedat allbythepresenceofthesmallones(takeoversareconsideredcostlessinthemodel)or bythebehavioroffemales(resistanceisnotincludedinthemodel).

Hunte,Myers,andDoyle’smodel(1985)

Mateguardingisadecisionmakingprocess.Hunteetal.(1985)analyzedthis processusingBayesiandecisiontheory,anapproachbasedonpriorandcurrent probabilities(McNamaraetal.,2006).Thefirstpieceofinformationavailabletomalesin apopulationusingmateguardingbehavioris,accordingtoHunteetal.(1985),the distributionofnonpairedfemales(priorprobability).Thisdistributioncanbeastable characteristicofthepopulation(anditsvaluesinnatelyknownbymales)ortheresultof samplingbymalesinthelocalarea.Thesecondpieceofinformationisthefemalestate

(timetoreceptivity).Themalecannotbecertainaboutthis,butthisinformationcanbe gatheredthroughphysicalcontactwithafemale(currentprobability).Moreover,males considerthetimealreadyinvestedinmateguarding.Bothpastinvestmentandfemale state changewithtimeinthesamedirection:thefemalebecomesmorevaluable

(approachingreceptivity)whilethemalebecomescommittedtothatspecificmate becauseofthetimehehasalreadyinvested.Hunteetal.(1985)thusaddedthe importanceofpastinvestmentandfemaledistributioninthepopulationtotheprevious models.Boththesevariableschangetheoverallmateguardingtimeinamphipods,and malesthathaveguardedtheirmateslongerwillbemoredeterminedtopersistthanmales whojuststartedtheguardingphase.Infact,duringtheguardingphase,thetimeleftto

30

femalereceptivitydiminisheswhilethemaleinvestmentinthatparticularfemale increases.

Yamamura’smodel(1987)

Yamamura(1987)usedtheGrafenandRidley’smodel(1983)asastartingpoint.

Yamamuradevelopedamodelforanevolutionarystablestrategy(ESS)ofmales, minimizingsearchingandguardingtimeandoptimizingtheguardingcriterion(usingsex ratio,encounterrates,costs,andfemalereceptivityasparameters).Mateguardingtimeis expectedtodecreasewhencostsarenothighandencounterswithreceptivefemalesare frequent,inagreementwithpreviousmodels.

ElwoodandDick’smodel(1990)

TheGrafenandRidley(1983)hypothesis,thatlargermalesguardfemalesfora shortertimecomparedtosmallermales,wastestedbyElwoodandDickin Gammarus

(1990).Intheirexperiment,apositivecorrelationbetweentimespentguardingandmale sizewasfound:contrarytothehypothesis,largermalesspentalongertimeinprecopula comparedtosmallermales.Thetheoreticalmodelhypothesizedthat,ifmalesarenot equalinsize,thenlargerindividualscaneasily(withnocosts)dislodgesmallermales andguardfemales.However,takeoversarenotcommonin Gammarus andtheypresent somecostsforthemales.Also,guardingitselfrequiresexpenditureofenergy.The empiricaldatacollectedbyElwoodandDick(1990)didnotsupportthepreviousmodel, butinsteadshowedthatbiggermalescanbettersustainmateguardingcosts.Inthisway largemalescanperformmateguardinglongerthansmallermales.Theauthorsthen proposedanewmodel(verbalandgraphical),consideringtheinfluenceofenergeticcosts

31

forlargeandsmallanimalsduringmateguardingandpostulatingsizeassortativemating andprolongedmateguardingforlargermales.Theirmodelwasdifferentfromthe previousmodelsbecauseitexplicitlyincludedanenergeticcostofguardingformales, andtheimportanceofsize(asameasureofavailableenergy)tosustainthosecosts.With theseadditions,ElwoodandDick(1990)wereabletoexplaintheirempiricalresults betterthanbyusingthepreviousmodel.

Jormalainen,Tuomi,andYamamura’smodel(1994)

AllthemodelsIhavediscussedthusfarfocusonthenotionthatmalesmaximize theirreproductivesuccessbyoptimizingtheirtime(timespentguardingafemaleinstead ofsearchingforanothermate).Malesshouldconsiderthefrequencyofencounterswith females,analyzethefemalestate,competewithothermales(intheformoftakeoversor guardingtimedecisions),evaluateenergeticcosts(basedonsize),andkeepinmindtheir pastinvestment.Inallofthesemodels,thefemale’srolehadbeenignoredorjustbriefly mentionedandtheconflictoveroptimaltimingstrategybetweenmalesandfemales duringtheguardingphasehadnotbeenconsidered.

Jormalainenetal.(1994b)werethefirsttoexplicitlytreatmateguardingasa caseofintersexualconflict.Theyobservedprecopulatorystrugglesintheaquaticisopod

Idoteabaltica ,andtheyinterpretedfemaleresistanceasaformofmatechoiceora conflictonmateguardingduration.Sexesdifferinsurvivalandinabilitytofindmates.

Intheiranalysis,Jormalainenetal.(1994b)developeddifferentfitnessgainfunctions formalesandfemales,usingfecundityandsurvivalcosts.Thecomparisonbetweenthe gaincurvesimpliedaconflict.Malestendtosustainhighercostsiftheylosethechance

32

tofertilizeafemalewhensheissexuallyreceptive.Formales,longguardingperiods reducethisrisk.Females,onthecontrary,sustainahighcostwhilebeingguarded

(Table1.3).Theoptimalguardingtimedoesnotcoincideinthetwosexes.Fromthe femalepointofview,shortguardingperiodsarepreferable.Malesarewillingtosustain longerguardingandtheiroptimalguardingcriterionwillchangeduetointeractionwith femalesandothermales.

YamamuraandJormalainen’smodel(1996)

YamamuraandJormalainen(1996)usedagametheoreticalapproachtosolvea compromisedESS.Theevolutionarystableguardingtimedependsonthedifferentpower amongthesexes(i.e.,size),guardingcosts,andsexratio.Thenoveltyofthisresult appearsinpopulationswherethefemalereceptivecycleisasynchronous.Inthiscaseitis notalwaystruethatmateguardingtimedecreasesinfemalebiasedsituations(where malesshouldhavehighencounterrates).Thisisbecausethemorecommonsex(females inourexample)ispreparedtopayhighercoststhanusualinordertoobtainamate(and thusfemalesarewillingtobeguardedforalongertime).Thus,thevariationofasingle parameterallowsfordifferentpredictionsfromtheinitialmodels.

Jormalainen’smodel(1998)

Theresultsofthepreviousmodel(Jormalainenetal.,1994b)werepresentedin graphicalform(Fig.1.1)inanexcellentreviewofprecopulatorymateguardingin crustaceans(Jormalainen,1998).Inthismodel,costsforeachsexarerepresentedin relationtomateguardingduration(infemalemoltcycle).

33

Figure 1.1 Variationinmaximumacceptableconflictcostsformalesandfemalesinrelationto time(femalemoltcycle).t c:compromisedguardingtime;t f:optimalguardingtimeforfemale;t m: optimalguardingtimeformale;t’ c:newcompromisedguardingtimewhenonesexoverpowers the other. From Figure 2 page 294 in Jormalainen (1998) “Precopulatory mate guarding in crustaceans: male competitive strategy and intersexual conflict”The Quarterly Review of Biology, 73(3): 275304 ©1998 The University of Chicago; used with permission of the publisher,TheUniversityofChicagoPress.

Sincecostsandbenefitsofincreasedmatingdurationareoftenasymmetrical,maleand femaleoptimamaynotcoincide.Intheory,bothsexesshouldgainfromashort guardingtime,butsincemalesundergoahighriskoflosingthematingopportunity, theyarewillingtoguardlonger.Incrustaceans,timingoffemalemoltingdetermines receptivityformating(time0,Fig.1.1),andasthistimeapproaches,malesare maximallywillingtoincurcoststoguardfemales.Becausefemalesalsobenefitfrom mating,theydonotexpendenergytoresistmaleswhentheyareclosetomolting.As

34

timebeforemoltingincreases,coststofemalesofbeingmateguardedincrease(i.e., femalesmightexperienceenergeticcostsbycarryingguardingmales,mightbelimited intheirfeedingbehavior,orbesusceptibletohigherpredationwhileguarded),andat somepoint(t f)femalesarewillingtoexpendenergytoavoidbeingguardedbecause prolongedguardingisexpectedtobecostlytothem.Malesaremotivatedtofightasthe costoflosingafemaleincreases(i.e.,closertothefemalemolt;t f).

Thetimebetweent fandt misthetimeperiodduringwhichintersexualconflictsover mateguardingismostlikelytomanifest(Fig.1.1).

Theactualstartingtimeformateguarding(t c)isacompromisebetweenmale andfemaleinterests,andispredictedtooccurwhenthecurvedepictingthemale’s willingnesstoexpendenergytoguardfemalescrossesthecurvedepictingthefemale’s willingnesstoresistsuchguarding.Essentiallytherearethreedifferentphasestomate guarding(movingfromrighttoleftonthehorizontalaxisinFig.1.1):(a)noinitial conflict,(b)initiationofthecontest,whenmalesfirstattemptguarding,butfemales resiststrongly,and(c)areductioninfemaleresistanceleadingtoeventualcontest conclusionasthefemalemoltapproachesandcopulationtakesplace(Jormalainenetal.,

1994b;Jormalainen,1998).

Mateguardingrepresentsaninterestingcaseofbehavioralconflictbecauseitisa dynamicsystemsensitivetoenvironmentalconditions,suchasmaleencounterrateswith females,contendersize,andthepossibilityofmaletakeovers.Forexample,ifonesexis smallerthantheother(e.g.,asmallerfemale,representedbyadashedlineinFig.1.1),

35

thecompromisedguardingtimeisshiftedtowardtheoptimalguardingtimeofthelarger sex(t’ c).Anoppositeshiftispredictedwhenfemalesarelargerandthusresistanceis higher.Theseexamplescanbeusefulwhentestingthemodelinthelaboratoryorinthe field.Moreover,thepowerasymmetrybetweenthesexesisparticularlyhelpfulwhen usinggametheory(seeYamamura&Jormalainen,1996).

Härdling,Jormalainen,andTuomi’smodel(1999)

AnESSmaynotalwaysbereached.Härdlingetal.(1999)developedamodel usingasymmetricgametheory.Thetendencytofight(malepersistenceandfemale resistance)isconsideredasacontinuousvariable,notwithfixedconstantvalues.Costs areallowedtochangecontinuouslyaswell.Whencostsarelowandlinearlyincreasing withaggressiveness(symmetricallyforbothmalesandfemales),thereisnoESS,but ratheranescalationofaggressiveness,withacyclictendencyforonesextowin

(alternationofmalesandfemaleswinning).Inasituationwherecostsareasymmetric betweensexes,alocallystablestrategycanbefound.Whenonesexismoreaggressive

(asymmetryinfighting),theothersexshouldbepassive.Butthissituationisjustlocally stablebecauseaggressivenessispresupposedtochange.Ahugechangeinaggressiveness inthepassivesexisnotexpected,butminorchangescanoccur.Ifaggressiveness increasedconsiderably,thestabilityisdisruptedandanewcyclicdynamiccanstart.

Whencostsareexponentiallyincreasingwithfights,bothsexescontinuetobeaggressive

(becausetheywouldhavenoadvantagetoretreatatthatpointofthefight).However, sinceaggressivenessiscostly,anESSisreached.Bothsexesarefightingbuttheyare underthecontroloffitnesscosts:thecannotescalatetolevelstoo

36

disadvantageousforeithersex.Again,costsarefoundtodeterminethesolutionofthe contest,andthismodeladdsincreasedcomplexity,allowingbehaviorsandcoststo changecontinuously.

Härdling,Kokko,andElwood(2004)

Anothercomplexmodelwasformulatedtotakeintoaccountnumerousvariables thatvarythroughtime(Härdlingetal.,2004).Themodelrevealsacontinuumofoptimal strategies,inaccordancewiththecombinationofmanyparameters,andtakesinto accountbehavioralplasticityasasuccessfulkeytoresolvingmatingconflicts.Themodel alsocanbeusedtounderstandtheconflictingresultsoftheabovementionedempirical studies,explainingwhybigmalescaneitherguardfemalesforashorter(Grafen&

Ridley,1983)oralonger(Elwood&Dick,1990)periodoftime,comparedtosmaller males.Thisoutcomedependsuponthepossibilityoftakeoversandthefrequencyof encounters.Whentakeoversaretherule,competitionbetweenmalesisphysical,with biggermalesdisplacingsmalleronesinordertostartguardinglaterinthefemalemolt cycle,andtheGrafenandRidley’s(1983)modelisconfirmed.Whentakeoversdonot occur,competitionisnotdirect,butbiggermalescanaffordalongerguardingtime becausetheycanbettersustainthecosts.Inaddition,byallowingvariationinintensity andsuccessoftakeovers,amoredetailedscaleofsizeclassescanbedetected(not restrictedto“large”and“small”)andmalesofintermediatesizeturnouttohavedifferent optimalstrategiescomparedtosmallerorbiggermales.

Ingeneral,inallthesemodels,itisapparenthow,withtime,eachmodelbuildson aprecedingmodelandparametersfirstignored(forsimplicityorforlackofrelevancein

37

theindividualsystemstudied)areadded,makingtheassumptionsandthepredictions moregeneral,andthusapplicabletomoretaxa(allowingforacomparativeapproachto mateguarding).Thefollowingstepconsistsintestingthesetheoreticalmodelsinthe laboratoryorinafieldsetting.

Anempiricalapproach:theeconomicsofmateguarding

Whatinfluencestheoptimalguardingtimeinthetwosexes?Themaincostfor themaleislostopportunitytofertilizereceptivefemales,butbothmalesandfemales undergoothercosts.Toaddressthe“negativefitnesscovariance”assumedinmodelsof intersexualconflictsthereistheneedtomeasurecostsandbenefitsforthetwosexes.In studiesofmateguardingbehaviortheessentialcomparisonisbetweenthecostsof guardingforthemaleandthecostsofbeingguardedforthefemale.Thesetwotypesof costarenotnecessarilyequal.Measuringcostsisnoteasy,especiallyifcostsneedtobe quantifiedandassignedinrelativeproportiontothetwosexes,becauseofasymmetryof energyexpenditureandfitnessconsequences.Evenwhenbothsexesexperiencethe sametypeofcosts,themagnitudemightdifferinmalesandfemales.Graphically,the fitnesslinescanchangebothinslopeandintercept(Cordero&Eberhard,2003).

Increasedriskofpredationisacostincurredbybothsexesduringguarding.

Higherratesofpredationduringmating(Table1.3)canbeduetoincreasedactivitywhile searchingtolocatemates(VanSon&Thiel,2006),changesinmicrohabitat,reduced possibilityofmovementduringmating,andthefactthattwoindividualsaremore conspicuousthanasingleone(Strong,1973;Ward,1986).Mateguardingbehaviorcan

38

lastforalongtime,limitingmovementsandenhancingconspicuousness,andthus increasingtheriskofpredationthroughtime.Dependingonthespecies,malesorfemales canbemoreexposedtopredationriskduringtheguardingphase(Table1.4).

Mateguardingiscostlyalsofromanenergeticpointofview.Jormalainenetal.

(2001)evaluatedenergeticcostsintermsofenergeticdemandofstoragecompounds

(glycogenandlipids)forbothsexes,intheisopod Idoteabaltica .Noenergeticcostsof matingintermsofenergeticcompoundswerefoundinmales.Incontrast,females experiencedenergeticcosts(decreasedglycogenlevels)andreproductivecosts(reduction ofeggmass)withlongerguarding.IntheamphipodGammaruspulex ,energystorage reservesarecorrelatedwithpairinginthefield,andthecostofguardingformalesseems relatedtofemalesize(largerfemalesareabletoresistmoreeffectively)andnotby restrictiononfeedingorguardingduration(Plaistowetal.,2003).Anotherapproachto measuringenergeticcostshadbeenusedbyWatsonetal.(1998).Inthiscase,energetic costsofmatecarryingandmateresistancebehaviorsweremeasuredinthewaterstrider

Aquariusremigis usingrespirometricrecordings.Again,beingguarded(i.e.,carryinga male)andattemptingtoresistareenergeticallycostlybehaviorstofemales.

Mateguardingmayresultinchangesinfoodconsumption,representingacostfor oneorbothsexes.Forexample,theamphipod Gammaruslawrencianus usesgnathopods tomanipulatefood:duringmateguarding,themaleusesitsgnathopodstoholdthe femaleandthisreducestherateoffoodintake,whichresultsinreducedmalegrowth.In contrast,femalefeedingisnotinfluencedbymatingstatus(Robinson&Doyle,1985).In

39

thiscase,thecosttomalesisnotrepresentedbytheenergeticexpenditureofcarryinga female,butratherinreducedfeedingopportunities.

Femalebehaviorcanbecostlytomales:in Gammarus ,sizeassortativematingis common(Elwoodetal.,1987)andthemajorcostseemstobeovercomingfemale resistance(andnotthecostofcarryingafemale).Femaleresistanceinfluencesmating interactionsalsointheisopods Lirceusfontinalis (Sparkesetal.,2000;Sparkesetal.,

2002), Idoteabaltica (Jormalainen&Merilaita,1995),and Thermosphaeroma thermophilum (Jormalainen&Shuster,1999).Inparticular I.baltica and T. thermophilum femaleswereexperimentallymanipulatedusingosmoticstressanda muscularblockingchemicalinordertoreducefemaleresistance.Asaresult,mate guardingwassignificantlylongerthaninthecontrol(Jormalainen&Merilaita,1995;

Jormalainen&Shuster,1999).

Femalesthemselvesexpendmuchenergytoresistmales(Watsonetal.,1998),so muchthatin Gerrisremigis ,femalescanceaseresistanceandallowamaletoguardin ordertoavoidharassmentbyothermales(Wilcox,1984),andthusminimizeoverall costs.

Inconclusion,thereisavarietyofcostsinvolvedinamateguardingevent.As shownabove,manyempiricalstudiesattemptedtoassessandquantifycostsinorderto detectthemagnitudeandstrengthofintersexualconflictsduringmateguardingbehavior.

Somecostsaresexspecific,otherarenot.However,whenbothsexesexperiencethe samekindofcosts,thesecostscanstillbeasymmetric,differentiallyinfluencingfitness ofmalesandfemales.

40

Mateguardinginanandrodioeciousspecies:howhermaphroditesfitintothe equation

Thetypeofmatingsystemcaninfluencetheoccurrenceandstrengthof intersexualconflicts.Intrulymonogamousspecies,theorysuggeststhatthereshouldbe noconflictsbecausethepositivefitnesscovarianceresultsinamutualisticcoevolution.

Thegeneticinterestsofmalesandfemalescoincide,andthereiscooperationin reproduction(Andersson,1994).Truemonogamyisnotverycommon:moleculartools helpedtorevealthatevenspeciesconsideredmonogamousoftenperformextrapair copulation(seereviewinGriffithetal.,2002).Multiplematingcanhavegenetic advantagesnotonlytomalesbutalsotofemales(Jennions&Petrie,2000).

Intersexualantagonisticselectionistheorizedtobestrongerinsexualorganisms withapromiscuousmatingsystemandinternalfertilizationbecauseofthedirect interactionofproteinsandseminalfluidbetweenmalesandfemalesandpossibly betweenmultiplematesofthesamefemale(Rice,1998).Thisantagonismcaninfluence theevolutionofcourtshipdisplays,therateofmating,thefertilizationprocess, precopulatoryandpostcopulatoryinteractions,thechoiceofmatingtimeandplace,the riskofpredation,andtransmissionofparasites/diseases.Thus,intersexualconflictshave beenanalyzedmainlyindioeciousandpolygamousspecies.Hermaphroditesrepresenta uniquesituationbecausetheycancombine,inasingleindividual,maleandfemale evolutionaryinterests.Inmostcases,hermaphroditesarenotselfcompatibleandthus stillneedmates.Thus,costsandbenefitsrelatedtoreproductionwillvarydepending

41

uponwhethertheactsasspermdonororspermrecipient.Whenaspecificroleis preferred,conflictscanarise(Michiels,1998).

Tomyknowledge,intersexualconflicthasneverbeenspecificallytestedin mixedbreedingsystems,suchasgynodioecy(coexistenceofhermaphroditesand females)or(coexistenceofhermaphroditesandmales).GemsandRiddle

(1996)observedintheandrodioecious Caenorhabditiselegans areductionof hermaphroditelifespanupto50%byoutcrossingwithmales,butnotduringselfing.

Theyfoundcostsassociatedwithcopulation,butnotwitheggproduction,malesperm interaction,orinternalhatchingoflarvae.Thisexcellentexampleshouldbefurther investigated.

Eberhard(2005)suggestedusingfacultativehermaphrodites(organismswhere the“ female’sstrictneedofmalestoreproduce ”isremoved)asapossibletestto investigatesexuallyantagonisticcoevolution.Becausehermaphroditesdonot necessarilyneedmalestoreproduce(andthusarelessconstrainedbymalecounter adaptations),femaletraitsunderantagonisticselectionshouldevolvemorefreely.

Facultativehermaphroditescanavoid“ maleimposedcosts ,”iftheyaretoohigh, completelyavoidinganyinteractionswithmaleswithoutreducingtheirfitnesstozero

(whichwouldhappeninfemalesundersimilarcircumstances).

Androdioecyisararematingsystemwhichmightallowusbetterinsightinto sexualconflictsbecauseoftheintermediatenatureofthisbreedingsystemtothatof hermaphroditismordioecy(Weeksetal.,2006a).Comparingtheresponsesoffemales tomalesrelativetothoseofhermaphroditestomalescanhelptodiscerndifferencesin

42

mateguardingstrategies.Thisrepresentsauniquemethodtoexploretheideasof intersexualconflicts.Thecomparisonofdioecyandandrodioecyallowsadifferent approachtothisareaofstudyandhasthepotentialtomakeavaluablecontributionto ourunderstandingofconflictovermateguarding.

Thestudysystem

ClamshrimpClassBranchiopoda,SubclassPhyllopoda,OrderDiplostraca,

SubordersLaevicaudata,Spinicaudata,andCyclestherida(Martin&Davis,2001) representanexcellentopportunitytotestthepredictionsofmodelsofmateguardingin laboratoryandfieldsettings.Clamshrimppresentavarietyofmatingsystems, unisexualorbisexual,includingparthenogenesis,cyclicparthenogenesis, hermaphroditism,androdioecy,anddioecy(Sassaman,1995;Weeksetal.,2008).

Myoveralldissertationprojectfocusesonprecopulatorymateguardinginclam shrimp,investigatingdifferencesbetweendioeciousandandrodioeciousspecies.

Sedimentcontainingencystedeggscanbeeasilybroughtintothelaboratoryand hydrated.Therearemanyadvantagestousingthissysteminthelab:thesimpleprotocol tobreedanimals,thelargenumberofanimalsthatcanberaised,thequicklifecycle(a fewweekstotal),andthepossibilitytomanipulatedensitiesandsexratioseasily.Also, thereishighsexratiovariationinnaturalpopulations(Sassaman,1989;Weeksetal.,

2008)whichcanbeusedasafactorinfluencingmateguardingstrategies(i.e.,natural changesinmateencounterrates).Duetotheshortlifecycleandthehighfrequencyof eggclutchformation,theaveragemateguardingtimeisshort,fromafewminutestoa

43

coupleofhoursin Eulimnadiatexana (Weeksetal.,2004;Weeks&Benvenuto,2008).

Mateguardingtimevariesamongcrustaceansandcanrangefromafewhourstouptwo weeksinamphipodsandisopods(Table1.4).Timespansofdaystoweekscanbe problematicforstudyingmateguardingunderlaboratoryandfieldconditions.

Moreover,theclamshrimpsystemallowsmetoinvestigatesexualconflictsindifferent taxafromthosecommonlystudiedsofar(isopods,amphipods,andwaterstriders), whichhasbeensuggestedasbeingessentialforamorecompleteunderstandingofthese phenomena(Chapmanetal.,2003).Forallthesereasons,clamshrimpcouldbe consideredanovelanduniquelyinformativemodelsystemforthestudyofintersexual conflicts.

Overviewofresearchobjectives

Myprojectinvestigatesmateguardingbehaviorasacaseofintersexualconflict.I hadfourspecificobjectives,addressedwithfourdifferentprojects,performedinthelab andinthefield.

Myobjectiveswereto:

I. assesstheroleofthemoltinghormoneonmateguardingbehavior

II. analyzemateguardingtimeasacompromisebetweenmates’interests

III. performacomparisonofmateguardingstrategiesindifferentspecies

characterizedbydifferentmatingsystems

IV. studymateguardingbehaviorinafieldsetting

44

ObjectiveI wasdevelopedtoaddressthemechanismthatallowsmalestoperformmate guardinginan“optimal”way.Thisobjectivewasachievedusingthemoltinghormone

20Hydroxyecdysoneandinvestigatingitsroleasacuefor Eulimnadiatexana malesto assesshermaphroditereceptivity(ChapterII).

ObjectiveII wasdevelopedtoinvestigatewhethermateguardingtimein E.texana isa realcaseofintersexualconflict.Thisobjectivewasaddressedinthelabwhere,under manipulativeconditions,Iwasabletodisentanglemaleandhermaphroditeoptimalmate guardingtime.Ialsoassesseddifferentialcostsforthesexesduringtheguardingphase andtestedvariationinmateguardingtimeunderconditionsofanasymmetryinpower betweenthesexesbymatchinganimalsofdifferentsize(ChapterIII).

ObjectiveIII wasdevelopedtoinvestigatetheroleofthematingsystemininfluencing mateguardingbehaviors.Ianalyzedmateguardingbehaviorinadioeciousspecies,

Limnadiabadia ,toassesswhetherthisspecieswasexperiencingmateguardingasaform ofintersexualconflictinasimilarwaytotheandrodioecious E.texana .Iwasthenableto measureoptimalmateguardingtimeandcompareresponsesofmalesand females/hermaphroditesoffourdifferentspecies(belongingtothefamilyLimnadiidae) characterizedbytwomatingsystems(ChapterIV).

ObjectiveIV wasdevelopedtoanalyzemateguardingbehaviorinanaturalsetting, whereallparametersactsimultaneously(ChapterV).Thisstudywassubmittedto

BehavioralEcologybyChiaraBenvenuto,BrentonKnottandStephenC.Weeks.

Myoverallgoalwastointegrateexperimentsperformedundercontrolled laboratoryconditionswithfieldobservationsandtoincorporatetheseintoabroader

45

evolutionarycontextbycomparingdifferentspeciescharacterizedbydifferentmating systems.Thefinalchapter(ChapterVI)presentsageneraloverviewofmythesiswith theconcludingremarksofthisbroadstudyofmateguardingbehaviorinclamshrimpas acaseofintersexualconflict.

II.MATERECEPTIVITYASSESSMENTANDPRECOPULATORYMATE

GUARDINGBEHAVIORINTHECLAMSHRIMP EULIMNADIA TEXANA

Abstract

Femalecrustaceansarereceptiveonlyforashortperiodaftermolting.Inorderto maximizematingopportunities,malesusuallyguardfemalesuntilcopulationoccurs.

Mateguardingisanadaptivebehaviorformales.Malescanoptimizetheirtime,andthus maximizetheirfitness,byguardingneartomoltfemalesinsteadofthosethatarefar fromreceptivity.Todecidewhethertostaywithafemaleorsearchforanothercloserto receptivity,malesmustbeabletoassessthereceptivestateoftheirmates.Thisisthefirst stepofacomplexsetofinteractionsbetweenmalesandfemalestodeterminetheduration ofguarding.Whenmaleandfemaleoptimalguardingtimesdonotcoincide,an intersexualconflictbegins.Thisconflictwasanalyzedintheandrodioeciousclamshrimp

Eulimnadiatexana ,whereinmalesguardhermaphroditesratherthanfemales.Three experimentsweredesignedtodeterminethemodeofmatesearchinganddetectionof receptivitybymales.Todoso,Ianalyzed1)thereactionoffocalanimalstothepresence ofindividualsofthesameoroppositesex;2)whethermalescandetectmoltinghormone dispersedinwater;and3)whethermalesusemoltinghormoneasareceptivitycuewhen claspingahermaphrodite.Hermaphrodites,butnotmales,wereattractedtomembersof theoppositesex,supportingthehypothesisthatdifferentsexesindifferentreceptive statesusedifferentsearchingtacticstofindamate.Malesdidnotdetectmoltinghormone

46 47

asasolublecueinthewaterandthepresenceofhormoneonthecarapacewasnotused bymalesasacontactcuetoassessreceptivity.Instead,moltinghormonereducedthe attemptsofmateguardingwhencombinedwithspecifichermaphroditebehaviors.

Keywords :Branchiopoda,moltinghormone,androdioecy,intersexualconflict,resistance behaviors.

Introduction

“Agivencuecanyieldonlyaprobabilisticestimateoftimefromreceptivity.Becausea)females

willvaryinthetimetheytakebetweentheonsetofthecueandtheonsetofreceptivity,b)the

timeafteronsetofthecueandmaleencounterwillvary,andc)somefemalesmayshowthecue,

butforsomereasonfailtoacceptinsemination ”(Parker,1974,page171).

Inmanyanimals,malesguardtheirmatesinordertoensureamatingevent.

Precopulatorymateguardingisastrategyusedbymaleswhenfemalesarerare(because

ofunbalancedsexratios)ordifficulttofind,whenthereishighmalemalecompetition

fordirectacquisitionoffemales,orwhenfemalereceptivityisrestrictedintime(e.g.,in

crustaceansandanurans).Inaquaticcrustaceans,receptivitylastsforonlyashorttime

afterthefemalemolts.Thisreducedreceptivityoccursbecausethecarapacehardens

aftermolting(orcuticularplates,termedoostegites,willobstructthefemalegonopores)

makingitimpossibleforthemaletofertilizehismate(Ridley,1983;Jormalainen,

1998).Mateguardingstrategiesincludethoseinwhichamalestaysclose(mate

attender)ormaintainsdirectphysicalcontact(matecarrier)withafemalesothatthe

malewillnotmissthemomentwhenthefemaleisreceptive,andthusthepossibilityto

mate(Parker,1974;Conlan,1991;Jormalainen,1998).

48

Inmonogamousspecies,themaleremainswithhismatethroughouthis

reproductivelife(e.g.,Mathews,2003).Otherspeciesfollowapuresearchingtactic

whereinmaleswillrandomlyassessfemalesinordertofindonethatisreceptive(e.g.,

Bauer&Abdalla,2001).Thesearethetwoextremesofaspectrum,fromextended

guarding,tototalabsenceofguarding.Betweenthesetwoextremes,thereisamore

complexsituationthatrequires“decisions”tooptimizeguardingtime.Malesshouldnot

expendtoomuchtimewithanyonefemalebecausetheyrisklosingothermating

opportunities.Ontheotherhand,malesalsoshouldnotexpendtoolittletimeorthey

willriskleavingrightbeforethefemalebecomesreceptive.

Mateguardingismorecomplicatedthanasimpleoptimalmalestrategy.Female

resistanceplaysamajorroleinguardingdecisionsandmateguardingthusrepresentsa

caseofintersexualconflict(Jormalainenetal.,1994b;Yamamura&Jormalainen,1996;

Jormalainen,1998;Watsonetal.,1998;Jormalainenetal.,2000).Ashortguarding

phasewouldbemostadvantageoustobothsexes,butmalescanprolongtheguarding

phasemore(nottomissamatingopportunity)whilefemaleswoulddobestwhen

guardedforonlytheminimumamountoftimepossible(nottosustainthevariouscosts

ofbeingguarded;seechapterI).

Wecanbeginaddressingthisproblemfromthemale’spointofview,likeParker

(1974)didinitially:howdomalesdecidewhomtoguardandhowlongtoprolongthe

guardingphase?Therearenumerousevaluationstomakewhenencounteringafemale:

1)isthefemalereceptiveorclosetoreceptivity?;2)howmanyotherfemalesarethere

inthepopulationnearertoreceptivitythantheencounteredfemale?;3)istheguarding

49

male’ssizesufficienttoovercomefemaleresistanceand/ortheattemptstobedislodged

byothermales(takeovers)?;and4)howlongareothermalesguarding?Allthese

questionsmayinfluencethedecisiontoleaveafemaletosearchforanother,orstay

(guard)theencounteredfemale.Thisisatypicaloptimalstrategyproblemand,ifwe

considerquestion4,anexampleofgametheoryinwhichmalesshould“make

decisions”basedontheirindividualjudgmentandcomparisonwithwhattherestofthe

malepopulationisdoing.

Theabovequestionsdonotincludetheentirerangeofparametersamalecould

evaluate.Matinghistory,forexample,canbeanotherrelevantfactor(Sparkesetal.,

2002;Ortigosa&Rowe,2003;VanSon&Thiel,2006).Ontheotherhand,someof

thesequestionsmightnotbeimportantforsomespecies.InthischapterIinvestigate

matesearchingandIfocusontheveryfirstquestionwhichisessentialforoptimalmate

guardingtoevolve:canmalesdetectwhetheranencounteredfemaleisreceptiveor

closetoreceptivity?Withoutthecapabilitytoassessthereceptivestateofthefemale,

malescannotassesstherelative“values”ofvariousfemalesandthustheguarding

decisioncannotbeconsideredinanoptimalitycontext.

Mateguardingmodels(Parker,1974;Grafen&Ridley,1983;Yamamura,1987;

Jormalainenetal.,1994b;Yamamura&Jormalainen,1996;Jormalainen,1998;Härdling etal.,2004)assumeacertainknowledgebymalesofthetimingoffemalereceptivity

(timeuntilmolt).Incrustaceans,thecuesthatmalescanusetoassessfemalereceptivity canbe:1)visual;2)tactile,suchastextureorstiffnessofcarapace(Hunteetal.,1985)or throughpalpationofthebroodpouch(Dunham,1986);or3)chemical(e.g.,Sparkeset

50

al.,2000).Visualrecognitionisimportanttoidentifymembersoftheoppositesexin somespecies,includingindividualrecognitioninfiddlercrabs(Dettoetal.,2006).

Howeveritsroleinassessmentofreceptivityhasbeenfoundtobetheleastlikelyofthe threemethods,atleastifnotcombinedwithothertypesofcues.Testswithreceptiveand unreceptivefemaleshrimp Palaemonetespugio keptinglasscontainerselicitno differentialresponsesbymales(Caskey&Bauer,2005)andvisualcommunicationof femalereceptivityhadbeenexcludedinthehermaphroditicshrimp Lysmatawurdemanni

(Zhang&Lin,2006)andtheblue Callinectessapidus (Gleeson,1980;Bushmann,

1999).Nonethelessvisualinformationcanbeimportantasanindirectcue.Forexample, malerockshrimp Rhynchocinetestypus canvisuallyfindreceptivefemalesbylocating theaggregationofothermalesaroundfemales(Diaz&Thiel,2004).Thetextureofthe carapace(soft vs .hard)hadbeenpostulatedasapossiblecueoffemalereceptivity, associatedwithmolting(Hunteetal.,1985),butthishypothesishasnotbeenconfirmed

(Caskey&Bauer,2005).Tactileinformationonthepresence/absenceofembryosinthe broodpouchoftheamphipod Gammaruslawrencianus (Dunham,1986)seemstoplaya roleinmateguardingdecisions,butnotexclusively.Pheromoneshavebeenthecuemost commonlyfoundinstudiesofcrustaceans(Dunham,1978;Hartnoll&Smith,1978;

Hartnoll&Smith,1980;Thompson&Manning,1981),eveniftheymightnotbethe onlystimulusinvolvedinreceptivityassessment(e.g.,Dunham,1986;Diaz&Thiel,

2004).

Hormones(chemicalcues)canbesolubleorinsolubleinwater.Soluble(distance) pheromonescanbeusedtoattract/locatemates.Insoluble(contact)hormonesneedto

51

reactdirectlywithmalechemoreceptorsoncontactandthusarenoteffectiveata distance.Inmanyspecies,malesappeartoneedtophysicallycontacttheirmatesbefore engaginginmateguarding.Forexample,contactwithantennalflagellaorpereopods havebeendescribedin P.pugio (Caskey&Bauer,2005)andcalceoli(situatedinthe antennae)havebeenfoundtobeinvolvedinthereproductiveassessmentprocessin

Gammarus (Dunn,1998).Additionally,insolublehormonesareconsideredresponsible formalerecognitionoffemalematuritystage(Dunham,1978;Hartnoll&Smith,1978;

Ridley&Thompson,1979;Thompson&Manning,1981).

Mygoalinthisprojectwastogetsomeinsightastothemodeofdetectionof

receptivitybymaleclamshrimp, Eulimnadiatexana (Branchiopoda:Spinicaudata:

Limnadiidae). Eulimnadia texana (Packard,1871)malesguardtheirmates,asmany

othercrustaceansdo.Theydonotguardfemalesthough,butratherhermaphrodites,

sincethegenus Eulimnadia isandrodioecious:maleandhermaphroditescoexistsin

populationswheretruefemalesarenotpresent(Sassaman&Weeks,1993;Weeksetal.,

2006a).Bothselfingandoutcrossingoccurinapopulation,withhermaphrodites

producingprimarilyeggsandfewsperm(Zuckeretal.,1997).Thustheycanundergo

selffertilization,buttheycanalsooutcrosswithmales.Malesaretheonlymeansof

outcrossingbecausetheyhavethefirsttwopairsofthoracicappendagesmodifiedinto

“claspers”allowingthemtogainandthenmaintainphysicalcontactwiththe

hermaphroditestomateguardandeventuallytotransferspermattheendofthe

guardingphase(Knoll,1995).

52

Itwaspreviouslyshownthatmatesearchingisnotrestrictedtomales.

Hermaphroditesalsoactivelysearchformates,movingclosertomalesandswimming

fasterintheirpresence(Medlandetal.,2000).Themechanismsthatinfluencethe

encounterratebetweensexesarenotclear,soIdecidedtoexaminesearchingbehaviors

indepth.Thebasicassessmentofhermaphroditereceptivityhasalsobeenpreviously

investigated(Weeks&Benvenuto,2008)wherelaboratoryexperimentswereperformed

onmultiplemalesinthepresenceofmultiplehermaphrodites.Itiseasytoobservethe

presenceorabsenceofaclutchofeggsthroughthetransparentcarapaceofa

hermaphrodite,andthisallowsaroughestimateofitsreceptivestate.Hermaphrodites

witheggsvisibleinthebroodchamberarenotreceptivewhereashermaphroditeswith

noeggsvisible(butinsteadhavingeggsintheovotestisreadytobeextruded)arecloser

toreceptivity(Weeks&Benvenuto,2008).WeeksandBenvenuto(2008)suggested

thatmalesrequirephysicalcontactwiththeirmateinordertoassessreceptivity,and

theyfoundthatmalesspendsignificantlymoretimeclaspingreceptive(orcloseto

receptivity)hermaphrodites.However,theseauthorsdidnotidentifyanyspecificcues

nordidtheytestforthepossibilityofsolublereceptivitycues.Sincedroppingtheeggs

fromthebroodchamberiscloselyassociatedwithahermaphrodite’smolt(Weeks&

Benvenuto,2008),Idecidedtoinvestigatethepotentialroleofmoltinghormoneas

eitherasolubleordirectcontactcueforreceptivity.Asimilarstudyhadbeenperformed

intheisopod Lirceusfontinalis andtheresultssupportedthepredictionsthatmaleswere

abletodiscriminatethemoltingstatusoftheirmatesusingmoltinghormoneasa

contactcue(Sparkesetal.,2000).

53

Threeseparateexperimentsweredesignedtoinvestigate:1)thereactionoffocal

malesandhermaphroditestothepresenceofotherindividualsofthesameandopposite

sex;2)whethermalescandetectthepresenceofmoltinghormoneinthewater;and3)

whethermalesusemoltinghormoneasacuewhenclaspingahermaphrodite.Thefirst

experimentwasanextensionoftheexperimentperformedbyMedlandetal.(2000)

wheretheyinvestigatedthebehavioroffocalclamshrimp(malesandreceptive

hermaphrodites)inthepresenceorabsenceoftheoppositesex.Althoughmalesarethe

searchingsex,theydidnotshowanychangeinbehaviorinthepresenceoftheother

sex:theydidnotswimclosertothesegregatedhermaphrodites,nordidtheydecrease

theirswimmingspeed.Hermaphrodites,onthecontrary,werefoundmoreoftennextto

malesandswamslowerintheirpresence(Medlandetal.,2000).Unfortunately,same

sexindividualswerenotusedascontrolstonotewhetherthefocalanimalswere

attractedtoconspecificsgenerallyortheoppositesexspecifically.Iexpandedthis

previousexperimentbytestingthebehaviorofbothreceptiveandnonreceptive

hermaphroditeswhileinpresenceofindividualsofthesame(control)andopposite

(treatment)sex.Thesecondandthirdexperimentsassessedtheeffectofmolting

hormoneasapossibleguardingcue.Itestedtheeffectivenessofthehormoneasa

matingcueinthewater(asawatersolublecue)oronthesurfaceofthehermaphrodite’s

carapace(throughdirectcontact).

Theresultsfromtheseexperimentscanprovideuswithbetterinsightintothe

processesthatleadtothebeginningoftheguardingphaseandallowforthepossibility

ofoptimalmateguardinginclamshrimp.Thedurationoftheguardingphasewillthen

54

bedeterminedbysubsequentinteractionsbythemaleandhismate,asaresultofthe

conflictbetweenthetwosexes(ChapterIII).

Materialsandmethods

Threeseparateprojectswereperformedtoinvestigatematereceptivity assessment.Specimenswereobtainedbyhydrationofsedimentcollectedin2000and

2004nearPortal,ArizonafromWallaceTank(reportedinotherexperimentsasWAL;

Sassaman&Weeks,1993),containingencystedeggsof E.texana .Sediment(~500ml) wasaddedto37literaquariathenfloodedwithdeionizedwater,attemptingtosimulatea naturalfillingduringamonsoonevent.Aquariawereequippedwithairstonesand keptunderDurotestsunlightsimulatingfluorescentlights.Watertemperaturewas maintainedataconstant27°C.Uponreachingsexualmaturity(approximately67days afterhydration),individualswererandomlyselectedfortheexperiments.

Projects1and2usedvideotrackingsoftwaredevelopedbyDr.RobertHuber

(BowlingGreenStateUniversity)fortheAppleMacintosh.Theswimmingbehaviorof focalanimalswasrecordedusingavideocamera(PanasonicCCD),suspendedontopof aplexiglassarenaplacedonalighttable.Thearenawascomposedofthreechambers

(Fig.2.1):acentralchamber(24.5cmx13.7cmx2cm)wherethefocalanimalwas placed,andtwolateralchambers(4cmx13.7cmx2cm).Allthreechamberswere filledwithwaterupto1cm.Thethreechamberswereseparatedbytwoplexiglass barriersdrilledwithtenequallyspaced1mmholes(Fig.2.1).Thebarrierswerepainted whitewithnontoxicandnonwatersolubleglasspainttopreventvisualcues.The

55

computerprogramcapturedareferenceframeoftheemptyarenainitiallyandthen,when theexperimentstarted,capturednewframes,trackingadarkobject(thefocalclam shrimp)onalightbackground.Lightfromthelighttablewasdiffusedfromthebottomof thearena.Movementswererecordedasxypaircoordinatesperunittimeandanalyzed withacollectionofpublicdomainJavaAppletsfortheanalysisofbehavioraldata

(availableathttp://caspar.bgsu.edu/~software/Java/ ).TheJavaAppletswereusedto analyzedistancefromthesidewheretheoppositesexwaslocatedandtotaldistance traveled.Duetothesmallsizeofanimals(around5mm),sometimesparticlesinthe waterweremistakenlyreadasdatapoints.Thejavaprogramrecognizesreadings exceedingtheacceptablemovementofanimalsandsubstitutesthosewithintermediate readingsbetweenthepreviousandsubsequenttruedatapoints.

Figure 2.1 –SchemeofthearenausedinProject1and2.Ontheside,representationofone barrier(1.5timesenlarged).

Projects2and3usedthemoltinghormone20HydroxyecdysoneC 27 H44 O7(20

HE).Thisisthebiologicallyactiveformofthesteroidmoltinghormone.The workingsolutionofthehormonewasobtainedbydissolving1mg20HE(SigmaH5142)

56

in1mldistilledwaterandwasstoredat20°C.Thestocksolutionwasthawedand dilutedindistilledwaterto100ng/ml;asimilarconcentration(120ng/ml)ofthe20HE mimicnonsteroidRH5849wasusedbySparkersandcolleagues(2000)onfemale isopodstotesttheeffectonmaleguardingbehavior.

StatisticalanalyseswereperformedusingJMP7.0(SASInstitute,Inc.)and

G*Power3(Fauletal.,2007).Detailsaregivenbelowforeachindividualproject.

Project1Trackingfocalanimals

TheexperimentalprotocolwasbasedonMedlandetal.(2000).Sexuallymature shrimpwereisolatedinseparatecontainers(malesandhermaphrodites)rightbeforethe startoftheexperiment.Fiftysevenfocalanimals(male,hermaphroditewitheggs,or hermaphroditewithouteggs)wereindividuallyplacedinthecentralchamberofthearena whilethetwolateralchambersweremaintainedempty(controltrial).Afterhalfanhour, eachfocalanimalwastestedagaininastimulustrial:fivemaleswereaddedtoone lateralchamberandfivehermaphroditeswereaddedtotheother(rightorleftsidewas decidedusingarandomizeddesign).Thearenawasfilledwithwaterobtainedby hydratingclamshrimpfreesediment,fromthesameareaofthepopulationsampled,to assurethewatercontainedalltheappropriatemineralsandnutrients,butexcludedany cuefromconspecifics.Thefocalandstimulusanimalswereleftintheirchambersto acclimatefor10minutesbeforestartingtherecording.Eachtriallasted8minutes,and thecamerarecordeddataat10framespersecond.Aftereachtrial,thearenawasemptied, cleanedwithethanol,rinsedwithdeionizedwater,dried,andthenfilledagainforthe subsequenttrial.

57

Themainchambermeasured318x178“pixels”(pictureelementsofthegridof reference,eachoneapproximately1/13cmdiameter).Itestedthecentralmeandistance ofmalesandfemalesfromthechamberB(coordinates0,0)forcontrolandstimulus trials,andthenrepeatedtheanalysiscalculatingthedistancefromthesidewherethe individualsoftheoppositesex(malesinthecaseofafocalhermaphroditeand hermaphroditesinthecaseofafocalmale)wereplaced(eitherleftorright)whenstimuli animalswerepresent(“referenceside”).Inordertocalculatedistancetraveled,“pixels” weretransformedintocm.

Multivariateanalysesofvariance(MANOVA),withthesameindividualstestedin controlledandexperimentaltrialsasrepeatedmeasures,wereperformedtoassessthe effectofsex(male vs .hermaphrodite)andtrials(stimulus vs. control)onmeandistance fromthereferenceside(distancefromoppositesex)andtotaldistancetraveled.Thesame analysiswasrepeatedtakingintoaccountthereceptivestateofthehermaphroditesand thusanalyzingtheeffectofsex(thistimesubdividedinthethreecategories:males, receptivehermaphrodites,andnonreceptivehermaphrodites)andtrials(stimulus vs. control)onmeandistancefromthereferenceside(distancefromoppositesex)andtotal distancetraveled.

Project2Moltinghormoneasasolublecue

Fifteenfocalmaleswereindividuallyplacedinthecentralchamberandthree trialswererunforeachmale:onewithnohormone,onewithtwodropsof20HEinthe rightchamberandnormalwaterintheleftchamber,andonewiththereverse(twodrops of20HEintheleftchamberandnormalwaterintherightchamber)tocontrolfor

58

possiblepositionpreferenceswithinthechamber.Thehormonewasusedata concentrationof10g/ml.Eachtriallasted10minutes,at10framespersecond.In betweentrials,thearenawasemptied,cleanedwithethanol,rinsedwithdeionizedwater, dried,andthenfilledagain.Iused“reconstituted”water(deionizedwaterwithmineral salts:48mgNaHCO 3,15mgCaSO 4,and15mgMgSO 4perliterofwater)toavoidthe influenceofcuesotherthantheaddedhormone.

Preliminarydataanalysisshowedastrongpositioneffect:maleswereattractedto

(orrepelledfrom)onesideofthechamber,regardlessthehormonetreatment.Since naturallightorthepresenceoftheobservercouldhaveinfluencedthemaleswimming behavior,Irepeatedtheexperimentwithfifteenmoremales,usingaplasticblackscreen positionedtosurroundthearenacompletely.Lightwasstilldiffusedfromthelighttable belowthearena(asinthepreviousexperiment),buttheeffectofnaturallightand potentialdisturbancebytheobserverwerepreventedbytheblackscreen.Eachmalewas testedtwice:onetimewithnohormoneandonetimewithtwodropsof20HEinone chamber(rightorleft,randomizedthroughouttheexperiment).

Toassessvariationinmeandistancefromthechamber(emptyincontrolandwith hormoneintreatment),Iusedtpairedtests.

Project3Moltinghormoneasadirectcontactcue

Iprepared41couplespairingareceptive(H +)oranonreceptivehermaphrodite

(H )withamale.Animalswereindividuallyisolatedpriortopairingandmeasuredwitha caliper(maximumcarapacelength,inmillimeters).HalfH +andH receivedhormone treatment(adropofapproximately0.05mloftheworkingsolutionof20HE),applied

59

withaglassmicrocapillarypipetteontothecarapace,whichhadbeenpreviouslyblotted dry.Theremaininghermaphroditesreceivedadropofdistilledwater(control).This protocolfollowedtheonedescribedbySparkers etal .(2000)fortheisopod L.fontinalis .

Forvideorecordings,eachhermaphroditewasintroducedintotheobservationchamber(a

50mlgraduatedglassbeaker),positionedunderablackandwhitevideocamera

(PanasonicCCD)thatwasconnectedtoatimelapsevideorecorder(SamsungSSC1280

RealTimeLapseRecorder).Thebottomofthebeakerwasfilledwithdarksand(to enhancethecontrastwiththeclamshrimpbody,allowingbetterscoringofmating behaviorfromplaybackofthevideos)andthebeakerwasfilledwith40mlof

“reconstituted”watertoavoidtheinfluenceofpossiblecuesfromotherindividuals, variationinnutrientsotherthanthefoodadded,orabuildupofinthe agedwater.Clamshrimpwerefedbyadding0.2mlfood(2.3gbaker’syeast+2.5g groundedfishflakesin500mldeionizedwater)tothewateratthebeginningofthe experiment.

Singlepairmatingbehaviorassayswererecorded.Onthescreenitwaseasyto recognizethetwosexes,sincethehermaphroditespresentedthewhitemassofeggsmost ofthetimeandthemalesswamfasterandconstantlytriedtoclaspthehermaphrodites.

Thehermaphroditewasintroducedfirst,andgivena2minuteacclimatizationperiod.

Onlyatthispointwasthemaleintroducedsothathedidnotreceivetheinformationthat anotherindividualwasaddedtothebeaker(malesarethesexthatcanattainphysical contactclaspingthehermaphrodites).

60

Hermaphroditeswerepairedwithmalesofsimilarsizeandthecoupleswere recordedfor24hours.Irecordednumberandlengthofencounters(briefcontacts,less than30seconds)andmateguardingattempts(prolongedcontacts,morethan30seconds) inthefirsthour(themaleshouldbeabletodetectthehormoneduringthisamountof time:afteranhourthehormonemightdegradeinthewater;Andersenetal.,2001).Ialso countedthenumberof“kicks”bythehermaphrodite(bendingoftheabdomen) consideredasapossibleformofphysicalresistancetobeingguarded.Finally,Inotedthe resultofmating(selfingoroutcrossing).

Thisprojectaimedtoinvestigatethevariationinguardingtimeafterapplication of20HEinunreceptivehermaphrodites.Thehormonalmanipulationwouldprovidethe malewithfalseinformation(i.e.,themaleshouldassumethatthehermaphroditeiscloser tomoltthanitactuallyis),ifthemaleusesthemoltinghormoneasacue.

Iperformedafullfactorial,threewayanalysisofvariance(ANOVA).I consideredtheeffectof20HE(treatmentandcontrol),receptivestateofhermaphrodite

(withandwithouteggs),hermaphrodite’sresponse(kickingandnotkicking),andallthe possibleinteractionsoftheseparametersonnumberofguardingeventsandnumberand durationofencountersinthefirsthourofobservation.TheANOVAwasthenperformed again,thistimeseparatelyanalyzingkickingandnonkickinghermaphroditesinan attempttountanglehermaphroditicresponse(kickingbehavior)fromtreatment

(hormonalapplication).Ialsorancontingencyanalysesontheeffectoftreatmenton hermaphroditekickingbehaviorandmatingoutcome(selfingoroutcrossing).Inorderto

61

meettheparametricassumptionsofnormality,Iusedasquareroottransformationforthe numberofmateguardings.

Results

Project1Tracking

Atotalof57focalanimalsweretested(20hermaphroditeswitheggs,11 hermaphroditeswithouteggsand26males),but6hermaphrodites(3withand3without eggs)wereexcludedfromtheanalysissincetheychangedtheirreceptivestatusfrom controltostimulustrial(byeitherdroppingormovingeggs).

Overall,hermaphrodites(H)tendedtoswimclosertothesidewherethemales werekept(Table2.1a),regardlessoftheirreceptivitystate,eventhoughhermaphrodites witheggs,whichwerenotyetreceptive(H )appearedtobemoreresponsive(although thisresponsewasnotquitesignificant:p=0.0621)tothepresenceofmembersofthe oppositesexthanreceptivehermaphrodites(Fig.2.2;Table2.1b).

Malescoveredagreaterdistance(Fig.2.3,Table2.1c,d)thanhermaphrodites, regardlessoftrialtypeandreceptivestateofthehermaphrodites(contrastanalysiswas runasaposthoctestonmale vs .theothertwogroups:receptiveandnonreceptive hermaphrodites:P=0.0028).

62

TABLE 2.1 –MULTIVARIATEANALYSISOFVARIANCE

ValueFtest ExactF NumDF DenDF Prob>F a) Sex(M,H) a 0.003 0.1367 1 49 0.7132 Distfromopposite 0.040 1.9758 1 49 0.1661 Distfromopposite*Sex(M,H) 0.084 4.1090 1 49 0.0481 b) Sex(M,H +,H )a 0.004 0.0992 2 48 0.9058 Distfromopposite 0.043 2.0702 1 48 0.1567 Distfromopposite*Sex(M,H +,H ) 0.123 2.9459 2 48 0.0621 c) Sex(M,H) a 0.248 12.1315 1 49 0.0011 Totaldistance 0.002 0.1007 1 49 0.7523 Totaldistance*Sex(M,H) 0.003 0.1409 1 49 0.7091 d) Sex(M,H +,H )a 0.260 6.2357 2 48 0.0039 Totaldistance 7.886e5 0.0038 1 48 0.9512 Totaldistance*Sex(M,H +,H ) 0.005 0.1238 2 48 0.8838 a betweensubjectcontrast RepeatedmeasuresMANOVAresultsfor(a,b)meandistancefromreferenceside(distancefrom oppositesex)and(c,d)totaldistancetraveledbetweensexes.Thegroupscomparedinthe analyseswereeithermales(M)withcombinedhermaphrodites(H)ormaleswiththetwo receptivestatesseparated(H +=receptivehermaphrodites;H =nonreceptivehermaphrodites).

Figure 2.2Meandistancefromoriginofcoordinates(control)andthechamberwithopposite sex(stimulus).

63

Figure 2.3–Totaldistancetraveledbyeachsex(male,hermaphroditewitheggs,hermaphrodite withouteggs)inabsence(control)andpresenceofotheranimals(stimulus)duringthe10minute trials.

Project2Moltinghormoneasasolublecue

Whentestingtheeffectofthehormoneasasolublecueinthewater,the preliminaryanalysisdetectedthatmaleswereconsistentlyattractedtotheonesideofthe testchamber,regardlessofthepresenceorabsenceofthehormoneonthatside(pairedt test,p<0.0001,twotail;WilcoxonSignedRanktestonmatchedpairs,p<0.0001; distancefromsideB=7.09cm;distancefromsideA=20.04cm;95%confidence interval:from16.137to9.7606).Thiscouldbeinterpretedaseitheracompletelackof responsetothehormoneinfavorofsomeotherstimulus(e.g.,naturallight)orthatthis otherstimuluswasmerelyswampinganyresponsetothehormone.Thus,Irepeatedthe experimentwiththeblackscreentoremoveanyeffectofthisaddedstimulusandagain notednosignificantdifferencebetweentheaveragedistanceofmalesfromtheside wherethehormonewasaddedcomparedwiththesidewiththenohormonecontrol

64

(pairedttest,p=0.3043,onetail;WilcoxonSignedRanktestonmatchedpairs,p=

0.2106;distancefromsourceofhormone=11.64cm;distancefromcontrol=12.2872;

95%confidenceinterval:from1.9836to3.2656).Thecombineddatafromboth iterationsofthisexperimentsuggestthatmalesarenotattractedtothemoltinghormone asasolublecue.

Project3Moltinghormoneasadirectcontactcue

Irecorded41couples,21treatedwith20HE(12coupleswiththehermaphrodite notreceptiveand9receptive)and20control(9withthehermaphroditenotreceptiveand

11receptive).Sevencoupleswereexcludedfromtheanalysisbecausethe hermaphroditeschangedstatusinthefirsthour(receptivehermaphroditesmovedtheir eggsintothebroodchamber:fourinthehormonetreatmentandthreeinthecontrol).

BecauseIwantedtostudyonlycaseswheremaleswereabletooutcross,toavoid consideringbehaviorsofinbredmales(inbreedingdepressionishighinthisspecies, rangingfrom0.5and0.7;Weeks&Zucker,1999;Weeksetal.,2000a;Weeksetal.,

2001;Weeks&Bernhardt,2004),Ialsoexcludedfivemorecoupleswherethe hermaphroditeselfed(oneinthehormonetreatmentandthreeinthecontrol,allreceptive atthebeginningoftheexperiment).

Thenumberofmateguardingattemptsinthefirsthouroftheexperimentwasnot influencedbythehormonetreatment(Table2.2).Contraryto apriori expectations,the interactionbetweenhormonetreatmentandreceptivestateofthehermaphroditewasnot significant(Table2.2).

65

TABLE 2.2 –FULL FACTORIAL ANOVA

Source DF SS FRatio Prob>F SquarerootNUMBEROFMGATTEMPTS Treatment 1 1 1.5882 0.2214 Hreceptivitystate 1 4 12.3896 0.0020 Treatment*Hreceptivitystate 1 0 0.1280 0.7241 Hkickingbehavior 1 9 26.4890 <.0001 Treatment*Hkickingbehavior 1 5 13.7065 0.0013 Hreceptivitystate*Hkickingbehavior 1 2 5.8482 0.0248 Treatment*Hreceptivitystate*Hkickingbehavior 1 0.2 0.5533 0.4652 Error21 7 FullfactorialANOVAresultsformateguarding(MG)attemptsinfirsthourofexperiment (squareroottransformed).

Infact,hermaphroditereceptivitystatewascorrectlyassessedbymales,regardlessofthe treatment,andmalesstartedmoreguardingeventswithhermaphroditescloserto receptivitythanwithnonreceptivehermaphrodites(Figure2.4;Table2.2).

Figure 2.4–Numberofmateguardingattempts(squaredroottransformed)inthefirsthourof theexperimentperformedbymalesonreceptive(H+,noeggs)andnonreceptive(H,witheggs) hermaphrodites.Errorbarsrepresenttwotimesthestandarderror.

66

Thenumberofmateguardingattemptswasalsosignificantlycorrelatedwith hermaphroditebehavior:thekickingresponsebyhermaphroditeswasassociatedwith morefrequentmateguardingcontacts(Figure2.5;Table2.2).Idetectedaninteraction betweenkickingbehaviorandhermaphroditicreceptivitystate,affectingthenumberof mateguardingattempts(Figure2.6;Table2.2):receptivehermaphroditesperformed proportionallymoreoftenkickingbehaviorsandelicitedmoreguardingattemptsthan nonreceptivehermaphrodites.

Figure 2.5–Numberofmalemateguardingattempts(squaredroottransformed)inthefirst houroftheexperimentonhermaphroditeperformingdifferentbehaviors:kicking vs .notkicking. Errorbarsrepresenttwotimesthestandarderror.

Also,acomplexinteractionwasfoundfortheeffectofkickingbehaviorandhormone treatmentonmateguardingfrequency(Figure2.7;Table2.2).

67

Figure 2.6–Interactionbetweenhermaphroditekickingbehaviorandreceptivitystate(H+, receptive,noeggs;H,nonreceptive,witheggs)onnumberofmateguardingattempts(square roottransformed).Levelsconnectedbythesameletterarenotsignificantlydifferent.

Figure 2.7–Interactionbetweenhermaphroditickickingbehaviorandtreatmenton(a)number ofmateguardingattempts(squareroottransformed)and(b)mateguardingtime(Fifthroot transformed).Levelsconnectedbythesameletterarenotsignificantlydifferent.

68

Withoutthehormone,therewerehighernumbersofmateguardingattemptson hermaphroditesthatkicked.Whenthehormonewasadded,Iobservedalowernumberof mateguardingattemptsonhermaphroditesthatdidkickandahigher(eventhoughnotin asignificantmanner)inthehermaphroditesthatdidnotkick,comparedtothecontrol(no hormone).

Sincethisinteractionisdifficulttointerpret,IrepeatedtheANOVA(Table2.3) onmateguardingattempts,againconsideringtheeffectofthetreatmentandthereceptive stateofthehermaphrodite,butthistimeseparatelyanalyzingthehermaphroditesthat respondedtomales(kicking)andtheonesthatdidnot(nokicking).InthiswayIwas abletountangletheeffectofthehermaphroditicresponsefromtheeffectofthe treatment.Fromthenewanalysis,itappearsthatabehavioralcommunicationbetween thesexesmightplayanimportantroleinprematinginteractions.Whenhermaphrodites wereresponsivetomales(kickingbehavior),therewasasignificantlyhighernumberof mateguardingattemptsonhermaphroditesclosertoreceptivity(withouteggs;Figure

2.8a)andonhermaphroditesnottreatedwiththemoltinghormone20HEthanonnon receptivehermaphroditesandhermaphroditeswithouthormone,respectively(Figure

2.8b).Thesedifferenceswerenotfoundinnonresponsivehermaphrodites,regardlessof thereceptivestateorthehormonetreatment(Figure2.8c,d).Themoltinghormone elicitedafewmorematingattempts(marginallysignificant;Table2.3)onlyonnon responsivehermaphrodites(nokickingbehavior;Figure2.8d).

Finally,IrepeatedthefullfactorialANOVAtoassesstheeffectofthesame predictorparameters(treatment,receptivitystate,kickingbehavior,andtheirinteractions)

69

onthreeotherdependentvariables:1)guardingduration(inminutes),2)numberof encounters(claspinglessthan30seconds),and3)durationofencounters(inminutes).

TABLE 2.3 –ANOVA TABLE

KICKING NOKICKING Source DF SS FRatio Prob>F DF SS FRatio Prob>F Treatment 1 3 11.2122 0.0441 1 1 4.2928 0.0529 Hreceptivitystate 1 4 16.0547 0.0279 1 0 0.8735 0.3623 Treatment*Hreceptivitystate 1 0 0.0679 0.8113 1 0 0.8735 0.3623 Error3 1 18 6 TwowayANOVAresultsformateguardingattemptsinthefirsthouroftheexperiment(square roottransformed),separatelyanalyzinghermaphroditesthatrespondedtomales(kicking)and thosethatdidnot(nokicking).

Figure 2.8–Numberofmalemateguardingattempts(squaredroottransformed)inthefirst houroftheexperimentonhermaphroditesperformingdifferentbehaviors:kicking hermaphroditesarerepresentedinwhite(panelsa,b);hermaphroditesnotkickingare representedingray(panelsc,d).Errorbarsrepresenttwotimesthestandarderror.

70

Fortheguardingduration,Iobservedatrendsimilartotheoneobservedfor numberofmatingattemptsreportedabove,butIwasnotabletonormalizetheresiduals soIcouldnotanalyzethesedataparametrically.Numberanddurationofencountersdid notdifferamongtreatments,receptivitystates,orkickingbehavior(pvalue>0.05for all;analysesnotreported).Thus,encounterratesandencounterdurationwerenot influencedbyanyoftheindependentvariablesstudied.Tomakesurethattheadditionof hormonewasnotaffectingthehermaphrodite’smatingbehavior,Ianalyzedthe differenceinkickingresponseandtheresultofmating(i.e.,selfing vs .outcrossing)inthe twogroups(treatedanduntreatedhermaphrodites).Therewerenoevidenteffectsofthe applicationof20HEonkickingbehavior(χ 2=0.011,p=0.9156)oronmatingresult

2 (eitherselfingoroutcrossing;χ =1.487,p=0.2226).

Discussion

Thefirstrequisiteforasuccessfulmatingistheencounterofreceptiveindividuals oftheoppositesex.Incrustaceans,femalesareoftenreceptiveonlyforarestrictedperiod aftermolting.Forthisreason,malesofmanycrustaceanspeciesadoptamateguarding strategy.Nonetheless,malesneedto1)findamateand2)assessherreceptivity,inorder todecidetoguardaparticularfemaleorsearchforanotheronewhichiscloserto receptivity.

Male E.texana swimfasterthantheirmates(Medlandetal.,2000)andthuscover agreaterdistancethanhermaphroditesinthesameamountoftime.Theirapparentgoalis toencounterthemaximalnumberofmatesintheshortestamountoftime.Inmany

71

dioeciousspecies,malesarethesearchingsexbecausetheyarecompetingwithother malestofindmates(butseecasesofrolereversal;Gwynne,1991).Inandrodioecious species,theoverallsexratioishighlyskewedtowardshermaphrodites(Pannell,2002;

Weeksetal.,2006a).Usuallythemoreabundantsexsearchesformates,whiletheother sexhasabundantmatingopportunities(Hammerstein&Parker,1987;Gwynne,1991;

Kokko&Wong,2007).Nevertheless,theoperationalsexratio,the“averageratioof fertilizablefemalestosexuallyactivemalesatanygiventime”(Emlen,1976;Emlen&

Oring,1977),differsfromthegeneralsexratiosincenotallhermaphroditesarereceptive atthesametime.Populationdensitiesareoftenhighinnature(Benvenutoetal.,inpress) andmalescanencountermultipleconspecifics(themajorityoftheoppositesex)injusta fewminutes.However,manyoftheseencountersarewithunreceptivehermaphrodites.

Eulimnadiatexana malesthusmaximizetheirencounterratesbyincreasingtheir swimmingspeed(Medlandetal.,2000).Themalestrategyappearstobeafastscreening ofpossiblemates,throughdirectcontactbyclaspingconspecifics(Weeks&Benvenuto,

2008).

Hermaphroditesarecapableofselffertilization,butinordertofavoroutcrossing theycanapproachmales.IconfirmedtheresultsofMedlandetal.(2000)ofactivemate searchingbyhermaphroditesanddeterminedthathermaphroditesareindeedattractedto malesbutnottothepresenceofotherhermaphrodites.Thiswasnotclearfromthe experimentbyMedlandetal.(2000),wheretheonlychoicepossiblewasmembersofthe oppositesex.Anadditionallayerofcomplexityinthecurrentstudyisthatthis responsivenesstomaleswasmarginallymoresignificantinhermaphroditeswitheggs

72

stillinthebroodchamber(i.e.,nonreceptivehermaphrodites)thaninreceptive hermaphrodites.Iusedhermaphroditeswithandwithouteggsinmytrials,while

Medlandetal.(2000)testedonlythesecondcategoryofhermaphrodites,whichthey obtainedbyisolatingnonreceptivehermaphroditesinasmallamountofwatertoforce themtodroptheireggs.Droppingeggsinstressfulenvironmentsmaybeusefulforegg dispersionorprotectionfrompredators,butthereceptivestatusofthehermaphrodite shouldnotbealteredbythisforcedreleaseoftheireggs.Thefactthathermaphroditesin thecurrentstudyperformedsimilarlytohermaphroditesforcedtodroptheireggsinthe

Medlandetal.(2000)studysuggeststhatthebehaviorofdroppingeggsinsituationsof stress(i.e.,lowerlevelsofwater)doesnotrecalibratethehermaphrodites’internal receptivitystatus.Thus,thehermaphroditesusedintheinitialexperiment(Medlandetal.,

2000)canbeconsideredamixtureofreceptiveandnonreceptivehermaphrodites.Here, usinghermaphroditesobtainedfromrearingtanksandnotkeptunderstressfulconditions,

Ifoundthatreceptivitystatemightalterthehermaphrodite’sbehavior.

Myresultisoppositefromwhatisexpectedafterthepreliminarystudyof

Medlandetal.(2000):hermaphroditeswitheggs(andthusnotyetreceptive)arealso attractedtomalesandmightalsobetheonesthatswimclosertomales.Apossible explanationisthathermaphroditesareassessingthepresenceofmalesinahighly hermaphroditebiasedpopulation.Itseemsthathermaphroditescanslowdowntheir receptivecycleintheabsenceofmalesandpostponethemomentofselffertilization

(Zuckeretal.,2002andseeChapterIII).Itwouldthusbeimportantforthemtobeable todiscernifthereareanymalesinproximity.Oncethehermaphroditeshavedropped

73

theireggsandareapproachingthemoltingphase,itappearsthattheywillneedtobein thepresenceofmales(viaattractiontothemfromtheearlierstage)ortheymighthave waitedaslongaspossibleandthusjustproceedtoselffertilization.Itwouldbe interestingtotestthisbehaviorindioeciousspeciestoseeiffemalesaresimilarly attractedtomalesandwhetherthisattractionissimilarlyalteredbytheirreceptivestate, giventhatfemalesdonothavetheoptionofselffertilization.

Analternativeexplanationcouldbethathermaphroditesinanandrodioecious systemlosetheirinterestinmalesbecausetheydonotnecessarilyneedmalesfor fertilizationoftheireggs.Theremightbeselectiontonotperformnormalmating behaviors,particularlyinthemomentwhenthebehaviorwouldbemostimportant(when hermaphroditesarereachingreceptivity)ifmatingcostsaretoohigh,resultingin receptivehermaphroditesnotsearchingformales.Inandrodioeciousnematodes,thereis evidencethatthehermaphroditesarenotrespondingtomalematingbehaviorandarenot releasingthesameamountsofpheromonesthatdioeciousspeciesare(Chasnov&Chow,

2002;butseeSimon&Sternberg,2002).Again,acomparisonofthisattractionbehavior indioeciousclamshrimpwouldbehelpfultodeterminewhethertheandrodioecious hermaphroditesarebehavingsimilarlytodioeciousfemalesornot.

Malesdonotseemattractedtothepresenceofmoltinghormone(intheformof

20HE)inthewater.ThisisinagreementwiththeresultsofMedlandetal.(2000).Other studiesquestiontheactiveroleofthishormoneasasexpheromoneormateguarding elicitor(Gleesonetal.,1984;Kamioetal.,2000;Kamioetal.,2002;Atema&Steinbach,

2007).ThisresultisalsoconsistentwithapreviousreportbyWeeksandBenvenuto

74

(2008)onthenecessityofdirectcontactforassessmentofahermaphrodite’sreceptivity.

Oncepopulationsareestablishedinephemeralpools,thenumberofindividualscanbe extremelyhighduetosimultaneoushatchingofaportionoftheabundanteggsbankin thesediment.Inhighdensitysituations(resultingfromthelargenumberofindividualsin relativelysmall,depressedareascapableofmaintainingwater),alongdistancehormone mightbelesseffectivethanacontacthormone.Sincethechemicalisproducedbya swimmingorganisminstillwater,thereshouldbea“uniformflow”ofdiffusion(Zimmer

&Butman,2000),butIimaginethatitwouldbedisturbedbytheswimmingbehaviorof otherclamshrimp.Ontheotherhand,thereshouldbeahighprobabilityofdirect encounterswithconspecificsformalesinsuchdensities.

Bothmalesandhermaphroditesneedthepresenceoftheothersexinorderto concludeasuccessfuloutcrossingevent,buttheyemploydifferentsearchingtechniques.

Malesarefaster(thisallowsthemtocovergreaterdistances),theycanusedirectcontact cuestodeterminethepresenceofreceptivemates,andseemnottousesolublecuesinthe water.Hermaphrodites,ontheotherhand,cannotusedirectcontactcues(lacking claspers)buttheyappeartobeabletoperceivethepresenceofmalesthroughsomeasyet unidentifieddistancechemicalcommunication.Inproject1,hermaphroditeswere attractedtomaleseventhoughtheywereseparatedbyapaintedbarrierthatprevented bothvisualandcontactcues.Thebarrierswereperforated,thussolublechemicalcues wereallowedtomovefromonesideofthebarriertotheother.Itisnotknownwhat distancecuesmightbeperceivedbyhermaphrodites,butdeterminationofsexisprobably basedondifferentcuesthantheonesinvolvedintheassessmentofthereceptivestage.

75

Sexdeterminationfromadistanceitisnotuncommonincrustaceans.Forexample, femalelobster, Homarusamericanus ,usechemicalsreleasedintheurinetoassessthe sexandthedominancestatusofconspecifics(Bushmann&Atema,2000;Johansson&

Jones,2007).Thistypeofchemicalcommunicationwithoutdirectcontact,andwith hermaphroditesbeingthereceiverandnotthesignalers,couldrepresentaninteresting areaforfutureresearch.

Inthelastpartofthisstudy,Ifocusedoncontactcues.Inmanymateguarding models(e.g.,Grafen&Ridley,1983;Yamamura,1987;butseeHunte&Myers,1988), malesareassumedtobeabletodetectandassessthereceptivestateoffemales.Mate guardingisaverycomplexbehaviorthatinvolvesmultipleinteractionsbetweenthe sexes.Duringtheirmatesearch,male E.texana performtwobehaviors:a)encounter

(i.e.,rapidclaspingandrelease,whentheoverallinteractionlastslessthan30seconds becausethemalehasclaspedeitheranonreceptivehermaphroditeoramale;Weeks&

Benvenuto,2008);andb)mateguarding(i.e.,prolongedclasping,longerthan30seconds becausethemalehasclaspedahermaphroditeclosetoreceptivity;Weeks&Benvenuto,

2008).Inthislastcase,themaleisstartingaguardingphase.Atthismoment,theclasped hermaphroditecanreact(acceptorresistbeingguarded).Thus,thebehaviorofthe hermaphroditecansupport,ornot,theinitialmaledecisiontoguard.

Iaddedthemoltinghormone20HEtothecarapaceofreceptiveandnon receptivehermaphroditesinanattempttoprovidemaleswithfalseinformation.Ifmales wereusingthehormoneasacueforreceptivity,theyshouldhaveguardednonreceptive, hormonetreatedhermaphroditeslongerthancontrols(hermaphroditesnotreceptiveand

76

nottreatedwithmoltinghormone).Ididnotfindtheexpectedresult,whichindicatesthat moltinghormonemightnotbethecuethemaleisactuallyassessing.InsteadInoticedan increaseinmateguardingactivity(measuredasnumberofmateguardingattempts)when hermaphroditeswerereactingtomales(throughkickingbehavior).

Thehermaphroditickickingbehaviorcouldbethelogicalresultofbeingharassed multipletimesbymales.NeverthelessIleftthisparameterasapossibleexplanatory variablebecauseIobservedthatevenreceptivehermaphrodites(andnotjustnon receptiveones)wereexhibitingthisbehavior(contrarytoexpectations).“Kicking”(afast andrepeatedmovementofthetelson)canbeinterpretedasaresistancebehavior,orasa preecdysisbehavior(bothsexes“kick”whentheymolt,inordertodislodgetheold exuvia),orcouldbeusedbyreceptivehermaphroditestoassessthe“quality”ofmales

(higherqualitymalescanpersistlongerthanlowerqualitymales).Theidenticalbehavior

(kicking)couldthereforeconveydifferentinformationdependingonthehermaphrodite’s receptivitystate.Malesmightbeabletointerpretthesecombinedcues.Thus,together withachemicalcommunication,thereseemtobebehavioralcommunicationsbetween thesexesandthelattermightplayanimportantroleinthemale’sdecisiontocontinuethe guardingphase.

Themoltinghormone,insteadofincreasingthemateguardingattempts(as expectedatthebeginningoftheexperiment),didnotinducemalestomateguardlonger.

Thusthemoltinghormonedoesnotseemtobeanimportantcueofreceptivity(seealso

Gleesonetal.,1984;Kamioetal.,2000;Kamioetal.,2002;Atema&Steinbach,2007)

77

andmay,infact,maskanynaturalcues,orpossiblygivethemaleinformationsuggesting thatreceptivityisnotimminent(maybebecausethishormoneisreleasedafterthemolt).

Toconclude,Icanconfirmthatmateguardinginclamshrimpitisnotdetermined onlybythemale’sdecisions.Thehermaphroditicroleisimportantstartingfromthe initialinteractions(Figure2.9).Thereisanactivesearchformalesusingchemicalcuesin thewatercolumnbyhermaphrodites(includingnotyetreceptiveones).Alsothere appearstobeacontinuousexchangeofinformationbetweenthesexes.

Moltinghormonemightnotbethekeyclueofreceptivity,atleastnotthrough directexternalcontactnorwithdiffusioninthewater.Thisfactdoesnotexcludea possibleroleofmoltinghormonemetabolitesorotherchemicalcompoundsinvolvedin ecdysis.Forexample,someprecursorordegradedcompoundsofthemoltinghormone canbereleasedintheurine(Kamioetal.,2002).Alternatively,someproteinsorpeptides intheexoskeletoncanundergomodificationbeforeandduringmolting,andthese changescouldbeusedbymalesasareceptivitycue,asshownincopepods(Kelly&

Snell,1998).Furtherexperimentsareneededtounderstandthenatureofthechemical communicationbetweenthesexesduringmateguardingintheseshrimp.

78

SWIMMING SWIMMING MALE HERMAPHRODITE

(swimsfastalways) (changesbehaviorwith reproductivestate)

ENCOUNTER

MALE ASSESSES HERMAPHRODITE HERMAPHRODITE “KNOWS”ITS REPRODUCTIVESTATE

RELEASES STARTSGUARDING RESISTS ACCEPTS GUARDING GUARDING Kickswhennot Mightkickto receptive assessmale qualityorwhen approachingmolt CONFLICT

NO CONFLICT

NO CONFLICT

Figure 2.9 - Interactionsbetweenthesexesfromthemomentofencounter.Maleassessmentof hermaphroditereceptivityisintegratedwithhermaphroditebehavioralresponse.Theinteraction canresultinaconflictornot,dependingonthevalueofcostsandbenefitsforthetwosexes.

79

Acknowledgements

IamgratefultoDr.RobertHuberforhishelpwiththevideotrackingsoftwareandthe

JavaanalysisandtoDr.FranciscoMooreandDr.PeterH.Niewiarowskiforuseful commentsonstatisticalanalyses.Manyundergraduatestudentshelpedgreatlywith collectingpreliminaryandinitialdataonthevariousprojectsandIwouldliketothankall ofthem:DanielleMaleskiandNamrataJena(trackingproject),AnneClough,Gihyun

Myung,andJenniferBrunn(hormonetrackingproject).Thisstudywaspartiallyfunded witharesearchgrantfromtheAnimalBehavioralSociety.

III.INTERSEXUALCONFLICTDURINGMATEGUARDINGINTHE

ANDRODIOECIOUSCLAMSHRIMP EULIMNADIA TEXANA

Abstract

Aconflictariseswhenaspecificbehaviorgeneratesdifferentcostsandbenefitstothe participantsinvolvedinthebehavior.Intersexualconflictsduringreproductionare widespreadbutdifficulttodetectandassess.Precopulatorymateguardinggeneratesa sexualconflictonthedurationofmateguardingpriortofertilization.Thisstudy proposesamanipulativeapproachtoassessingsuchaconflictusingandrodioecious branchiopodcrustaceans.Possiblecoststomaleandhermaphroditic Eulimnadiatexana duringmateguardingwereanalyzed.Hermaphroditeswerelessabletofeedduringmate guardingthanmales.Ialsopairedlargeandsmallanimalstoassesstheinfluenceofsize asaformofdifferential“power”betweenthesexes:thebiggerthemalecomparedtothe hermaphrodite,thelongerthemateguarding.UnderlaboratoryconditionsIwasableto measuretheoptimal(preferred)mateguardingtimeforeachsex,manipulatingtheother sexinordertoreduceitsinfluenceonthedurationofthemateguarding.Icompared theseoptimalguardingtimestotheobserved(compromised)mateguardingtimewhen thesexeswerenotmanipulated,testingtheoreticalmodelsofoptimalmateguarding duration.Theseresultsconfirmthatmateguardinginthiscrustaceanisacaseof intersexualconflict.Longmateguardingwascostlytohermaphrodites,whowould prefershorterguardingtimes.Males,onthecontrary,werewillingtoguardlongerin

80 81

ordertoavoidlosingmatingopportunities.Hermaphroditescanoutcrosswithmalesor selffertilizetheirowneggs.Interestingly,selfingtimewaslongerthantheoptimal guardingtimeofhermaphrodites,suggestingthathermaphroditesmightdelayself fertilization,waitingforagoodqualitymaletoapproach. Keywords :Branchiopoda, mateguardingmodel,femaleresistance,malepersistence,costofguarding,size.

Introduction

Precopulatorymateguardingrepresentsacomplexcaseofintersexualconflictin thatthemateguardingdurationproducesdifferentialcostsandbenefitstothesexes involvedinthebehavior.Mateguardingmalesattempttomaximizetheirfitnessby monopolizingfemales.Thisbehaviorappliestoabroadvarietyoftaxa,from invertebrates(e.g.,crustaceansandspiders)tovertebrates(e.g.,anurans),characterized byrestrictedfemalereceptivity(Ridley,1983;Jormalainen,1998).During precopulatorymateguarding,themalestaysclose(orattached)tohismate,waitingfor themomentwhenfertilizationcanoccur(Conlan,1991;Jormalainen,1998).In crustaceansthisisusuallywhenthefemalemolts.Thestartingofguardingisanactive behaviorofthemale.Forexamplemalescanclasptheirmatewiththeirantennae(e.g., anostracans;Belk,1991),withthesecondpairofgnathopods(e.g.,gammarid amphipods;Borowsky,1984),orjoinafemaleinatube(e.g.,ischyroceridandtanaid amphipods;Borowsky,1983).Atthispoint,femalescanacceptorattempttoresistthe guardingeffortsofthemales.

82

Accordingtomateguardingtheories(Jormalainen,1998),ifthefemaleis receptive(orveryclosetoreceptivity)therewillbenoresistance,andthusnoconflict.

Ifthefemaleisnotclosetoreceptivity,themalehimselfmightdepart(andagainthere willbenoconflict).Anotheralternativeisthatthemalewillcontinuetoguard,evenif thefemaleisnotyetreceptive,whichcouldleadtoaconflictbecausethemalepersists inguardingwhilethefemaleattemptstoresist.Theactualdurationofmateguarding willthenbetheresultofthisinteractionbetweenthesexes(Yamamura&Jormalainen,

1996;Jormalainen,1998).Bothmalesandfemalesneedtheguardingphaseinorderto concludeasuccessfulmating.Becausefemalereceptivityisrestrictedintime,mate guardingwillassurethecopresenceofbothsexesattherightmoment.Different optimalmateguardingtimesbetweenthesexescancauseaconflictbecausealonger guardingphasehasdifferentcostsandbenefitsforthetwosexes.

Manytheoreticalmodelshadbeenproposedtoanalyzetheparametersinvolved inprecopulatorymateguarding(Parker,1974;Grafen&Ridley,1983;Yamamura,

1987;Yamamura&Jormalainen,1996;Jormalainen,1998;Härdlingetal.,2004).

Jormalainen(1998)usedasimpleandcleargraphicalmodelofmateguarding.Inhis model,themale“optimalguardingcriterion”isassumedtobelongerthanthefemale optimalguardingcriterion.Acompromisedguardingtimeisderivedbysuperimposing thefunctiondescribingthemale’swillingnesstopersistinguardingandthefemale’s willingnesstoresistguarding.Theintersectingpointrepresentsthecompromisedmate guardingduration(Jormalainen,1998).Thiscompromisedtimeisinfluencedbythe relative“power”ofthetwosexes(Parker&Partridge,1998):whenonesexis

83

“stronger”thantheother,itcanexercisesomecontrolovertheothersex,andthusitcan shiftthecompromisedguardingtimetowardsitsownoptimalguardingtime

(Jormalainen,1998).

Inrecentyears,longafterParker(1979)emphasizedtheoccurrenceof reproductiveconflictsbetweenthesexes,asubstantialamountofempiricaland theoreticalstudiesonthetopichasbeencollected.Thereisgeneralagreementthat intersexualconflictsarewidespread,butneverthelessdifficulttodetectandassess(e.g.,

Chapmanetal.,2003;Arnqvist&Rowe,2005).Thiscurrentstudyproposesa manipulativeapproachtodetectandmeasureintersexualconflictusingprecopulatory mateguardingbehaviorinbranchiopodcrustaceans.

Mystudyorganismistheandrodioeciousclamshrimp Eulimnadiatexana

(Packard,1871).Male E.texana guardtheirmatesusingthesecondpairoftheirthoracic appendages,modifiedinto“claspers.”Theyclasptheborderofthehermaphrodite’s carapaceandholdontoit,attainingthephysicalcontactnecessaryto(1)gather informationonthereceptivestateofthehermaphrodite(Weeks&Benvenuto,2008;

ChapterII),and(2)transferspermattheendofprecopula(Knoll,1995;Weeksetal.,

2004).Thisspeciesisparticularlyadvantageousinstudiesofmateguardingformultiple reasons:ithasafastlifecycleandshortguardingphases(comparedtoother crustaceans),itiseasytobreedinthelab,andithasbeensuccessfullyusedin behavioralexperiments(Medlandetal.,2000;Zuckeretal.,2002;Weeks&Benvenuto,

2008).Moreover,inthisspeciesmalesarecoexistingwithhermaphrodites,arare conditionamonganimals(Weeksetal.,2006a).Suchamixtureofsexesallowsmeto

84

testformateguardingconflictsinasituationwhereboththecostsandbenefitsare differentbetweenthesexes(seebelow).

Thereareavarietyofpossiblecostsinvolvedwithmateguarding:survivalcosts, suchasdifferentialpredationoncouples vs .individuals(e.g.,Ward,1986;Cothran,

2004),energeticcosts(e.g.,Watsonetal.,1998;Jormalainenetal.,2001;Plaistowet al.,2003),andreducedfeeding(e.g.,Robinson&Doyle,1985).InthispaperIfocuson apossiblecostfor E.texana :reducedfeedingduringprecopula.Thiscostiseasily measurableinclamshrimpbecausethegutisvisiblethroughthetransparentcarapace.

Thus,Icanquantifytheleveloffullnessofthedigestivetractinbothsexestoassess feedingratesduringguarding.

Thebenefitofmateguardingissimilarformalesandfemalesindioecious

(separatemaleandfemale=“gonochoristic”)species:theacquisitionofamateduring thewindowofreceptivityinthefemalecycle.Inandrodioeciousspecies,thebenefitis likelyhigherforthemale,whowouldnotreproduceatallifthewindowofopportunity wasmissed,thanforthehermaphrodite,whostillhastheoptiontoselffertilize,even thoughoutcrossingwouldbemorefavorableinordertoreduceinbreedingdepression, whichisquitehighinthisspecies(rangingfrom0.5to0.7;Weeks&Zucker,1999;

Weeksetal.,2000a;Weeksetal.,2001;Weeks&Bernhardt,2004).

Mygoalwastoempiricallytestthegraphicalmateguardingmodelproposedby

Jormalainen(1998)inacomprehensiveway.Iconsideredatleastonecostresulting fromthemateguardingbehavior(reductionoffoodintake).Ialsointroducedapower differencebetweensexes:sizeisaneasilymeasuredcharacterthatcaninfluencethe

85

physicalinteraction(persistence vs .resistance)betweenthesexesduringmateguarding.

Finally,Imeasuredthemateguardingtime,bothasoptimalmateguardingtimeforeach sex(byinhibitingtheresponseoftheothersex),andascompromisedguardingtime.

Materialsandmethods

Idesignedthreeexperimentstoinvestigatemateguardingusinganintersexual conflictperspective.Inthefirstexperiment,Ianalyzeddifferentcostsbetweenmales andhermaphroditesduringprecopula.Withthesecondtwoexperiments,Itesteda theoreticalmateguardingmodel(Jormalainen,1998),manipulatingtherelativepower ofeachsex(secondexperiment),andmeasuringoptimalmateguardingtimeformales andhermaphrodites(thirdexperiment).Allstatisticalanalysesdescribedbelowwere performedusingJMP6.0(SASInstituteInc.).

Mateguardingcosts

Feedingcanberestrictedduringtheguardingphaseforoneorbothsexes.I analyzedthelevelofemptinessofthegutinmateguardingcouples.Iusedindividuals fromthreedifferent E.texana populationsfromtheJornadaExperimentalRange,Las

Cruces,NewMexico(SWP3,SWP5,andJT4).Animalswereraisedinseminatural conditions(sedimentcontainingencystedeggswasmovedtoplasticpoolsandhydrated onsiteduringJuly,2005).Iisolatedguardingcouplesandtookdigitalphotographs:one atthebeginningoftheobservationandoneattheend(whenthemalereleasedthe hermaphrodite).InthiswayIanalyzedcouplesatdifferentstagesoftheguardingcycle.

Iwasinterestedinthedifferenceofgutfullnessbetweenthesexesduringmate

86

guarding.Thedigestivetraitisfullyvisiblethroughthetransparentcarapaceofclam shrimp.Itisaclear,lineartube,slightlycurvedontheheadandonthetelson,and lackinganenlargedstomach.Thereforethegutcanbeeasilyobservedandmeasured.

ImageswereanalyzedusingGIMP2.4.7(GNUImageManipulationProgram).I measuredthelengthofthecarapaceofeachanimal,thefulllengthofthegut(asthesum ofthreeormorestraightlinestoobtaintheconvexshapeofthegut),andfinallythe filledportionofthegutatthebeginningandattheendoftheobservationalperiod.An indexofgutfullness,inpercentage,wascalculatedasthelengthofthefullgutdivided bythetotalgutlength.Icalculatedthevariationingutfullness(indexofgutfullnessat theendminusatthebeginningoftheobservation)foreachsex.Iusedablocked,one wayanalysisofcovariance(ANCOVA)onthevariationingutfullnessconsideringsex asafixedeffectandpopulationasarandomblockeffect.Theinfluenceofage,size differencebetweenthesexes(astheratio:malesize/hermaphroditesize),andlengthof mateguardinginminutes(log 10 transformed)wereconsideredascovariates.Tukey's

HonestlySignificantDifferences(HSD)Testwasusedtodetectpairwisedifferences betweenthethreepopulations.

Theeffectofsize

InthisexperimentIusedindividualsraisedinthelaboratory,obtainedfrom encystedeggsinsamplesofsedimentcollectedin2004fromWallaceTank(referredto inotherexperimentsasWAL;Sassaman&Weeks,1993)nearPortal,Arizona.Iraised immatureclamshrimpattwodifferentdensities(lowandhigh)inordertoobtain matureindividualsofdifferentsize.Itiscommonlyobservedinthelabandfieldthat

87

populationswithhigherdensityhavesmallerindividuals(Weeks&Bernhardt,2004).I preparedsimilarlysizedpairsandalsodifferentlysizedpairs(matchingonesmallmale withalargehermaphroditeandviceversa)inordertoassesstheeffectofrelativesize onmateguardingduration.Ihousedthepairsin50mlgraduatedglassbeakersfilled withwaterandwithblacksandasacontrastingbackground.Clamshrimpwerevideo recordedfor24hoursusingablackandwhitevideocamera(PanasonicCCD)connected toatimelapsevideorecorder(SamsungSSC1280RealTimeLapseRecorder).

Hermaphroditeswerechosenwitheggsvisibleintheirbroodchamberatthebeginning oftherecording.Bothindividualsweremeasuredwithacaliper(maximumcarapace length,inmillimeters).

Iperformedalinearregressiononthesizedifferenceineachcouple(malelength minushermaphroditelengthinmillimeters)relativetomateguardingduration(in minutes).Ialsocategorizedthedataintothreegroups:malebiggerthanhermaphrodite

(differencebetweenthesexes>0.5mm),malesmallerthanhermaphrodite(difference betweenthesexes>0.5mm),andmaleequaltohermaphrodite(differencebetweenthe sexes≤0.5mm),andranaonewayANOVAonmateguardingduration(minutes)in thesethreecategories.Inordertomeettheassumptionsofnormality,mateguarding timewaslog 10 transformed.

Compromisedandoptimalguardingtimes

Iexperimentallyassessedthe“optimalguardingtime”foreachsexinthe laboratoryaswellasthe“compromisedguardingtime”(theoreticallythisshouldbea

88

compromisebetweentheoptimalguardingtimeofthemaleandtheoptimalguarding timeofthehermaphrodite;Jormalainen,1998).

Afterreachingsexualmaturity,clamshrimpweretreatedaccordingtothe specificprotocolforeachproject(seebelow).Thesamerecordingprotocoldescribed aboveforthesecondexperiment(ontheeffectofsize)wasusedhere,thistimepairing animalsatrandomfromtheonesavailableintherearingtanks.Attheendofthe recording,allindividualsweremeasuredwithacaliper(maximumcarapacelength,in millimeters).

Experiment1 Theoptimalguardingcriterionforhermaphroditeswasassessed byrestrictingthemovementofmaleswithacottonthreadgluedtothecarapaceusing thefollowingprocedure.Individualmaleswereremovedfromthewaterandplacedona

Petridish.TheoutercarapacewasdriedwithKimwipes ®andoneendofafinecotton thread,dippedinasmalldotofnontoxicsuperglue,waspositionedonthecarapace.

Thegluewasthenallowedtodryandtheshrimpwasquicklyreturnedtothewater.The otherendofthethreadwasfixedtotherimofthebeakerwithapaperclip,leavingjust enoughlengthforthemaletoswimupanddownonthewatercolumn,butnotfarfrom thepointwerehewastied.Theprocedurewasfastandharmlesstotheshrimp,butwas effectiveinlimitingmalemobility.Malesweregivenafiveminuteacclimationperiod beforeintroducingtwohermaphroditesintothebeaker.Iusedtwohermaphroditesfor eachmaleinordertoincreasethechancesofoutcrossing(hermaphroditescanstillself fertilize,eveninthepresenceofmales).Foreachbeaker,onlydataobtainedfromthe firstoutcrossingwereused.

89

Experiment2 Theoptimalguardingcriterionformaleswasassessedtreating hermaphroditeswitha10mg/mlsolutionofmagnesiumsulphate(MgSO 4).This solutionhadbeensuccessfullyusedasamuscularrelaxantinthefreshwateramphipod

Paracalliopefluviatilis (Sutherlandetal.,2007).Hermaphroditesweremovedtoa beakerfullofMgSO 4solutionfor75minutes.Attheendofthisperiod,hermaphrodites werelyingonthebottomofthebeaker,beatingtheirpleopods,butwereunabletoswim.

Treatedhermaphroditeswerethenmovedtocleanwaterforfiveminutestowashaway anyresidualofMgSO 4.Theywerethenindividuallymovedtothebeakerforrecording, wheretheywerepairedwithamale.

Experiment3 Inordertoobtaindataoncompromisedmateguardingtime,one maleandonehermaphroditeweremovedtoabeakertoberecorded.Noneofthe individualsweresubjecttoanykindoftreatment.

Followingtheseprotocols,Icollecteddataonmateguardingtimewhenmales wererestrained(Experiment1),whenhermaphroditesweretreatedwithMgSO 4

(Experiment2),andwithnotreatment(Experiment3).Ialsorecordedselfingtimefrom experiments1and3(measuredasthetimefromthehermaphroditemoltingto movementofeggsintothebroodchamber).Initially,tomakesurethatthetreatment withMgSO 4wasnotaffectingthereproductivephysiologyofthehermaphrodites,I comparedthetimefromdroppingoftheeggsfromthebroodchambertomoltingacross treatments(onewayANOVA).Iranaonewayanalysisofcovariance(ANCOVA)to assesstheinfluenceofthetypeofexperimentonmateguardingduration,usingsize differencesbetweenthematesasacovariate(Itriedtomatchsimilarsizedanimals,but

90

therewasalwaysaslightdifferenceofsizeinthecouple)tocheckforthepossibilityof aninteractionbetweensizedifferenceandexperimentaltype.Ialsoaccountedforthe reproductivestateofthehermaphroditeatthebeginningofprecopula,performingan

ANCOVAaspreviouslydescribedandseparatinghermaphroditeswithandwithout eggsforeachexperiment.Again,sizedifferencewasusedasacovariate.Mateguarding time,selfingtime,andthetimedifferencebetweendroppingtheeggsandmoltingwere log 10 transformedtomeettheassumptionsofnormality.Finally,Icomparedthe durationofreceptivityandselfingtimeacrosstreatments.Inallcases,receptivitywas measuredastimefrommoltingtothemovementoftheeggsintothebroodchamber

(eitherasaresultofoutcrossingorselfing).IrananonparametricWilcoxon/Kruskal

WallistestsinceIwasnotabletonormalizetheresiduals.

Results

Mateguardingcosts

Iobservedatotalof69couplesfromthreeseparatepopulations.Iwasinterested inthedifferenceingutfullnessbetweenthesexesduringtheobservations.The

ANCOVAdetectedasignificantinteractionbetweengutfullnessofmalesandfemales overtimeguarded(Figure3.1,Table3.1):thelongertheguardingphase,thelargerthe decreaseinfullnessforhermaphrodites,butnotformales.Ididnotobserveany influenceofage(P>3.5,analysisnotshown)orsize(P=0.0748,analysisnotshown) andthusthesepotentialcovariateswerenotusedinthefinalmodel.Populationorigin affectedthedifferenceingutcontent:ofthethreepopulations,shrimpfromSWP3were

91

significantlydifferentfromtheothers(Tukey’sHSDTest),withthehighestdecreasesin gutfullness.

Male Hermaphrodites

20

0

-20

-40

-60

-80 Difference Difference in gut fullness (%)

-100 0 0.5 1 1.5 2 2.5 Log MG time (min)

Figure 3.1 –Reductioningutfullnessfromthebeginningtotheendoftheobservationalperiod (inpercentage)asafunctionofmateguardingduration(log 10 transformed).Bestfit:continuous line(hermaphrodite)anddottedline(male). TABLE 3.1 STATISTICALANALYSIS

SOURCE SS MSNum DF FRatio Prob>F Sex 21191 21190.6 1 75.4692 <.0001 Population 4714 2357.2 2 8.3950 0.0004

Log 10 MGtime 4150 4150.22 1 14.7808 0.0002 Log 10 MGtime*Sex 2770 2769.76 1 9.8644 0.0021 Error 37064 132

BlockedonewayANCOVA(withpopulationasarandomizedblockeffect)onvariationofgut fullnessbetweenthesexes.Mateguardingtime(log10 transformed)wasaddedasacovariate.

92

Theeffectofsize

Ianalyzedatotalof43couples.Idetectedageneralincreaseinmateguarding timeasmaleswereincreasinglybiggerthanhermaphrodites(Figure3.2).Thesametrend wasfoundwhencategorizingdataintothreesizeclasses(Figure3.3).Thistime, however,Ifoundasignificantdecreaseinmateguardingtimeonlywhenthe hermaphroditewaslargerthanthemale.Ididnotfindasignificantdifferencewhen maleswereequaltoorlargerthanhermaphrodites,althoughthetrendisinthesame directionasnotedinFigure3.2.

2.5

1.5

0.5 Log10 MG timeLog10 (min)

-0.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 Size difference M-H (mm)

Figure 3.2 –Correlationofsizedifferencebetweenthesexesinmateguardingcouples(malesize –hermaphroditesize)withmateguardingtime(logtransformed).Thelinearregressionindicates anincreaseinguardingdurationasmalesareproportionallylargerthanhermaphrodites(y= 0.2279x+1.0487,p=0.002,n=43,r 2=0.2105,bestfit:dottedline).

93

Figure 3.3 –Meanmateguardingtime(log 10 transformed)forthreesizecategories:coupleswith malesmallerthanhermaphrodite(MH).Barsrepresentedindifferentcolorsaresignificantlydifferent.

CompromisedandOptimalGuardingTime

Forexperiment1(malesrestrained)Irecordedatotalof64tapes.Inmanytapes, neitherhermaphroditeapproachedthemale,butinsteadselffertilizedtheireggs(data usedfordeterminingselfingtimebelow);onlyin13casesdidatleastone hermaphroditeoutcrosswiththemale.Forexperiment2(hermaphroditestreatedwith

MgSO 4),Irecordedatotalof21tapes.Fivetapeswerenotusedinthestatistical analysesbecausethehermaphroditesdidnotmovetheireggs,andtwomoretapeswere excludedbecausethehermaphroditesdidnotoutcrosswithmalesbutinsteadself fertilized.Forexperiment3(compromisedguardingtime)werecordedatotalof39 tapes.Threetapeswereexcludedfromtheanalysesbecauseitwasnotclearwhetherthe resultofmateguardingwasoutcrossingorselfing.Eightmoretapeswerenotusedin

94

thecalculationofcompromisedguardingtimebecausethehermaphroditesselfed.

However,theseeighttapeswereusedtocalculateselfingtime(notedbelow).

Therewasnosignificantdifferenceacrosstreatmentcategoriesinthetimefrom droppingtheeggstomolting(ANOVA:F 3,67 =0.8421;p=0.4756).Mateguardingtime wassignificantlydifferentacrossthethreetreatments(malesrestrained,hermaphrodites treatedwithMgSO 4,andcompromisedtime;F 2,54 =17.2242;p<0.0001;Figure3.4).I initiallyusedsizedifferencesbetweenthesexes(malesizeminusfemalesize,in millimeters)asacovariate,butsinceIdidnotdetectanyinfluenceofthecovariate(F 1,51

=1.2034,p=0.2778)andnointeractionbetweentreatmentandcovariate(F 2,51 =

0.0508;p=0.9505)onmateguardingtime,Iremovedsizedifferencebetweenthesexes fromtheanalysis.Theoptimalguardingtimeformales(obtainedwhenhermaphrodites weretreatedwithMgSO 4)wassignificantlylongerthanthecompromisedguardingtime

(noneofthesexestreated)andthecompromisedguardingtimewaslongerthanthe optimalguardingtimeforhermaphrodites(obtainedwhenmaleswererestrained).

Ialsoconsideredthereproductivestateofthehermaphroditeatthebeginningof mateguarding,findinganoveralldifferenceinmateguardingtime(ANCOVA:F 5,50 =

25.2477;p<0.0001;Figure3.5).Ineachtreatmentthemateguardingtimewas significantlyshorterwhenthehermaphroditeswereclosertoreceptivity(noeggsinthe broodchamber)thanwhenthehermaphroditeshadnotyetdroppedtheireggsatthe beginningoftheguardingphase(Figure3.5).AgainIdidnotdetectasignificant interactionbetweensizeandtreatment(ANCOVA:F 5,45 =0.5390;p>0.7)andthuswe removedthisparameterfromtheanalysis.Sizedifferencebetweenmaleand

95

hermaphroditedidnotinfluencemateguardingtime(ANCOVA:F 1,50 =2.9098;p=

0.0942).

Figure 3.4 Meanguardingtime(log 10 transformed)foreachtypeofexperiment(seetextfor detailedexplanations).Errorbarsrepresenttwotimesthestandarderror.

Figure 3.5 Meanguardingtime(log 10 transformed)foreachtypeofexperimentaccountingfor thereceptivitystateofthehermaphrodite.Errorbarsrepresenttwotimesthestandarderror.

96

Inthefinalanalysis,Icomparedthedurationofreceptivityacrosstreatments

(includingselfing).Interestingly,receptivityfortheselfinghermaphroditeswaslonger thanreceptivityofthehermaphroditesinalltheothertreatments(Wilcoxon/Kruskal

Wallis:χ 2=14.0853;n=111;df=3;p=0.0028;Figure3.6).

Figure 3.6 –Variationinhermaphrodites’lengthofreceptivity(timefrommolttoeggmovement tothebroodchamber),inminutes,amongtreatments.Errorbarsrepresenttwotimesthe standarderror.

Discussion

Precopulatorymateguardingisacomplexbehaviorthatcanbeanalyzedusing anintersexualconflictperspective.Accordingtotheory(Jormalainen,1998),costsand benefitsofmateguardingdurationsaredifferentbetweenthesexes.Malesarewillingto investmoretimethanfemalesinaguardingeventtoreducetheprobabilityoflosinga matingopportunity.Females,ontheotherhand,aremoresensitivetocostsandwould prefertobeguardedforashortamountoftime.Acompromiseisusuallyreachedwith anintermediateguardingtimebetweenmaleandfemaleoptimalguardingtime

97

(Jormalainen,1998).Additionalparameterscaninfluencetheguardingduration, includingapowerasymmetrybetweenthesexes(Jormalainen,1998).

Thegoaloftheseseriesofexperimentswastoperformacomprehensivestudy, consideringatleastonepossiblecost(restrictedfeedingduringmateguarding), changingtherelativepowerbetweensexes,measuringtheoptimalguardingtimefor eachsex(inordertocompareittothecompromisedguardingtimei.e.,theresolution oftheconflict),andevaluatingthedifferentbenefitsforthesexes.BelowIwilldiscuss eachoftheseinturn.

MATEGUARDINGCOSTHermaphroditessufferedfromreducedfeeding duringmateguarding.Thelevelofgutfullnessdecreasedwithincreasingguarding duration:thehigherreductioninfoodintakeforthehermaphroditescorrespondedtothe longertimetheyspentbeingguarded.Mateguardingcouplesalternatefromphases whentheanimalsarerestingonthebottomtophaseswhereanimalsareswimmingin thewatercolumn(personalobservation).Clamshrimparefilterfeedersandwhile engagedinmateguarding,malescanstillactivelyswim.However,hermaphrodites’ swimmingactivityisreducedduringguarding(hermaphroditesareoften“pushed” throughthewaterbymaleswhenthecoupleismoving).Myfirstexperimentrecorded theamountoffoodinthegut,visually,asanestimateofingestionrate,andthusisa quantitativeassayofdiet.Ididnotconsidertheassimilationefficiency(qualitative aspect),butareductioninfoodintakewilllikelyresultinenergeticcosts.

Ialsodetectedvariationamongpopulations:inonepopulationtherewasa significantlygreaterdecreaseoffoodinthegutthanintheothertwo.Inthisexperiment,

98

populationswereraisedundernaturalconditions,andthusIcanexpectvariationamong populationsindensitiesandamountofnutrientsinthewater,whichcanexplainthe significantvariationobservedamongpopulations.

Otherstudieshaveinvestigateddifferentialfeedingcostsbetweenthesexes duringmateguardingevents.Intheamphipod Gammaruslawrencianus ,malesusetheir gnathopodstoguardfemales.Gnathopodsarealsousedtomanipulatefood,andthus malescannotfeedwhileguarding(Robinson&Doyle,1985).Inthisspeciesmalesincur highermateguardingcoststhanfemales.Similarly,beingguardedisnottoocostlyto femalewaterstriders Gerrisremigis .Guardedfemalesaremoresuccessfulincapturing preythansinglefemales,whichareconstantlyharassedbymultiplemales(Wilcox,

1984).Unlikethesespecies, Eulimnadiatexana hermaphroditessufferedhigherfeeding coststhanmalesduringmateguardingandthiscandifferentiallyinfluencemaleand femalebehaviorsandguardingtimepreferences,asIwilloutlinebelow.

POWERASYMMETRYBETWEENTHESEXESWhenamaleencountersa possiblemate,hecandecideifitisfavorabletostartaguardingphaseornot.Oncethe malestartsguarding,thechosenmatecanacceptortrytoresistthemateguarding attempt.Persistenceandresistanceshouldbeproportionaltothebalanceofcostsand benefitsdeterminedbythedurationofthemateguardingphase(Jormalainen,1998).I manipulatedcouples,matchingindividualsofdifferentsize.Largersizecanprovide physicalpowertopartiallyovercomethecontender’spersistenceorresistance.I observed,infact,asignificantdecreaseofmateguardingtimewhenhermaphrodites werelargerthanmales(andthushermaphroditeresistancewasmoreeffectivethanmale

99

persistence)andasignificantincreaseinmateguardingtimewhenmaleswherelarger thanhermaphrodites(andthusmalepersistencewasmoreeffectivethanhermaphrodite resistance).Similarresultshavebeenreportedfortheisopod Idoteabaltica

(Jormalainen&Merilaita,1993;Jormalainenetal.,1994a;Jormalainen&Merilaita,

1995).In E.texana malepersistenceseemstobequitestrong,evenwhenmalesarethe samesizeashermaphrodites.Ididnotdetectanysubstantialincreaseinmateguarding durationwhenmaleswerelargerthantheirmatescomparedtocouplesofthesamesize.

Malepersistenceisthusquiteeffective,maybeduetothemorphologicaladaptationsof claspers(itisdifficulttoseparateaguardingpair,evenwhenforcefullytryingto separatethem via agitation; personalobservation).

While E.texana presentscomparablesizesformalesandhermaphrodites,a sexualsizedimorphismhasbeenreportedforclamshrimpspeciesbelongingtothe genera Limnadia and Limnadopsis (Weeksetal.,2006b).Inthetwodioeciousgenera, malesarelargerthanfemalesandthemateguardingtimeissignificantlylongerthanin

E.texana (seeChapterIV).Thesedatamightsuggestthatmalesinsomespecieshave beenselectedtogrowlargerthantheirmatestobettercontroltheguardingprocessand skewthecompromisedguardingtimetowardstheiroptima.Moreover,both Limnadia and Limnadopsis experiencethe50:50sexratiostypicalofdioeciousspecies.An increaseinmalesizemightalsobeselectedinresponsetohighermalemalecompetition indioecious vs .androdioeciousspecies.Thecompetitioncouldbeeitherindirect

(exploitationoffemales)ordirect(i.e.,takeovers,whenonemalecandislodgeanother mateguardingmale).Atapopulationlevel,thematingadvantageforlargermaleshas

100

beenreportedinthemateguardingisopod, Asellusaquaticus ,athighpopulation densities,orwhenthesexratioismalebiased(resultinginincreasedmalemale competition),butnotatlowpopulationdensities(Bertin&Cezilly,2005).Similar resultswerefoundintheamphipod Gammaruspulex inthelaboratorywithincreased male:femalesexratio(Bollache&Cezilly,2004a).Thus,largermalesizecouldbe selectedtoincreasemalecontrolonmateguardingduration(intersexualconflict)and/or torespondtohighmalemalecompetition(intrasexualconflict).

OPTIMALANDCOMPROMISEDMATEGUARDINGTIME

Hermaphroditesandmaleshavereasonstofightovermateguardingduration:according totheory,malesshouldpreferalongermateguardingtimethantheirmatesbecauseof differentcostsandbenefitsinthetwosexes(Jormalainen,1998).Thisnotionis consistentwiththecompromisedguardingtimenotedabove;whentheguardingtimeis shorterorlongerdependingonwhetherthehermaphroditeormaleisthelargersexin theguardingpair,respectively.Additionally,Idetecteddifferentoptimalguardingtimes whenIallowedonesextomaketheguardingdecisionbyreducingtheabilityofthe othersextorespond.Mateguardingdurationwaslongerwhenhermaphroditeswere treatedwithasolutionofamuscularrelaxantagent,andthustheirresponsewas inhibited.Mateguardingwasshorterwhenmaleswererestrained,andthustheycould notactivelyseekfemalestostartaguardingphase,butwereforcedtowaitfor hermaphroditestoapproachthem.Hermaphroditesarecapableofassessingmale presence(Medlandetal.,2000andseeChapterII)andthuscandecidetoswimwithin

101

reachofmales.Ialsorecordedintermediates(“compromised”)guardingtimeswhen neitherofthesexeswasmanipulated.

TheseresultsfitperfectlywithJormalainen’stheoreticalmodel(1998).Mate guardingrepresentsacomplexcaseofintersexualconflictovermateguardingduration, whenmaleswouldliketoguardaslongasittakesnottomissamatingopportunity

(optimalmateguardingcriterionformales),whereasfemales(orhermaphroditesinthis case)wouldliketobeguardedforasshortaspossible(optimalmateguardingtimefor females)sincemateguardingiscostlytothem(theirfeedingcostsincreasewiththe guardingduration).Acompromise(theresolutionoftheconflict)isreachedwithamate guardingdurationsomewhereinbetweenthetwooptimalmateguardingtimes.In particular,thecloserthehermaphroditesaretoreceptivity(hermaphroditeswithno visibleeggsinthebroodchamber)theshortershouldbethecompromisedguarding time,withbothsexesbenefiting.

Inhibitionoffemaleresistancehadbeenusedinotherstudies:Jormalainenand

Merilaita(1995)usedalloferin(amusclerelaxant)intwoisopodspecies( I.baltica and

Asellusaquaticus )andoneamphipodspecies( Gammaruszaddachi ).Theyalso subjectedthemarine I.baltica femalestoosmoticstress(placingtheminfreshwater)to reducetheirabilitytoresistmateguardingattemptsbymales.Ofthethreespecies examined,only I.baltica femaleswereaffectedbythetreatmentsandmaleswereable toguardthemforasignificantlylongertimethanuntreatedcontrols.Jormalainenand

Shuster(1999)treatedthermalspringfemaleisopods Thermosphaeroma thermophilum withalcoholandrecentlyCothran(2008b)treatedfemaleamphipods Hyalella withCO 2

102

oracloveoilsolution(dependingonthesizeoftheamphipodecomorphs)andrecorded mateguardingtime.Asfoundherein,anesthetizedfemaleswereguardedlongerthanthe control.

Reductionofmalepersistenceismoredifficulttoobtain.Osmoticstressand clippingofnailsordactyls(toreducemaleefficiencyinguardingafemale)wereused on I.baltica and T.thermophilum males(Jormalainen&Merilaita,1995;Jormalainen

&Shuster,1999)butdidnotresultindecreasedmateguardingduration.Theauthors interpretedthisasanimplicationoftheroleofthefemaleinthemateguardingdecisions inthisspecies.In E.texana instead,Ididfindasignificantinfluenceofmalepersistence onmateguardingduration.

MATEGUARDINGBENEFITThegoalofmateguardingistofavorthe presenceofbothmatureandreceptivemalesandfemales.Thiswillresultinsuccessful mating.Indioeciousspecies,neithersexcanreproducewithouttheother,sothegeneral benefitistoacquireamateinordertoreproduce.Inandrodioeciousspecies, hermaphroditeshavetheoptionofselffertilization.Intheclamshrimp E.texana , inbreedingdepressionishighinnaturalpopulations(Weeks&Zucker,1999;Weeks&

Bernhardt,2004)andthusoutcrossingisbeneficialinordertoproducefitteroffspring.

Inthiscasethebenefitofmateguardingisstillhigh,evenforhermaphrodites.I unexpectedlyfoundalongerreceptivitystateinselfinghermaphroditesthanin outcrossinghermaphrodites.Apossibleexplanationisthathermaphroditesareableto controltheirreproductivecycleandpossiblyincreasethetimefrommolttoself fertilization,waitingforagoodqualitymaletoapproach.Asimilarincreasein

103

receptivitywasalsofoundin E.texana inapreviousstudy(Zuckeretal.,2002).Inboth thecurrentandpreviousstudies,delayedselffertilizationcanbeinterpretedasamethod toallowforanincreasedpossibilityofencounterswithmales.Myresultswereobtained fromhermaphroditesisolatedwithasinglemale,andthustherewasnoopportunityfor interactionswithdifferentmales.Ifhermaphroditesareabletoassessthequalityoftheir mates,andtheydonotconsidertheoneavailableintheexperimentofgoodquality

(whichmaybequitelikelyinhighlyinbredpopulations),thenhermaphroditesmight postponeselffertilizationwhilewaitingforanotherhigherqualitymaletoapproach.

Inconclusion,Iusedtheclamshrimp E.texana asamanageablestudyorganism toanalyzemateguardingbehaviorwithacomprehensiveapproach.Ievaluateda potentialcostofmateguardingforeachsex(reducedfoodintake),createdan asymmetryinpowerbymanipulatingthesizeassortmentofcouplestoseetheresulting effectonthedurationofmateguarding,andassessedtheoptimalandcompromised mateguardingcriteriaforthetwosexes.Jormalainen’smodel(1998)assumesthatat leastonesexshouldincurhighercostsduringmateguarding.Ifoundthat E.texana hermaphroditesexperiencedreducedfeedingwhilebeingguardedandthiscostis directlyproportionaltotheguardingduration.Highercostsforonesexhavebeenalso reportedinotherspecies.Femaleamphipodsof Hyalellaazteca undergohigher predationriskbyfishwhenpaired(Cothran,2004),whilepairedmalesof Gammarus pulex sufferhigherenergeticcoststhanpairedfemales(Plaistowetal.,2003). Asellus aquaticus malesalsoincurhighercostsduringmateguardingthanfemales,atapoint thataffectstheirsubsequentfitnessandsurvival(Beneshetal.,2007).Aspredictedby

104

themodel(Jormalainen,1998),apowerasymmetryshouldinfluencetheresultofthe mateguardingconflict,favoringthemore“powerful”sex.Isupportedthispredictionin

E.texana byanalyzinganasymmetryinsize:thelargersexshiftedthecompromised guardingdurationtowardsitsownoptimalguardingtime.Asimilarresultwasfoundin theisopod I.baltica (Jormalainen&Merilaita,1993;Jormalainenetal.,1994a;

Jormalainen&Merilaita,1995).Finally,Imeasuredtheoptimalandcompromised guardingtimeforthetwosexes.Asexpected(Jormalainen,1998),theoptimalguarding timeforhermaphroditeswasshorter,whiletheoptimalguardingtimeformaleswas longerthanthecompromisedguardingtime.Fewotherempiricalstudieshavetestedthis inthelaboratoryand,similartothecurrentstudy,allhaveobtainedlongermate guardingtimeswhenfemaleresistancewasreduced(Jormalainen&Merilaita,1995;

Cothran,2008b).

Thecurrentchapterandtheabovereportedempiricalstudiessupport

Jormalainen’smodel(1998),atleastincrustaceans.Evidenceforamoregeneraltestof thismodelmightbefoundinothersystemsemployingprecopulatorymateguarding

(e.g.,spiders;BelVenner&Venner,2006).

Usinganandrodioeciousclamshrimp,Iwasabletostudymateguardingina specieswhereonesex(hermaphrodite)iscapableofselffertilization.Iwasconvinced thatthisabilityallowsthepotentialtodecreasesubstantiallythebenefitofmatingwitha male,andthusthebenefitofbeingguarded.Inreality,Imeasuredalongerreceptive windowintheselfinghermaphroditesthanintheoutcrossinghermaphrodites.Iam

105

interpretingthisresultasanindicationoftheimportanceofoutcrossingfor hermaphroditesinanandrodioeciouspopulation.

Acknowledgements

IwouldliketothankDr.BrianBagattoforhelpfulsuggestionsontheuseof muscularrelaxantsandBethWallaceforherhelpinrearingclamshrimpinthe laboratory.

IV.MATEGUARDINGBEHAVIORINCLAMSHRIMP:THEINFLUENCEOF

MATINGSYSTEMONINTERSEXUALCONFLICT

Abstract

Mateguardingisabehavioralstrategyusedbymalestogainaccesstoreceptivefemales.

Thiscomplexbehaviorcanresultinantagonisticinteractionsbetweenthesexesandcan beinfluencedbysocial,morphological,andphysiologicalparameters.Thematingsystem ofaparticulargroupofanimalsshouldalsoinfluencethestrengthoftheconflictandthus theguardingduration.Theconflictis,infact,determinedbydifferentialcostsand benefitsofguardingtobothsexes;specifically,selfcompatiblehermaphroditesmayhave reducedbenefitsofoutcrossingwithmalesrelativetothebenefitsofsuchoutcrossingto strictfemales.Usingbranchiopodcrustaceansasmystudyorganisms,Iwasableto investigatemateguardingbehaviorindioecious(copresenceofmalesandfemales)and androdioecious(copresenceofhermaphroditesandmales)species.Hermaphroditesare facultativelyunisexual(theycanselffertilizeintheabsenceofmales).Bothsexesin androdioecioussystemsshouldshifttheirguardingtimestolowervaluesrelativeto dioeciousspecies.Malesarealwayspresentinlowerpercentagesinandrodioecythanin dioecyandthusencounterrateswithreceptivehermaphroditesarerelativelyhigher, whichshouldcausemalestoguardforshorterdurations.Hermaphroditesshouldalso havelessincentivetoincurhighcostsformateguarding,havingthealternativeofself fertilization.Ianalyzedmateguardingbehaviorinadioeciousspecies, Limnadiabadia ,

106 107

measuringcompromisedandoptimal(formalesandfemalesseparately)mateguarding times.Ithencomparedthecompromisedguardingtimewiththreeotherspecies

(characterizedbydifferentmatingsystems)andwasabletoconfirmthatmateguarding timesarelowerinandrodioeciousthanindioeciousspecies.Thisresultrepresentsa powerfultestofmateguardingtheory,whileintroducinganewparameter(mating system)notpreviouslyinvestigatedinmateguardingmodels.Moreover,thisnew approachproposesauniquemethodtoexploretheideasofconflictovermateguarding: theanalysisofspecieswithdifferentcostsand/orbenefitsthanthe“standard.”Clam shrimpspeciesallowthisapproachbyusinganintermatingsystemcomparisonbetween closelyrelatedspeciesthatdifferinmatingsystem.Thisapproachalsovalidatestheidea thattheuseoffacultativehermaphroditeshasthepotentialtomakeavaluable contributiontoourunderstandingofintersexualconflict. Keywords : Eulimnadiatexana ,

Eulimnadiadahli,Limnadiabadia , Limnadopsistatei ,androdioecy.

Introduction

Precopulatorymateguardingisabehavioralstrategyusedbymalestogainaccess toreceptivefemales.Itiscommonlyfoundisspeciesinwhichfemalereceptivityis limitedtoabriefandspecificperiodoftime,orthebreedingseasonisparticularlyshort

(Ridley,1983;Jormalainen,1998).Precopulatorymateguardinghasbeendescribedina varietyoftaxa,frominvertebrates(e.g,crustaceansandspiders)tovertebrates(e.g., anurans).Thisbehaviorismorecomplexthanwasinitiallythoughtinthatitis determinedbyinteractionsbetweenthesexesandcanresultinaninterestingcaseof

108

intersexualconflictwhenmalesandfemalesareexperiencingdifferentcostsandbenefits

(Jormalainenetal.,1994b;Yamamura&Jormalainen,1996;Jormalainen,1998).

Mateguardingtimecanbeinfluencedbyavarietyofparameterssuchas physiologicalparameters(e.g.,femalemoltingin),morphologicalparameters

(relativesizebetweenthesexesandvariationinmalesize),socialparameters(including sexratioanddensity,whichprimarilydeterminemateencounterrate),andmating history.Alltheseparameterscanalsovarytemporallyinasinglematingevent(e.g.,time tomolt)orlocallyinasinglepopulation(e.g.,encounterratesindifferentmicrohabitats).

Duetothiscomplexity,mateguardinghasbeenthesubjectofmanyempiricalstudies

(e.g.,Jormalainenetal.,2000;Jormalainenetal.,2001;Humeetal.,2002;Bertin&

Cezilly,2003;Plaistowetal.,2003;Beneshetal.,2007;Cothran,2008b)andtheoretical models(Parker,1974;Wickler&Seibt,1981;Grafen&Ridley,1983;Hunteetal.,1985;

Yamamura,1987;Elwood&Dick,1990;Jormalainenetal.,1994b;Yamamura&

Jormalainen,1996;Jormalainen,1998;Härdlingetal.,1999;Härdlingetal.,2004).Mate guardingmodelsinparticularhavetriedtoincorporatemanydifferentparametersto predicttheirinfluenceonguardingtime,suchasthereceptivestateoffemales,encounter ratesandsizedifferencebetweenthesexes,andthepossibilityoftakeovers(seeChapter

Iforanhistoricalaccountonvariousmodelsandtheparametersinvestigated).Asaresult oftheinteractionamongtheseparameters,theguardingdurationispredictedtobequite variable.Infact,variabilityhasalsobeendocumentedacrossspecies(e.g.,Jormalainen&

Merilaita,1995)andacrosspopulationsofthesamespecies(Jormalainenetal.,2000and seeChapterV).

109

Thematingsystemofaparticulargroupofanimalsshouldalsoinfluencethe strengthoftheconflictandthustheguardingduration.“Matingsystem”isabroadterm.

EmlenandOring(1977)defineditinthisway:“ Theterm‘matingsystem’ofa populationreferstothegeneralbehavioralstrategyemployedinobtainingmates.It encompassessuchfeaturesas(i)thenumberofmatesacquired,(ii)themannerofmate acquisition,(iii)thepresenceandcharacteristicsofanypairbonds,and(iv)thepatterns ofparentalcareprovidedbyeachsex ”(noteonpage222).Followingthisdefinition,we cangroupmatingsystemsincategoriesas(i),,,orharem breeding;(ii)puresearching,mateguarding,partnerfidelity,andalternativemating strategies(e.g.,sneakingbehaviors);(iii)puremonogamyorserialmonogamy;and(iv) maternal,paternal,biparentalcare,orhelperatthenest.Besidesusingthisapproach, matingsystemscanalsobeinvestigatedfocusingontheprocesses,utilizingan

“ecologicalframework,”likeEmlemandOring(1977)havedone,byanalyzingtherole offemales’distribution(spatialandtemporal)inshapingmatingsystems,asinShuster andWade(2003).

HereIamreferringtoanothergroupofmatingsystems(orsexualsystems)that categorizesorganismsonthebasisofthepresenceofsexualtypes:hermaphroditism

(sequentialhermaphroditesorsimultaneoushermaphrodites),dioecy(copresenceof malesandfemales),androdioecy(copresenceofmalesandhermaphrodites),and gynodioecy(copresenceoffemalesandhermaphrodites).Thelasttwogroupscommonly representmixedmatingsystemsandareparticularlyinformativeforthestudyofmating

110

behaviors.Tomyknowledge,mateguardinghasneverbeeninvestigatedviacomparisons ofadioecioussystemwithamixedmatingsystem.

Androdioecyisararematingsysteminanimals(seeWeeksetal.,2006aand referencestherein).Onlyafewanimalgroupsarecomposedofmalesand hermaphrodites:onefish( Rivulusmarmoratus ),somenematodes(with Caenorhabditis elegans themostwellknownrepresentative),somecirripedcrustaceans,andsome branchiopodcrustaceans.Thankstoitsintermediatestate(betweendioecyand hermaphroditism),androdioecyisasystemthatcouldbeextremelyvaluableinstudiesof matingbehaviors.Itallowsfortheopportunitytocomparematingbehaviorsinmales, females,andhermaphroditesinandrodioeciousanddioeciouspopulations.This,then, allowsfortheassessmentofdifferentstrategiesusedbythedifferentsexes.

Thefirstgoalofthischapteristodescribethemateguardingbehaviorinthe dioeciousspecies Limnadiabadia (,1911),followingthesameprotocolusedfor

Eulimnadiatexana (Packard,1871;seeChapterIII).InthiswayIcanassesswhetherthis dioeciousspeciesofclamshrimpisexperiencingmateguardingasaformofintersexual conflictinasimilarwayasintheandrodioeciousclamshrimp.Thesecondgoalofthis chapteristocomparemateguardinginfourspeciesofclamshrimp(Branchiopoda:

Spinicaudata:Limnadiidae).InordertodothisIwillusedataobtainedfrom L.badia

(presentchapter)and E.texana (ChapterIII)plusdatacollectedfromtwomorespecies: thedioecious Limnadopsistatei (Spencer&Hall,1896)andtheandrodioecious

Eulimnadiadahli (Sars,1896).Theselasttwospecieswillhelpmakethecomparison morerobust,sincelimitationsoftwospeciescomparativestudiesarewellknown

111

(Garland&Adolph,1994).Icanthuscomparefourcloselyrelatedspecies(clamshrimp inthefamilyLimnadiidae)belongingtotwomatingsystems(androdioecyanddioecy) thatcommonlymateguard.

Dioeciousandandrodioeciousspeciesdifferforavarietyofparametersotherthan thematingsystem,includingsexratioofpopulations,size,andlengthofthereceptive cycle(seebelow).Icanpredictthatbothmalesandfemalesbelongingtothedioecious systemshouldguardlongerthanthecorrespondingsexesintheandrodioecioussystem.

ThisexpectationisderivedbyapplyingthegraphicalmodelproposedbyJormalainen

(1998)toeachsex(femalesandmalesinthedioeciousspeciesandhermaphroditesand malesinthedioeciousspecies).Malesindioeciouspopulationshouldexperiencelower encounterrateswithreceptivemates(duetoahighermalepercentageinthese populationsthaninandrodioeciouspopulation;seebelow).Thisshouldcausemalesto guardforlongerdurations.Femalesshouldalsobewillingtoaccepthighercostsofbeing guardedthanhermaphrodites,theformernothavingtheoptionofselffertilization.Asa result,combiningtheoptimalguardingtimeofthesexestopredictacompromised guardingtime(seeChapterI)andcomparingbetweenmatingsystem,Iexpectthe compromisedmateguardingtimetobelongerindioeciousthaninandrodioecious species.

Eberhard(2005)suggestedtheuseoffacultativehermaphroditesasapossibletest ofthestrengthofintersexualconflicts.Thedifferenceinmateguardingdurationbetween twomatingsystemscanrepresentameasureofthedifferentstrengthoftheconflict involvedduringprecopula.Suchacomparisononmateguardingdecisionsandstrength

112

ofintersexualconflictsbetweenspeciescharacterizedbydifferentmatingsystemshas neverbeenproposednorinvestigatedbefore,andclamshrimppresentanidealsystem withwhichtotestthishypothesis.Thisnewapproachrepresentsauniquemethodto exploretheideasofconflictovermateguarding.

Materialsandmethods

Iusedindividualsfromfourdifferentspecies,allbelongingtothefamily

Limnadiidae:

Eulimnadiatexana :sedimentcollectedin2000and2004inPortal(31°57.387’N;

109°08.998’W;WallaceTank),Arizona,USA.Thiscollectionsitehasbeen

referredasWALinotherstudies(e.g.,Sassaman&Weeks,1993;Weeksetal.,

1999;Weeksetal.,2000b;Weeksetal.,2008).

Eulimnadiadahli :sedimentcollectedin2008inTheHumps(ShireofKondinin,

32°0.558’S;118°36.321’E;pool3),WesternAustralia;

Limnadiabadia :sedimentcollectedin2008inRock(ShireofLakeGrace,

33°19.009’S;118°57.534’E;pool12)andPuntapinRock(ShireofWagin,

33°19.495’S;117°23.941’E;pool146)bothinWesternAustralia;

Limnadopsistatei :sedimentcollectedin2003inKadjiKadji(ShireofMorawa,

29°8.233’S;116°24.833’E;claypan),WesternAustralia.

Rearinginthelaboratory

Forallspecies,~500mlofsedimentwasaddedto37literaquariawhichwas thenfilledwithastrongjetofdeionizedwater(tosimulatenaturalfillings).Aquaria

113

wereaeratedviaairstones(onlow)andilluminatedwithDurotestsunlightsimulating fluorescentlights.Watertemperaturewasmaintainedconstantat27°C.Sexualmaturity wasreachedsoonerinandrodioeciousspecies(approximately57daysafterhydration) thanindioeciousspecies(approximately1012daysafterhydrationfor L.badia and15 daysfor L.tatei ).

Mateguardingin Limnadia badia

IusedthesamemethodologydescribedinChapterIIIfor E.texana withminor variations:

Theoptimalguardingcriterionforfemaleswasassessedbytyingmaleswithacotton threadgluedtothecarapace.Onefemalewasintroducedintothebeakerwiththe restrainedmale;

Theoptimalguardingcriterionformaleswasassessedbytreatinghermaphroditeswith a10mg/mlsolutionofmagnesiumsulphate(MgSO 4),amuscularrelaxant,for75minutes

(preliminaryresultsshowedareducedswimmingactivityinfemale L.badia leftinthe solutionforthisamountoftime);

Thecompromisedmateguardingtimewasmeasuredbyrecordingonemaleandone female L.badia notsubjectedtoanytreatment.

Alltapeswererecordedfor72hourstodocumentacompleteguardingcycleper pair.Clamshrimpwerefedatthebeginningoftheexperimentandagainevery24hours

(acoupleofdropsofasolutionofyeastandgroundfishflakefood).Allanimalswere measuredwithcalipersafterthetrial(maximumcarapacelength,inmillimeters).

114

Compromisedmateguardingtimeacrossspecies

Compromisedmateguardingtimewasalsomeasuredfortheotherthreespecies: theandrodioeciousspecies( E.texana and E.dahli )wererecordedfor30hours, L. tatei wasrecordedfor72hours.Alltapeswerescoredformateguardingtime,recordingthe startofclaspingtime,theendofclasping,timethateggsweredropped,andthetimeof hermaphrodite/femalemolt(theselasttwomeasureswereusedtocalculatethereceptive cycleofhermaphroditesandfemales).Clamshrimpweremeasuredwithcalipersafter thetrial(maximumcarapacelength,inmillimeters).

Statisticalanalyses

Iranablockedonewayanalysisofcovariance(ANCOVA)toanalyzevariation inmateguardingtimeinthethreetreatmentsappliedto L.badia :malerestrained,

MgSO 4treated,andcompromisedguardingtime.Iusedtreatmentasafixedeffectand outcropasrandomeffect(sinceIusedanimalscomingfromdifferentpopulations).Idid notrunacrosseddesignedacrosspopulationsbecauseIdidnotuseallthepopulations forallthetreatments.Iuseddifferenceinsizebetweensexes(malesizeminusfemale size)asacovariate.Sinceboththeblockedeffectandthecovariatewerenotstatistically significant(P=0.1515andP=0.2498,respectively),Ithenranasimpler,oneway

ANOVAonvariationinmateguardingtimeinthethreetreatments.Tukey'sHonestly

SignificantDifferences(HSD)testwasusedtodetectsignificantpairwisedifferences betweenthetreatments.

Initially,Iperformedanested,onewayANCOVAtoanalyzemateguardingtime amongspeciesandmatingsystem.Specieswereconsideredrandomfactorsnestedin

115

matingsystem.Malesize,female/hermaphroditesize,andthetimebetweenmoltingand movementoftheeggs(measureofthereproductivecycleoffemalesandhermaphrodites) weretestedascovariates.Sincenoneoftheseweresignificanttheywereremovedfrom theanalysisandasimpler,nested,onewayANOVAwasthenused.

AllanalyseswereperformedusingJMP6.0(SASInstituteInc.).Tomeetcriteria ofnormality,mateguardingtimewaslog 10 transformed.

Results

Mateguardingin Limnadia badia

Atotalof23tapeswererecordedforthecompromisedguardingtime(Dingorock population).Unfortunately,infourtapes,eitherthemaleorthefemalediedduringthe trial,andintwo,eggswerenotfertilizedandmovedintothebroodchamber,leavingonly

17tapesforcomparisons.Twentyfourtapesweresetuptoanalyzetheoptimalmate guardingtimeoffemales(tyingmales)usinganimalsfromDingo(ninetapes)and

Puntapin(15tapes)populations.Unfortunately,someanimalsdidnotinteractwitheach other(fourfromDingoandsevenfromPuntapin),orfemalesdidnotmoveeggsinthe broodchamber(twofromPuntapin),oroneanimaldiedduringthetrail(twofrom

Puntapin)reducingthenumberofusabletapestoeight.Twentyfourmoretapeswereset tomeasuretheoptimalguardingtimeformales(treatingfemaleswithMgSO 4),using

Dingo(11tapes)andPuntapin(13tapes)populations.Againthesamplesizewasreduced to10becauseofdeathofoneofthetwoanimals(eightfromDingoandthreefrom

116

Puntapin)ornoeggmovementintothebroodchamber(twofromDingoandthreefrom

Puntapin).

Treatment(maleconstrained,femaletreatedwithMgSO 4)andunmanipulated

(control)hadasignificanteffectonmateguardingduration(Table4.1).Theoptimalmate guardingtimeforfemales(obtainedwhenmaleswererestrained)wassignificantlylower thanthecompromisedguardingtime(Figure4.1).Ontheotherhand,Tukey'sHSDTest didnotfindanysignificantdifferenceamongtheoptimalmaleguardingtimeandthe optimalfemaleguardingtimeorcompromisedtime(Figure4.1).

TABLE 4.1 –STATISTICAL ANALYSIS

Source SS DF FRatio Prob>F Treatment 6.23 2 4.2528 0.0230 Error 23.45 32

OnewayANOVAonmateguardingtime(log 10 transformed).

Figure 4.1 Meanguardingtime(log 10 transformed)foreachtypeoftreatmentin Limnadia badia (seetextfordetails).Errorbarsrepresenttwotimesthestandarderror.

117

Compromisedmateguardingtimeacrossspecies

Thefourspeciesanalyzedinthischapterdonotjustdifferforthematingsystem

(whichallowshermaphroditestoselffertilizeoroutcrosswithmaleswhilefemalescan onlyoutcross),butforotherparametersaswell.Table4.2summarizessomeofthese parameters.Dioeciousspecieslivelongerthanandrodioeciousones(personal observation),presentalongerreceptivecycle(i.e.,timefrommolttothemomenteggs aremovedintothebroodchamber)forfemalescomparedtothereceptivecycleof hermaphrodites,bothsexesarelargerthaninandrodioeciousspecies,andthesexratiois different:inandrodioeciousspeciesmalesareasmallerportionofthepopulation,while indioeciousspeciesthereisusuallya50:50sexratio(Table4.2).

TABLE 4.2 –SPECIESCOMPARISON

% MEAN ♂SIZE MEAN ♀SIZE ♀RECEPTIVE SPECIES MATINGSYSTEM MALES (mm) (mm) CYCLE (min) Eulimnadia Androdioecious 26.9** 3.1±2.5 3.1±2.6 18.47±30.40 dahli Eulimnadia Androdioecious 17.9* 4.6±1.7 4.5±1.6 10.91±21.01 texana Limnadia Dioecious 44.7** 7.1±0.4 6.4±0.3 223.57±272.89 badia Limnadopsis Dioecious 52.1** 10.5±0.5 9.7±0.6 74.89±154.06 tatei *(Weeksetal.,2008);**(Weeksetal.,2006b) Comparisonamongthefourspeciesfortypeofmatingsystem;percentageofmalesinthe population(datafromliterature);mean( ± standarddeviation)maleandfemale/hermaphrodite size(inmillimeters);reproductivecycle(timefrommolttothemomenteggsaremovedtothe broodchamber,mean ± standarddeviationinminutes). ♂:males; ♀:femalesorhermaphroditesdependingonmatingsystem. Iwasabletoanalyzeatotalof102couples(19for E.dalhi ,59for E.texana ,17 for L.badia ,and7for L.tatei ).Thestatisticalanalysisrevealedasignificantdifferencein

118

mateguardingtimeamongspeciesnestedwithinmatingsystem(Table4.3;Fig.4.2).

Moreover,therewasaconsiderableoveralldifferencebetweenmatingsystems,with dioeciousspeciesguardingsignificantlylongerthanandrodioeciousspecies(Table4.3;

Figure4.3).Iwasconcernedaboutfactorsotherthanmatingsystemdrivingthislast result.Dioeciousspeciesarebiggerthanandrodioeciousspecies(sotheycouldguard longerhavinghigherenergyavailable)andthefemales’reproductivecycleislongerthan thehermaphrodites’reproductivecycle(soalongermateguardingcouldbeexpectedjust basedonphysiologicaldifferences).However,anestedonewayANCOVAdidnotfind anyinfluenceofsize(malesize:P=0.1229;femaleorhermaphroditesizeP=0.1186)or receptivecycle(P=0.7533)onmateguardingduration.Ialsoconsideredsizedifference betweenthesexes.Asizedimorphism,withmalessignificantlylargerthanfemales,had beenreportedfor L.badia and L.tatei ,butnotinclamshrimpinthegenus Eulimnadia

(Weeksetal.,2006b).Ithusaddedsizedifferenceasacovariateformateguardingtime andobservedanincreaseinmateguardingdurationwhenmaleswerelargerthantheir mates(Table4.3).

TABLE 4.3 STATISTICALANALYSIS

SOURCE SS MSNum DF FRatio Prob>F Species[Matingsystem] 2.46 1.22949 2 3.8165 0.0271 Matingsystem 16.76 16.7582 1 18.0237 0.0329 Malesize–Female/hermaphroditesize 1.53 1.53099 1 4.7524 0.0329 Error 29.96 98

TwowayANCOVAonmateguardingtime(log 10 transformed)amongspecies(nestedwithin matingsystem).Sizedifferencebetweensexeswasusedasacovariate.

119

Figure 4.2 Meanguardingtime(log 10 transformed)forfourspeciescharacterizedbytwo matingsystems.Androdioeciousspeciesarereportedinwhite;dioeciousspeciesarereportedin gray.Errorbarsrepresenttwotimesthestandarderror.

Figure 4.3 Meanguardingtime(log 10 transformed)formatingsystems.Errorbarsrepresent twotimesthestandarderror.

120

Discussion

Mateguardingisacomplexbehaviorthathasgainedtheinterestofscientists workingondifferenttaxa.Onemotivationoftheincreasingattentiontothisbehavioris thatmateguardingrepresentsacaseofintersexualconflict.Clamshrimpareanexcellent studysystemwithwhichtoanalyzeintersexualconflictduringmateguarding.Aspointed outinthepreviouschapters,clamshrimpareeasilybredinthelaboratory,theirguarding cycleisrelativelyshort,andtheyhavebeensuccessfullystudiedinmanipulative laboratoryexperiments(Medlandetal.,2000;Zuckeretal.,2002;Weeks&Benvenuto,

2008)aswellasinafieldsetting(Weeks&Bernhardt,2004).Onemoreimportant reasontoemployclamshrimpinstudiesofintersexualconflictisthattheyallowforthe uniqueopportunitytotestthestrengthoftheconflictindifferentmatingsystems,namely dioecyandandrodioecy.Tomyknowledge,mateguardinghasneverbeenanalyzedby comparingdifferentsexualsystemsandthistypeofstudyhasthepotentialtomakea valuablecontributiontoourunderstandingofconflictovermateguarding.

ThesimpleandelegantgraphicalmodelproposedbyJormalainen(1998)isnot easytotest.Itrequiresthecapabilitytomeasuretheoptimalmateguardingtimeforeach sextoallowacomparisonwiththecompromisedguardingtimeofthecouple(see

ChapterIII).Anotherlevelonwhichthismodelcanbeassessedisbycreatingapower asymmetry(suchasdifferentialmaleandfemalesize;seeChapterIII)andmeasuringthe shiftofthecompromisedguardingtimetowardstheoptimalguardingtimeofthemore

“powerful”sex(e.g.,thelargersex).Anevenmoresophisticatedapproachconsistsof alteringcostsandbenefitsofthemateguardingpairsinordertoshiftthecompromised

121

timeinapredictabledirection.Specieswithdifferentcostsand/orbenefitsthanthe

“standard”representagreatopportunitytotestthetheoreticalmodelfromthisnew perspective.Clamshrimpspeciesallowthisapproachbyusinganintermatingsystem comparisonbetweencloselyrelatedspeciesthatdifferinmatingsystem(seebelow).

Sinceagoodamountofinformationhadbeenaccumulatedonthemateguarding behavioroftheandrodioeciousclamshrimp, Eulimnadiatexana, Iwasinterestedinthe analysisofthesamebehaviorinadioeciousspeciesofclamshrimpandinthesubsequent comparisoninmateguardingstrategiesbetweendioeciousandandrodioeciousspecies.I investigatedmateguardingdurationinthedioecious Limnadiabadia ,followingthe theoreticalframeworkproposedbyJormalainen(1998)andthesameprotocolutilizedfor

E.texana (ChapterIII).Theresultsofthefirstexperimentemphasizethatfemale L.badia

“prefer”tobeguardedforashortermateguardingtimethanthecompromisedguarding timetypicalofthespecies.Thisisinagreementwiththegeneraltheorythatshorter guardingtimeisoptimalinfemales(relativetomales)becausebeingguardediscostlyto females(Jormalainen,1998).Contrarytotheexpectations,andtowhatwasfoundin E. texana ,malesarenotguardingfemalestreatedwithMgSO 4longerthanuntreated controls.Icaninterpretthisresultasanindicationthatindioeciousspecies,malesare morecapableofforcingfemalesintolongermateguardingbecausefemaleresistanceis notefficient,orthatfemalesaremorewillingtobeguardedlongerinordernottolose matingopportunities.Anaesthetizedfemalesoftheamphipod Paracalliopefluviatilis werenotguardedlongerthanthenontreatedcontrol(Sutherlandetal.,2007)anda similarresultwasreportedfortheisopod Asellusaquaticus andtheamphipod Gammarus

122

zaddachi (Jormalainen&Merilaita,1995).Iffemale L.badia actuallyarewillingtobe guardedlongerinordertoattainamating,thentheleveloftheintersexualconflictover mateguardingdurationshouldbelowerin L.badia relativeto E.texana .

Itisalsopossible,though,thattheMgSO 4treatment(whichwaseffectiveon E. texana hermaphrodites,seeChapterIII)mightnothavebeensufficienttoreducefemale resistanceforanadequateamountoftimetobeusefulforthisexperiment.Thetreatment istemporary,andthechemicalhasasufficientlylastingactioninaspeciescharacterized byaveryshortreceptivecycle(Table4.3).In L.badia theeffectofthemuscularrelaxant mighthavebeensignificantlyreducedbythetimethefemalewasapproachingreceptivity andthemalewasinterestedinguarding.Toavoidthisproblem,twostudiesontwo crustaceanspecies(theisopod, Idoteabaltica ,andtheamphipod, P.fluviatilis )thatguard longerthan L.badia (averagetime:37hours.in I.baltica ;45daysin P.fluviatilis ;seven hoursin L.badia ),useddailyapplicationoftreatment(alloferininthefirstcaseand

MgSO 4inthesecond)untiltheguardingstarted(Jormalainen&Merilaita,1995;

Sutherlandetal.,2007).Inthiswaytheauthorsweresuretomaintainthefemaleina constantrelaxedstatus.Instead,Iappliedthetreatmentonlyonceandtheeffectof

MgSO 4couldhavebeentoolowtobeeffectivebythetimemalesstartedguarding.

Inordertoaddressthedifferencesinmateguardingstrategiesbetweendioecious andandrodioeciousspecies,Ianalyzedthecompromisedmateguardingtimeoffour species,characterizedbytwodifferentmatingsystems.Theexpectationsderivedfrom theJormalainen’smodel(1998)arethateachsexinthedioeciousspeciesshouldsustain longermateguardingtimesthaninandrodioeciousspecies,butfordifferentreasons:

123

malesshouldhavelongermateguardingbecausetheyexperiencegreatermalemale competition(duetothesexratiobeinglessfavorabletothemthanthesexratioin androdioeciouspopulations),andfemalesshouldacceptlongermateguardingbecause theymustmatetoproduceoffspring(unlikehermaphroditesthatcanselffertilize).Asa resultofdifferencesinoptimalmateguardingtimes,theoverallcompromisedtime shouldbelongerinthedioeciousthanintheandrodioeciousspecies.

Thefourspeciesexpressedsignificantlydifferentmateguardingtimesand,more importantly,differencesinmateguardingdurationwerefoundbetweenthetwomating systems.Asexpected,mateguardingwassignificantlylongerindioeciousthanin androdioeciousspecies.Iassessedtheimportanceofmaleandfemalesizeascovariates toaccountforthepossibilityofincreasedmateguardingdurationdeterminedbyhigher energyavailabletolargeranimals.Empiricalstudieshadsupportedthepredictionthat largermalescanactuallymateguardlongerthansmallones(Ridley&Thompson,1979;

Ward,1983;Jormalainenetal.,1994b;Hatcher&Dunn,1997).Ialsoaddedone additionalcovariate,thelengthofthefemalereceptivecycle,toaccountforphysiological variationamongspecies(malesmightmaketheirguardingdecisionsatthebeginningof thefemale’sreceptivecycleandthusguardtheirmateslongerbecausetheyhavealonger receptivephase).Noneofthesecovariatessignificantlyinfluencedthemateguarding duration,soIcansupportthehypothesisthatthematingsystemitselfisplayingakey roleinmateguardingstrategies.

Ialsoaddedoneadditionalcovariate,thesizedifferencebetweenmaleandfemale

(orhermaphroditedependingonthematingsystem),asapotentialparameteraffecting

124

mateguardingtime.Irecordedanincreaseinmateguardingdurationwhenmaleswere largerthantheirmates.Sizeasymmetryhadbeenexperimentallymanipulatedin E. texana andresultedinabettercontrolbythelargersexonmateguardingduration

(ChapterIII).Indioeciousspeciesinparticular,anincreaseinmalesizecouldhavebeen selectedasamalestrategytoprolongmateguardingduration(intersexualcompetition), orasaresponsetodirectorindirectmalemalecompetition(intrasexualcompetition).In thefirstscenario,malesmightobtainagreatadvantagewithlargersizebecausethey couldshiftthemateguardingdurationtowardstheiroptimalguardingtime(ChapterIII).

Inthesecondscenario,largersizemightbeadvantageousinmalemalecompetition, whichishigherindioeciousthaninandrodioeciousspecies(androdioeciousspecies presentamorefavorablesexratiotomales,withhighabundanceofhermaphrodites).

Malesmightcompeteindirectlyforaccesstofemales(exploitation)ordirectly(with largermalesdislodgingsmallerguardingmalesthroughtakeovers).Thesetwoscenarios arenotmutuallyexclusive.

Inconclusion,Ianalyzedtheprecopulatorymateguardingbehaviorofthe dioeciousspecies L.badia andconfirmedthatitrepresentsacaseofintersexualconflict.

Potentially,theconflictherecouldbeweakerthanintheandrodioecious E.texana ,since femalesdonothavetheopportunitytoselffertilize,andthusmightbewillingtoaccept longerguardingphases(asimpliedintheexperimentswithMgSO 4,butthisresult requiresfurtherexperimentalconfirmations).Moreover,dioeciousmalesundergohigher malemalecompetition,andlessfrequentencounterratesthandioeciousmales(dueto thesexratiostypicalofthetwomatingsystems).Thishighmalepersistence,combined

125

withpossiblylowfemaleresistance,shouldresultinaweakerintersexualconflictonthe

durationofmateguardingindioeciousthaninandrodioeciousspecies(Table4.4).

TABLE 4.4 –STRENGTHOFINTERSEXUALCONFLICT

MATING ♂ ♀ ♂♂ ENCOUNTER ♀BENEFITSOF SYSTEM PERSISTENCE RESISTANCE COMPETITION * RATES * OUTCROSSING ** Androdioecious< > < > <

Dioecious > < > < >

Androdioecy ______ Dioecy ______ Strengthofintersexualconflict Schematicanalysisofthestrengthofintersexualconflictsduringmateguardingindioecious vs . androdioeciousspecies.Symbols>(higherthan)and<(lowerthan)areameasureof comparisonbetweenthetwomatingsystems; ___ representsthestrengthofintersexualconflict (nottoscale);*influencedbysexratio;**influencedbymatingsystem;♂:male;♀:femalein dioecioussystem,hermaphroditeinandrodioecioussystem.

Comparingfourspeciescharacterizedbytwomatingsystems,Iwasabletotest

andsupportapredictionthatindirectlyfollowsfromthegraphicalmodelofJormalainen

(1998):dioeciousspeciesshouldguardlongerthanandrodioeciousspecies.This

predictionwasnotdirectlymadeexplicitinthemodel,sincethespecificcaseofa

comparisonbetweenmatingsystemshasneverbeenproposednorinvestigatedbefore.

Theintermatingsystemcomparisonperformedhereisavaluableextensionof

Jormalainen’smodelthatvalidatesthetheoreticalassumptionsandpredictionsofthis

graphicalmodel.

NumerousempiricalstudieshaveusedJormalainen’smodel(1998)asa

theoreticalframeworkforthestudyofmateguarding,withparticularattentionto

crustaceans.Manystudieshaveconfirmedoneofthebasicassumptionofthemodel,i.e.,

126

theexistenceofdifferentialcostsbetweensexes,eitheraspredationcosts(e.g.,Cothran,

2004),energeticcosts(e.g.,Plaistowetal.,2003),feedingcosts(e.g.,Robinson&Doyle,

1985andseeChapterIII),orsurvivalcosts(e.g.,Beneshetal.,2007).Theroleof intersexualpowerasymmetry,intheformofsizedifferencebetweenthesexes,hasalso beeninvestigatedandverifiedtobeimportantininfluencingtheguardingduration.

Largerindividualsareabletopersist(males)orresist(females)morethansmaller individuals,andthustheycanbettercontrolthecompromisedmatingtime(e.g.,

Jormalainen&Merilaita,1993;Jormalainenetal.,1994aandseeChapterIII).Finally, manipulativeexperimentshavemeasured,inaccordancetotheory,longeroptimal guardingtimesformaleswhenfemaleresistancewasreduced(Jormalainen&Merilaita,

1995;Jormalainen&Shuster,1999;Cothran,2008bandseeChapterIII)inspecies wherefemaleresistanceplaysanimportantroleduringthemateguardingconflict(but seeJormalainen&Merilaita,1995;Sutherlandetal.,2007forexamplesofspecieswhere thisisnotthecase).AllthesestudiessupportedandvalidatedJormalainen’smodel

(1998).Thecurrentstudyaddedanewanddifferenttestofthemodel,usinga comparisonofcostsandbenefitsbetweenspeciescharacterizedbydifferentmating systems,whichaddsanewdimensionofvalidationtotheoriginaltheory.

Thematingsystemsdefinedonthebasisofnumberofmatesinvolvedin reproduction(i.e.,monogamyandpolygamy)canbemanipulatedexperimentallyinthe laboratory.Thisapproachhadbeensuccessfullyusedinsomespeciesofinsectswiththe goaloftestingtheoreticalpredictionsofintersexualconflicts.Forthisreason,artificial selectionwasappliedto Drosophilamelanogaster toinducemonogamy(Holland&Rice,

127

1999;Rice&Holland,2005)orcontrolandarrestfemale’scounteradaptationsto deleteriousstrategiesemployedbymales(Rice,1996).Inthiswaytheauthorswereable tomeasurethestrengthofantagonismbetweenmalesandfemalesinthisspecies.

Monogamousorpolyandrousyellowdungflylines, Scathophagastercoraria ,were producedinthelaboratoryandcomparedforchangesinamorphologicalcharacter:testis size(Hoskenetal.,2001).Monogamousspecies,wheremalesdonotengageinsperm competition,presentedmaleswithsmallertestesandfemaleswithsmalleraccessorysex glands(thefemalecounteradaptationtospermcompetition:theseglandsproduce spermicideandcouldbeusedbyfemalestocontrolpaternity).Theexperimentwasused toassessthelevelofinteractionbetweenthesexesoverconflictonpaternity.Also,sex ratiohadbeenexperimentallymodifiedin D.melanogaster tocreatedifferentmating frequenciesinordertoassessvariationofintersexualconflict(Wigby&Chapman,

2004).Theresultsconfirmedafemaleadaptationalresponseinlineswithmalebiased sexratios.Morerecently,astudyonthemonoandrous Muscadomestica (wherefemales matewithonlyonemale)usedtwodifferentstrainsoffliesandsubjectedthemtoforced polyandrytotestcostsandbenefitofcopulation(Arnqvist&Andres,2006).Inthis comparison,itappearedthatthecostsofmonoandry(nobenefitofmultiplematingto femalesanduseofmaleaccessoryseminalsubstancestoreducefemalepropensityto mate)arereducedbythenutritionalvalueofmaleaccessoryseminalfluidstofemale.

Possiblefaultswithsomeoftheapproachesoutlinedabovehavebeensuggested, includingapossibleproblemwith“effectivepopulationsize,”whichmightbereducedin theartificiallyselectedlines(Wigby&Chapman,2004;butseeresponsebyRice&

128

Holland,2005).Thus,manipulationsofmatingsystemsareadvantageousbutcomplex, andcouldpresentpotentialproblems.

Thecurrentstudyhastheadvantageofusingcloselyrelatedspecies(belongingto thesamefamily),naturallycharacterizedbydifferentmatingsystems.Nomanipulative treatmentswerethusimposedonthesepopulations.Moreoverthedifferenceinthesexual system(presenceofhermaphroditesinsteadoffemales)resultsinadifferentialbenefitto outcrossingwithamale(lowerinhermaphroditescomparedtofemales)andthusa differentacceptanceofmateguardingcosts(ifcostsincrease,hermaphroditeshavethe optiontoselffertilize).Thisstudythussuggeststhattheuseofmixedmatingsystems couldbeincrediblyhelpfulinstudiesofmatingbehaviorsandintersexualconflicts.

Acknowledgements

IwouldliketothankandDr.BrianBagattoforhelpfulsuggestionsontheuseof muscularrelaxants,AlissaCalabrese,SadieK.Reed,andBethWallacefortheirhelpin rearingtheshrimpinthelaboratoryandJenniferBrunnforhelpingwiththescoringof tapes.

V.MATEGUARDINGBEHAVIORINCLAMSHRIMP:AFIELDAPPROACH

Abstract

Precopulatorymateguardingisacomplexbehavior:itisinfluencedbysocial andphysiologicalparameters,itchangeswithtimeduringasinglematingevent,andit representsacaseofintersexualconflict.Mateguardinghasoftenbeenanalyzedwiththe aidoftheoreticalmodels.Acommonassumptionofthesemodelsisthatmateguarding timeisinfluencedbyencounterratesbetweenmalesandfemales,contenders’size,and thepossibilityofoneguardingmaledisplacinganother(takeovers).Theparameters influencingmaleandfemaleguardingdecisionshavebeenmeasuredinlaboratory experimentsbutneverundernaturalfieldconditions.Inthisfieldbasedstudy,I observedmateguardingcouplesoftheclamshrimp Limnadiabadia inephemeralpools ontopofgraniterockoutcropsinWesternAustralia.Irecordedguardingduration, focusingontheparametersconsideredimportantinmateguardingmodels:maleand femalesize,populationdensity,sexratio,operationalsexratio,andfemalereceptivity status.Ialsoestimatedtimebudgetsformales,thepossibilityofmaletakeovers,andthe potentialroleoffemaleresistance.Ifoundthatfemalereceptivestatus(beingcloseto molting),smallmalesize,andlowfemalerelativedensityarekeyfactorsindecreasing mateguardingduration.Thisstudyaddsafielddimensiontomanipulativelaboratory projectsandtheoreticalmodelsofmateguarding.Iwasabletoobservethesimultaneous interactionsofmultipleparametersinthefieldandtomakearobustexaminationofthe

129 130

ideasofintersexualconflictduringmateguardingbehaviorinthesecrustaceans.

Keywords :Branchiopoda, Limnadiabadia ,intersexualconflict,femaleresistance,male size,sexratio,density,fieldobservations,WesternAustralia.

Introduction

Inordertoincreasetheprobabilityofpaternity,malesfromacrossawiderangeof taxaguardapotentiallyreceptivefemale(commonlytermed“precopulatorymate guarding”)anddefendheragainstothermales(Parker,1974).Indeed,malesmaximize theirchancesofreproductionwithfemalesthatarereceptivetocopulationforonlya specificandbriefperiodbycloselyfollowingthem(mateattenders)ormaintaining physicalcontact(matecarriers),waitingforthefemaletobecomereceptive(Parker,

1974;Conlan,1991;Jormalainen,1998).

Ridley(1983)analyzedmateguardingbehaviorsintheAnuraandArthropoda usingacomparativeapproach.Inanurans,wherefemalereceptivityisrestrictedtoa particularlyshortbreedingseason,“amplexus”(the"lengthyassociationsofthesexes beforeactualmating,"Ridley,1983)isanadaptivebehavior.Inmanyarthropods, copulationispossibleforonlyabriefperiodafterafemalemolts(Ridley,1983;

Jormalainen,1998),whentheexoskeletonisstillsoftenoughtoallowspermtransfer

(e.g.,insomeamphipodspecies)orbeforetheoostegitescoverthegonopores,thereby impedingcopulation(e.g.,insomeisopodspecies).InCrustacea,mateguardingis extremelycommonandthebehaviorhasevolvedandbeenlostmultipletimes.

Consequently,crustaceansprovideusefulworkingmodelstotesttheoreticalconceptsin

131

evolutionaryandbehavioralecologyingeneral,andmateguardinginparticular(Duffy&

Thiel,2007).

Precopulatorymateguardingisnotjustamatingstrategyformales:theroleof femalesalsoneedstobeconsidered(e.g.,Jormalainenetal.,1994a;Jormalainen,1998;

Sparkesetal.,2000).Ashortguardingtimeisbeneficialtobothsexes,butmalesmay investmoretimewithonefemaleratherthansearchingforothersif,forexample,the encounterratewithreceptivefemalesinthepopulationislow(Parker,1974).Longer guardingtimecanbedetrimentaltofemaleswhowouldbenefitfrombeingguardedfor ashorttimejustbeforemolting.Femalescanstrugglebykickingandcontortingtheir bodiestodislodgeearlyguardingmales(Jormalainen&Merilaita,1993;Sparkesetal.,

2000).Mateguardingthereforeintroducesthepossibilityofintersexualconflictwhere maleandfemaleoptimalguardingtimesmightnotcoincide(Jormalainenetal.,1994b;

Yamamura&Jormalainen,1996;Jormalainen,1998;Watsonetal.,1998;Jormalainen etal.,2000). Incrustaceansthisconflictisregulatedbythefemalereproductive physiology(i.e.,timetomolt)andthusitisadynamicinteractionwherethecontest changesduringasinglematingevent.Thestrengthofthesexualconflictissensitiveto socioenvironmentalconditionssuchasdifferencesinsexratio(Parker,1974;Manning,

1980;Dick&Elwood,1996),density(Parker,1974;AlonsoPimentel&Papaj,1996), contenders’sizes(Elwood&Dick,1990;Jormalainenetal.,1994a),andthepossibility oftakeovers(i.e.,dislodgementsofaguardingmalebyanothermale,Ridley&

Thompson,1979).

132

Givenitsinherentevolutionarysignificance,mateguardingbehaviorhasbeen analyzedthroughavarietyoftheoreticalmodels(Parker,1974;Grafen&Ridley,1983;

Yamamura,1987;Jormalainenetal.,1994b;Yamamura&Jormalainen,1996;

Jormalainen,1998;Härdlingetal.,1999;Härdlingetal.,2004). Guardingtime generallyispredictedtobenegativelycorrelatedwithfemaleencounterrates(Parker,

1974;Jormalainen,1998).Astheprobabilityofencountersincreasesinthepopulation, malesshouldguardforshorterdurationsbecauseofthehigherlikelihoodof encounteringreceptivemates. Thispredictionissupportedbystudiesondensity

(AlonsoPimentel&Papaj,1996),sexratio(Dick&Elwood,1996),andoperationalsex ratio,OSR(Iribarneetal.,1995;Vepsäläinen&Savolainen,1995;AlonsoPimentel&

Papaj,1996),definedasthe“averageratiooffertilizablefemalestosexuallyactive malesatanygiventime”(Emlen,1976;Emlen&Oring,1977).

Sizeisanotherimportantparameter.Largermalescansustainlongerguarding times(Ridley&Thompson,1979;Ward,1983;Hatcher&Dunn,1997).Alternately, largerfemalescanresistmorevigorouslymaleattemptstoguard(Ward,1984a;

Jormalainen&Merilaita,1993).Malesizecanhaveastrongeffectonbothmalefemale interactionsandalsoonmalemalecompetition(Elwood&Dick,1990;Jormalainenet al.,1994a;Jormalainen,2007).Inthelattercase,malesizemayaffectguardingtimein differingwaysdependingonthepossibilityoftakeovers.Takeoversareexplicit examplesofdirectmalemalecompetition,withlargermalesexperiencingahigherOSR thansmallermalesbecausetheycangainaccesstoahigherproportionofreceptive femalesthanthelatter.Sincelargermalescanexpecttobeabletodisplacesmaller

133

males,theyshouldmateguardforshortertimesthansmallermales(Grafen&Ridley,

1983).Whenmaletakeoversarenotprevalent,mateguardingagainshouldberelated strictlytorelativesizeandlargermalesshouldguardforlongertimesthansmaller males(Elwood&Dick,1990).

Inmateguardingmodelsitisassumedthatmalesshouldbeabletodetect differentstagesoffemalereceptivity,otherwisemateguardingcannotbeanalyzedinan optimalitycontext.Whenmalescandetectreceptivitydifferencesamongfemales,they candecidewhethertoguardonefemaleorsearchforothersofmoreadvancedreceptive stage.Incrustaceans,unguardedfemalesclosertomoltingshouldbemorevaluablesince theoverallguardingtimewillbeshorter(Parker,1974;Jormalainen,1998).Ifall receptivefemalesareguarded,andtakeoversarenotsuccessful,maleswithalonger guardingcriterion( sensu Grafen&Ridley,1983)canobtainafitnessadvantage.Sothe guardingtimecanbeadjusteddifferentlyamongspecies(becauseofvariationin reproductivecycles)andamongpopulations(becauseofvariationinsexratioand density).

Manypredictionsofmateguardingmodelshavebeentestedthrough manipulativelaboratoryexperimentsonamphipodsandisopods,predominantly(e.g.,

Dunhametal.,1986;Jormalainen,1998;Cothran,2004;Jormalainen,2007;Cothran,

2008b).Iuseclamshrimp,branchiopodcrustaceans,asmystudyorganism,whichhave thesameadvantagesofothercrustaceans,whilealsobeingeasiertobreedunder laboratoryconditions,havingafastlifecyclewithashortmateguardingduration,and havingafemalereceptivitystatethatcanbeeasilyassessedbytheresearcher(see

134

MaterialandMethods).Allofthesequalitiesenhancetheirusefulnessinlaboratory basedstudiesofmatingbehavior(Knoll,1995;Knoll&Zucker,1995;Weeksetal.,

2004;Weeks&Benvenuto,2008).Theirshortguardingdurationalsomakesthemideal forfieldbasedresearch.Becausetheprecopulatoryguardingphaseinmanyother crustaceanscanlastfromdaystoweeks,onlyafewstudieshaveanalyzednatural amphipodpopulations(Ward,1986;Dick&Elwood,1996;Bollache&Cezilly,2004a;

Sutherlandetal.,2007).Inalltheseamphipodstudies,mateguardingcoupleswere sampledinthefieldandthenwereeitherpreservedormovedtothelaboratoryformate guardinganalyses.Clamshrimp,ontheotherhand,presentamuchshorterguarding time,fromminutestoafewhours,enablingdirectbehavioralobservationstobemadein naturalenvironments.

Totestthevalidityofvariousassumptionsofmateguardingmodels,Irecorded precopulatorymateguardingtimesofclamshrimpofthespecies Limnadiabadia Wolf

1911(Spinicaudata:Limnadiidae)inhabitingweatherpits(termed“gnammas”by

Aborigines)ongraniterockoutcropsinsouthwesternWesternAustralia.Thepools, varyingfromlessthanametertotensofmetersindiameter,presentanopportunityto testthepredictionsofmateguardingmodels(Grafen&Ridley,1983;Yamamura,1987;

Härdlingetal.,1999;Härdlingetal.,2004).Inthisfieldbasedstudy,Ifocusedonthe parametersimportantinmateguardingmodels:maleandfemalesize,population density,sexratio,OSR,andfemalereceptivitystatusandIestimatedtimebudgetsfor males,thepossibilityofmaletakeovers,andthepotentialroleoffemaleresistance.

135

Materialsandmethods

Limnadiabadia isadioeciousspeciescharacterizedbyapyriformdorsalorgan onthehead,nospinesonthetelson,andmale“claspers”bearingasuckerlike projection(Wolf,1911;Richter&Timms,2005).Claspersareadimorphic,secondary sexualcharacter,missinginfemalesandnotdevelopedinjuveniles,usedbymalesto obtainandmaintainphysicalcontactwiththeirmates.Thiscontactisnecessaryfor copulationtooccur.Oncefertilized,theeggsaremovedtothebroodchamber(located dorsallyinfemales)wheretheyarevisiblethroughthetransparentcarapace.Throughout thisstudy,femalesweredividedintotwocategories:withandwithoutvisibleeggsin thebroodchamber.Thisdistinctionisaneasywayfortheobservertoroughlyestimate thereceptivitystatusofthefemale:femaleswilldroptheireggsatthebottomofthe poolduringorimmediatelybeforemolting,whichisasignofreceptivitytomating

(Weeks&Benvenuto,2008).

Iconductedthisfieldstudyofmateguardingbehaviorin L.badia onfourgranite rockoutcrops,followinglocalizedraineventsinAprilandMay2007,inthewheatbelt areaeastofPerth,southwesternWesternAustralia:HollandRock(ShireofKent,

33°21.259’S;118°44.639’E),DingoRock(ShireofLakeGrace,33°0.558’S;

118°36.321’E),WaveRock(ShireofKondinin,32°26.712’S;118°53.836’E),and

PuntapinRock(ShireofWagin,33°19.495’S;117°23.941’E).Poolsvariedindiameter, depth,populationsize,andsexratio,providingarangeofnaturalreplicates(Table5.1).

Theminimalpresenceofsubstrateatthebottomofthepoolsmeantthatthesepoolswere crystalclear,whichallowedmetoeasilyconductfocalbehavioralobservations.

136

TABLE 5.1 SUMMARYOFDATAFROMTHEFIELD

OUTCROP POOL COUPLES VOLUME SEX OSR DENSITY MEAN MALE MEAN FEMALE (dm 3) RATIO 1 MALE SIZE FEMALE SIZE SIZE RANGE SIZE RANGE (mm) (mm) (mm) (mm) Dingo 2D 2 460 0.27* 0.27* 0.226 7.6 7.57.6 7.2 6.57.9

Dingo 6D 2 253 0.08* 0.09* 1.468 6.7 6.56.9 6.0 5.66.4

Dingo 8D 11 106 1.23 2.27 0.926 7.0 6.57.5 6.6 6.07.6

Holland 4H 25 446 1.06 1.37 0.975 6.5 5.87.3 6.0 5.16.8

Holland 10H 22 123 1.02 1.30 4.610 6.4 6.17.0 5.7 4.56.5

Holland 16H 15 62 0.92 4.55 0.770 7.8 7.08.6 6.9 6.37.4

Puntapin 9P 5 150 0.75 1.39 1.556 8.0 7.88.3 7.6 7.37.8

Puntapin 13P 13 399 1.04 1.92 0.133 7.1 6.77.5 6.6 6.36.8

Wave 8W 8 439 0.95 1.54 0.645 7.3 7.17.5 7.0 6.57.2

Wave 9W 11 1009 1.33 4.00 0.116 8.3 7.88.6 8.1 7.18.6

Wave 11W 8 18 1.10 8.33 4.499 8.7 8.29.2 7.6 7.28.1

*denotesoutliersinthesexratioestimates(observationsexcludedfromtheanalysis) 1 males/females Summaryofthesamplestakenforbehavioralobservations,sizeranges,andphysicalparameters perpool.

ThewinterrainfallpatternacrosssouthwesternWesternAustraliashowsamarked

northeastwardsgradientacrossthehinterland,butduringthepasttwodecades,summer

fromanorthernoriginhavebecomemoreprominent;theserainsemanatingfrom

tropicallowsresultinamuchmoreheterogeneousrainfalldistributionacrossthestudy

area.ThisstudyinAprilMay,2007,focusedonpoolsinundatedfromrainfall

depressionswithtropicalorigins.Thepoolswerevisitedatsubsequentphasesofan

inundationcycle,from625daysafterrainfall(HollandRockandDingoRock)to2736

days(WaveRockandPuntapinRock).Poolswererefilledbymorerainingeventsduring

137

thestudyperiod,andImighthaveobservedthefirstcohortoftheseasoninsomepools, andsubsequentcohortsinotherpools.

Observationstoassessmateguardingdurationwereperformedon1–11(mean

±SE=5.6±0.35)couplesperpoolperday,whichwerepeatedfor46days(mean±

SE=21.9±2.76).Assoonasamaleclaspedafemale,thecouplewasgentlymoved, usingaplasticpipette,toatransparentcontainerfilledwithwaterfromthepool.Once theguardingphasewasstarted,malesheldstronglyontotheirmatesanddidnotrelease them,evenwhenslightlydisturbed via pipetting(personalobservation).Eachcouple wastransferredtoacolorcodedcontainer,andcheckedevery15minutesuntilthemale releasedthefemale.Confiningpairsinindividualcontainersallowedforrepeated observationsthroughtimeandquickdetectionoftheendoftheguardingphase.Clam shrimpwerethenmeasuredwithcalipers(maximumcarapacelength,inmillimeters), markedwithapermanentmarker(toavoidrepeatedobservationsofthesame individuals),andreturnedtothepool.Hence,sexratioanddensitywerenotaltered throughoutthecourseoftheobservations.Attheconclusionofthematingobservations,

Imeasuredtheareaofthepoolsandtheaveragewaterdepth. Allclamshrimpwerethen removedfromthepoolsusingafinemeshnet,countedandsexed,toassessdensityand sexratio.Inordernottostresstheanimalsandtoavoidalteringtheirbehaviors,this samplingofthepopulationwasperformedjustonceperpoolaftermateguardingswere measured.Aftercompletionofthesampling,allspecimenswerereturnedtothepool.

OSRwascalculatedasthenumberofmalesrelativetoreceptivefemales, consideringfemaleswithouteggsas“receptive”(Weeks&Benvenuto,2008).I

138

combinedsexratioanddensityintoonevariable:therelativegenderdensity( sensu

AlonsoPimentel&Papaj,1996).Thisdensityadjustedsexratioisabetterindicatorof mateavailabilitythaneitherdensityorsexratioindividually.Relativefemaledensityis thedensityoffemalesintheoverallpopulation(expressedinpercentage)andrepresents mybestestimateoftherealnumberoffemalesthatamalemayencounterinthe population.Clamshrimpagewasdeducedbypoolage,estimatedbythedateoftherain eventsinthearea.

Focalobservationswereperformedonunpairedmalestoassessmaletime budgets.Maleswerefollowedfor5minutes.Ifocusedonsocialinteractions(i.e., interactionswithotherconspecifics):thenumberofencounterswithotherindividuals wasrecorded,aswellasthesexoftheinteractingindividuals.Ialsoestimatedthe likelihoodofmaletakeoversbyisolatinggroupsofthreeclaspinganimals(onefemale withtwomalesclaspingher,whichalwaysoccurredwitheachmaleonoppositesidesof thefemale’scarapace).Sincethetriowasalreadyformedbeforeobservationsbegan,I didnotmeasurewhenthethirdmalejoinedthecouple,andthereforeIdonothave precisedataontotalmateguardingtime.Igentlyplacedthetriosintoisolationcontainers andfollowedthesameprotocolasfortheregularcouplesnotedabove,checkingthem every15minutes.Onceoneofthetwomales“released”thefemale(orwasdisplacedby thecompetingmale),Imeasuredhissize(male1,“loser”).Iwaitedforthecoupleto separateandthenmeasuredthesizesofmale2(“winner”)aswellasthefemale.

StatisticalanalyseswereperformedusingJMP6.0(SASInstituteInc.).Tomeet criteriaofnormality,mateguardingtimewasnaturallogarithmtransformed.Anested,

139

onewayanalysisofvariance(ANOVA)wasusedtoanalyzemateguardingtimeamong outcropsandpoolsnestedwithinoutcrops.Additionally,weusedatwowayANOVAto assesstheinfluenceofreceptivefemalestateandresultofmateguarding(positive: successfuleggfertilizationandmovementtothebroodchamber;negative:thecouple brokewithnofertilizationandnoeggmovement)onmateguardingduration.Iuseda stepwisemultipleregressionontherawdata(boththemixedandforwardmodels returnedthesameresults)toidentifywhichofnineparametersaffectedmateguarding duration.Iusedthesesignificantindependentvariablestorunamultipleregression.

Sincetheinputvariablesweregroupedbypopulation,Irepeatedthemultipleregression analysiswithmeanvaluesforpopulationsforthesevariables.Inordertograph individuallyeachtermoftheregressionmodel,Iusedtwopartialleverageplots(Sall,

1990).InthiswayIcanvisualizetheeffectofjustoneparameteronmateguardingtime whilecorrectingfortheeffectoftheotherparameter.

Iperformedlinearregressionstoaddressthepossibleinteractionsbetween:a) bodysizeanddensity;b)male vs .femalesize;andc)sizeofguarding vs .nonguarding males.Anominallogisticregressionwasusedtointerpretvariationintimebudgets amongthedifferentsocialbehaviors.Finally,Iinvestigatedtheinfluenceofrelative malesizeonclaspingdurationwhentwomaleswereclaspingthesamefemale.SinceI wasnotabletonormalizeresiduals,IperformedanonparametricWilcoxon/Kruskal

Wallisteston “winner”size,“loser”size,andfemalesizetodetectanydifferences amongthethreegroups.Tofurtheridentifywhichofthethreegroupsdifferedfromthe others,IperformedapairwiseMannWhitneytest,adjustingtheαlevelusinga

140

sequentialBonferronicorrectionformultiplecomparisons(Holm,1979).Comparingthe sizeofallgroups,Iwasabletotestforthepossibilitythatsizeaffectsintrasexual competition(takeovers:male vs .malesize)and/orintersexualconflict(males vs . femalesize).

Results

Mateguardingtime

Atotalof241coupleswerefollowedin11poolsonfourgraniteoutcrops.For

108couples,theguardingphasewasnotconcludedbytheendofthedailyobservations andthesedatawereexcludedfromtheanalysis. Twopoolshadestimatedsexratiosthat werehighlyfemalebiased.Bothpoolshadhighnumbersofjuveniles,whichcan sometimesbemistakenforfemaleswithnoeggs.IthusperformedGrubb’stest(extreme

Studentizeddeviatetest)forsexratiovalues.Bothpoolsweredetectedasoutliers(P<

0.05)andthustheywereexcludedfromanalysesconcerningsexratios(Table5.1).

Guardingdurationsvariedfromafewminutesupto10hours(mean±SE:163.60

±15.10minutes).Iusedanested,onewayANOVA(mixedeffectmodel)onmate guardingtimeforclamshrimpinoutcropsandpoolsnestedwithinoutcrops(Table5.2a).

Ididnotfindanystatisticaldifferencesbetweenthefouroutcropsbutasignificant differenceamongpoolsnestedwithinoutcrops(Table5.2a).Thusforalladditional comparisons,Ididnotconsidervariationamongoutcrops.

141

TABLE 5.2 STATISTICALANALYSES

SOURCE SS MS DF FRatio Prob>F Num a) Outcrop 9.06 3.02 3 0.8665 0.4938 Pool[Outcrop] 27.39 3.91 7 2.1144 0.0477 Error 205.45 111 b) Malesize(mm) 16.88 1 11.0459 0.0012 Relativefemaledensity 9.60 1 6.2794 0.0137 Error 160.46 105 c) MeanMalesize(mm) 1.36 1 12.6522 0.0120 MeanRelativefemaledensity 1.42 1 13.1570 0.0110 Error 0.65 6 d) ResultofMG 10.49 1 5.8934 0.0167 Femalereceptivitystate 10.33 1 5.8066 0.0175 ResultofMG*Femreceptivity 0.68 1 0.3836 0.5369 Error 208.23 117 Resultsofthestatisticalanalysesperformed(seematerialsandmethodssectionfordetails):(a) Onewayanalysisofvariance(mixedeffectmodel)onmateguardingtimeinoutcropsandpools nestedinoutcrops;(b)multipleregressiononthepredictorsselectedbystepwiseregressionfor mateguardingtime;(c)multipleregressiononmeansofsignificantpredictors;(d)twoway analysisofvarianceonmateguardingtimeconsideringthereceptivestateoffemaleandthe resultoftheguardingphase.

Asaninitialexploratoryanalysisofallthemeasuredvariablesacrossallpools,I combinedalldataandperformedastepwiseregression.Iconsideredtheindependent variablesofsize[malesize,femalesizeandrelativesize(i.e.,sizedifferencesbetween sexes)],sexratio,OSR,clamshrimpage,andpopulationdensityasrelatedtothe dependentvariableofguardingtime.Densitywasconsideredas:(a)totalpopulation density(juvenilesincluded),(b)relativemaleandfemaledensities(maledensity/total densityandfemaledensity/totaldensity,inpercentages),and(c)densitydifferences betweensexes(maledensityfemaledensity).Ofallthesevariables,onlymalesizeand

142

relativefemaledensityweresignificantlyrelatedtoguardingtime,andthuswere includedinthefinalmodel,eitherwhenconsideringallrawdata(Table5.2b)orwhen consideringmeansforpopulationsindifferentpools(Table5.2c).Increasedmalesize wascorrelatedwithlongermateguardingdurations(Figure5.1).Incontrastwithwhat wasexpected,relativefemaledensitywaspositivelycorrelatedwithguardingduration

(Figure5.2).Thesignificantpredictorsinthemodelweresexspecific:malesizeplayeda moreimportantrolethanfemalesize,whilerelativefemaledensitywasmoreimportant thanrelativemaledensity.

Aspredicted,sizeanddensityvalueswerecorrelated:bothaveragemalesizeand averagefemalesizesignificantlydecreasedasdensityincreased(Figure5.3). Iperformed thesameanalysiswithoutHollandPool10andWavePool11,whichwerecharacterized byextremelyhighdensities,tonotewhetherthesepoolsaloneweredrivingthe correlation,butIobtainedsimilarresultswithoutthesetwopoolsincluded(male:P=

0.0034,n=87;female:P=0.0020,n=86).

143

5.5

5

4.5

4

3.5

Mean Mean (Ln MG time) 3 6 6.5 7 7.5 8 8.5 9 Mean Male size (mm)

Figure 5.1 Leverageplotofmeanmalesize(mm)andlengthofmateguarding(lntransformed), controllingfortheeffectofrelativefemaledensity.

6

5.5

5

4.5

4

Mean Mean (Ln MG time) 3.5

3 40 45 50 55 60 Mean Relative female density (%)

Figure 5.2 Leverageplotofmeanrelativefemaledensity(%)andlengthofmateguarding(ln transformed),controllingfortheeffectofmalesize.

144

9

8

7

6 Size (mm) Size

5

4 0 1 2 3 4 5 Density (individuals/dm 3)

Figure 5.3 Correlationbetweenpopulationdensity(totaladults/dm3)andsize(mm)formales (blackcircles)andfemales(whitecircles).Thelinearregressionsindicateanegativerelationship betweenthevariablesforbothsexes(male:y=0.0982x+7.3231,P=0.0277,n=112,r2= 0.0433,bestfit:continuousline;female:y=0.1669x+6.8708,P=0.0003,n=111,r2= 0.1132,bestfit:dottedline).

Maleandfemalesizeswerepositivelycorrelated:largermalesusuallyguardedlarger females(Figure5.4a).Thisisnotasignofsizeassortativemating,sincetherewas significantpooltopoolvariationinsize(Figure5.4b),andafteranalyzingsizedata withineachpool,Ididnotfindanysignificantcorrelationinsizebetweenthepairs,with theexceptionofonepooloutofthe11investigated:Dingopool8(P=0.019,n=11).

FinallyIexaminedthelengthofmateguardingtimerelativetothereceptivestate offemalesandtheresultoftheguardingphase.Ididnotdetectsignificantpooltopool variation,andsoIcombineddatafromallpools(Table5.2d).

145

8.5 8.5

8 8

7.5 7.5

7 7

6.5 6.5

6 6 Female size (mm) Female size (mm)

5.5 5.5

5 5 6 6.5 7 7.5 8 8.5 9 9.5 6 6.5 7 7.5 8 8.5 9 9.5 Male size (mm) Male size (mm)

Figure 5.4 Relationshipbetweenmaleandfemalesize(mm)forcouplesobservedinmate guardingbehavior.a)Alldatatogether;b)poolbypoolvariation(mean±1SD).

Thefemalereceptivestate(estimatedbytheobservercheckingforpresence/absenceof eggsinthebroodchamber)reflectedthephysiologicalstateofthefemale.Receptive femaleswereclosertomolting,sotheguardingdurationwasshorter(Table5.2d,Figure

5.5).Alsothematingresultwascorrelatedtotheguardingduration:successfulmating events(i.e.,onesinwhichfemalesmovedeggstotheirbroodchamber)tooklongerthan unsuccessfulmatingevents(i.e.,oneswherethemaleleftpriortofertilization,Table

5.2d,Figure5.6).Therewasnosignificantinteractionbetweenfemalereceptivitystate andtheresultofmateguardinginthesepools(Table5.2d).

Maletimebudgets

Iobserved116focalmalesin11pools,foratotalof580minutes. Irecognized seventypesofsocialinteractions:claspingamale,claspingafemalewitheggs,clasping afemalewithouteggs,claspingamolt,claspingadeadcarcass,claspingajuvenile, interactingwithapairedcouple,andbeingclaspedbyamale.

146

Figure 5.5 - Effectoffemalereceptivityonmateguardingduration(mean±2SE).

Figure 5.6 Effectofmatingresultonmateguardingduration.Successfulmating:eggsfertilized andmovedtothebroodchamber;nonsuccessfulmating:eggsnotfertilized(mean±2SE).

Maletimebudgetsvariedfrompooltopool(denotedwithanasteriskinFigure5.7):a nominallogisticregressionfounddifferencesamongpoolsforclaspingmales(P=

0.0041,n=116),claspingfemaleswitheggs(P=0.0126,n=116),interactingwith

147

couples(P<0.001,n=116)andclaspingdeadcarcasses(P=0.0169,n=116).Ididnot findasignificantdifferencebetweenthesizeofnonguardingmales(mean±SE:7.53±

0.09mm)andguardingmales(mean±SE:7.39±0.05mm;P=0.4440,df=1,allpools combined;alsonosignificantdifferenceswerefoundwhenanalyzingeachpool individually).

Figure 5.7 Maletimebudget(meanfrequencyofbehavior/min±2SE).Asterisksdenote significantdifferencefrompooltopool. Maletakeovers

Ialsoobservedandisolatedatotalof19trios.TheWilcoxon/KruskalWallistest onnontransformeddatarevealedasizedifferencebetweenthethreegroups(female:

6.57±0.17mm;malewinner:7.09±0.17mm;maleloser:6.99±0.17mm;2=7.8879, df=2;P=0.0194).PairwiseMannWithneytestsdetectedthatfemalesizewas significantlydifferentfrommalewinnersize(P=0.0129,df=1,significantafter sequentialBonferronicorrection),butmalelosersizewasnotsignificantlydifferentfrom malewinner(P=0.3553,df=1)orfemalesize(P=0.0280,df=1,nonsignificantafter sequentialBonferronicorrection)(Figure5.8).

148

Figure 5.8 Malesandfemalesize(mm)intrio(meansize±2SE).Levelsconnectedbysame letterarenotsignificantlydifferent.

Discussion

Precopulatorymateguardingexemplifiesanintersexualinteractionwheremales andfemalesattempttooptimizetheirinvestmentinreproductionthroughminimizing timeandenergyspentpriortocopulation.Thecasefortimeinvestmentisthemainfocus inthisstudy;theremaybeagreaterfemaleactiveinvolvementthanresistanceduringthe matinginteraction(i.e.,matechoice),butthathasnotbeenassessedinthepresentstudy.

Thedynamic,intersexualinteractionisparticularlycomplex,changingwiththe reproductivecycleofthefemaleandinfluencedbymanysocioenvironmentalconditions.

Inthisstudyofnaturalpopulationsoftheclamshrimp L. badia, Iinvestigatedtheeffect ofparametersidentifiedinmateguardingmodels(e.g.,Jormalainenetal.,1994b;

149

Yamamura&Jormalainen,1996;Jormalainen,1998;Jormalainenetal.,2000)tobe importantininfluencingmateguardingtime:maleandfemalesize,sexratio,OSR,age, andpopulationdensity.Theageofthepoolwasnotrecognizedasasignificantparameter indeterminingtheguardingstrategyrecordedinthepools.Theinfluenceofmalesize, relativefemaledensity,OSR,aswellasreceptivestateoffemalesandwhetherthe matingeventwassuccessful,arediscussedbelow,togetherwithananalysisofmaletime budgetsandmalemalecompetition.

MaleSizeSize(specificallyrelativesizebetweenthesexes,andvariationinmalesize) ispredictedtoinfluencetheguardingdurationinmateguardingmodels(e.g.,Grafen&

Ridley,1983;Jormalainenetal.,1994b;Jormalainen,1998;Härdlingetal.,2004).

Relativesizedifferencesbetweenthesexesinfluencethemateguardingperiodinarange ofCrustacea(Elwood&Dick,1990;Jormalainenetal.,1994a;Jormalainen,2007),butI didnotfindevidenceforasimilarinfluenceinthe L.badia populationsthatIstudied.

Indeed,Idetectedneitherstrongsizedimorphismbetweensexesineachpoolnor evidenceofsizeassortativematingasreportedforamphipods(Dick&Elwood,1996;

Bollache&Cezilly,2004a),eventhough,iffemalefecundityissizerelated,therewould beabenefitforlargermalestoguard largerfemales.Size,however,wasstrongly correlatedwithdensity,consistentwithcompetitionforlimitedresourcesinsuchpools, asconcludedbyWeeksandBernhardt(2004).Thesignificantlylongerguardingtimeby largermalesreportedhereisconsistentwithboththeirabilitytoovercomefemale resistanceand/ordislodgesmallerguardingmales(Grafen&Ridley,1983).

150

RelativefemaledensityDensityandsexratioaffectmateguardingbecausebothare highlycorrelatedwithencounterrates(Parker,1974).Consequently,shorterguarding durationsshouldoccurinpopulationswithafemalebiasedsexratio(maleswouldhavea highencounterratewithfemales,enhancingtheirchanceoffindingfemalescloseto receptivity).However,theseresultson L.badia inpopulationswithhigherfemale relativedensity,contradictthisprediction:mateguardingwassignificantlylonger.This unexpectedresultmayresultfromoneormorealternativeprocessesthatwillrequire furtherstudiestoelucidate,stemmingfromthefactthatunderhigherfemalerelative densities,therateofmalefemalesencountersshouldincrease.First,femalesmight decreasethestrengthofresistancetobeingguardedunderconditionsoffewermales beingavailableformateguardinginapool(toincreasethepossibilityofbeing fertilized).Ontheotherhand,femalesmight“search”formaleswhenfemalesexperience fewercontactswithmalesperunittime,essentiallyexpressingtheirchoicetobeguarded therebyenhancingfemaleinducedbondswithamale.Thesetwohypothesized interactionsmaybealternativestatementsofthesamebasicprocess,withbothpointing tothephenomenonofactivepositivefemaleselection.

Adecreaseinfemaleresistancehasbeenpostulatedinanoppositesituation(high maledensity)inwaterstriders.Inthegenera Aquarius and Gerris (Arnqvist,1992a;

Arnqvist,1992b;Laueretal.,1996)wheretheattentionofmalestowardsfemalescanbe verypersistent,itmaybelessdetrimentalforafemaletobeguardedlongerbyonemale thanresistthecontinuousharassmentofmultiplemales(Amano&Hayashi,1998).

151

SomeauthorsuseOSR(insteadofsexratio)tounderlinetheimportanceofthe abundanceofreceptivefemales(Iribarneetal.,1995;Vepsäläinen&Savolainen,1995;

AlonsoPimentel&Papaj,1996).AlthoughIdidnotfindevidenceofvariationofmate guardingtimewithvariationofOSR,IcalculatedOSRjustonceduringtheobservation, assumingoverallOSRdoesnotchangesignificantlythroughtime.Thisassumptionmight havebeenwrong,ortheremightbenoeffectofOSRduetoasynchronyoffemale receptivityinthepopulationbecausefemaleclamshrimpstartanewreproductivecycle assoonasthepreviousoneiscompletedandthusreproductioniscontinuousduringtheir shortlifecycle.IfOSRiscontinuouslychanginginanunpredictableway,itcouldbe difficultformalestogaugethelikelihoodofthenumberofreceptivefemalesinthe population.

Femalereceptivity Mateguardinghasbeenanalyzedinitiallyusingoptimalitymodels fromthemaleperspectivetomaximizemalereproductivesuccess(Parker,1974), assumingthatmalescanassessthereceptivitystateoffemales.In L.badia ,females closertoreceptivity(i.e.withnoeggsinthebroodchamber)wereguardedforshorter periodsoftime.Bothsexeswouldgainadvantagefromashortmateguardingphase: femalesbecauseofareductionincostsofbeingguarded(e.g.,lessinterruptiontotheir feeding)andmalesbecausepaternityofthebroodisguaranteedandtheirenergy expenditureinguardingwouldbereduced.Thustheconflictbetweenthetwosexesis reducedwhenmateguardingdurationislow.

ConsequencesofguardingFailuretofertilizeeggsresultedinshorterguardingtime thaninsuccessfulmating.Whethercessationofmateguardingismaleorfemaledriven

152

needstobeelucidated.Thelongertheperiodthatamalespendsguardingafemale,the morevaluablesheshouldbe.However,malesmighthaveaspecificamountoftimethey willallotpermating,beyondwhichtheywillassumefailureandmoveontoseekanother mate.Fromthefemaleperspective,beingguardedbyareproductivelyincompetentmale willreducehergeneticfitness,sotheremightbesomesortoffemalechoice, communicatedbyaspecificcueorthelackofacue(maybebehavioral),thatmight convincethemaletostartlookingforanotherfemale.

MaletimebudgetsInclamshrimp,malesarethesearchingsexandinsodoing demonstratedavarietyofencounters,rangingfromclaspingothermales,carapaces,dead clamshrimpandjuveniles.Insomepoolswhereoverlappingcohortswerepresent,males claspedimmatureconspecificsatlength(Benvenutoetal. inpress).Whatthecuesfor establishingaguardingphasedetectedthroughphysicalcontactbymalesmightbe,isstill unclear.Again,althoughmalesmaybethesearchingsex,thisdoesnotprecludethe possibilityofchoicebeingexertedbyfemales,postcontact.Someaquaticcrustaceans , likethestreamdwellingisopod Lirceusfontinalis ,keyonchemicalsreleasedduring molting toassessthereceptivitystateoftheirmates(Sparkesetal.,2000).Experiments performedon E.texana donotsupportaroleofthemoltinghormone20HE(ChapterII), butthisdoesnotexcludeanimportantroleofothermetabolitesinvolvedinthemolting process.Ifthisisthecase,itcouldexplaintheclaspingofothermales,juveniles(which moltfrequently),andemptycarapaces(wherepossibletracesofthemoltinghormone couldstillbepresent).

153

MalemalecompetitionIamconvincedoftheimportanceoffemaleresistance,but malemalecompetitioncanstillberelevantinthisspecies.Inapopulationwithamale biasedsexratio,guardingdurationshouldincreasesinceonceafemaleisfoundbya male,itisimportantforhimtoremainincontactwithher,bothtoavoidlosingthe matingopportunityaswellastoprevent“exploitation”competitionbyothermales

(Grafen&Ridley,1983;Dick&Elwood,1996).Ialsoattemptedtoquantify“direct” competitionobservingmalemaleinteractionsinclaspingtrios,implyingthepossibility ofmaletakeovers.Twomalesclaspingafemalekickeachothervigorously,attemptingto dislodgetherival.Contrarytoexpectations,therewerenosignificantsizedifferences between“loser”and“winner”males.Thus,itappearsthatsizeisnotthedetermining factorindecidingwhichmalewinsthecontest.However,Iobservedfewtriosinthis fieldstudyandIcannotexcludethepossibilityofasamplingbias:Imayhaveonlyfound triosthathadpersistedforacomparativelyprolongedtime.Ifequallysizematchedmales aremorelikelytoremainintriosforlongerperiods,thenImayhavemissedthecases wherelargermalesquicklydislodgedsmallermalesintrios(eventhoughIdidnotdetect asignificantdifferencebetweenmateguardingandnonmateguardingmales).Future quantificationsofmaletakeoversshouldemphasizeobservingtriosfromtheinitial pairingstoremovethisbias.

Summary Precopulatorymateguardingisacomplexbehavior,involvinginteractions betweenmalesandfemaleswithobjectivesthatbothoverlapandconflict.Malesneedto ensurepaternityandalsomaximizefitness;females,whenreceptive,needtoensurea maleforfertilizationandmaximizefitness.Inordertoincreasethefitnessofeachbrood,

154

thedecisionmakingaboutguarding/beingguardedchangeswithtimeduringasingle matingevent.Thisdecisionmakinghasbeenthefocusofseveraltheoreticalmodels

(Parker,1974;Grafen&Ridley,1983;Yamamura,1987;Jormalainenetal.,1994b;

Yamamura&Jormalainen,1996;Jormalainen,1998;Härdlingetal.,1999;Härdlinget al.,2004)andthisfieldstudywasundertakentoassesstheapplicabilityofthemodeling predictionstonaturalpopulationsofclamshrimp.Myresultsgenerallyareconsistent withthesepredictions,withmateguardingdurationin L.badia decreasingwhenfemales wereclosertoreceptivity,andwhenmalesweresmall.Ifoundshortermateguarding durationwhenfemaledensitywaslow.Thislastresultpossiblyprovidesevidenceforan activefemaleroleinpromotingormaintainingtheguardingrelationshiporitmay provideevidenceofamodulationoffemaleresistancewithvariationindensityandsex ratio.Ialsorecordedmalemalecompetitionforfemales,althoughtheunderlyingreasons forwhichmale“wins”suchcompetitionshaveyettobedetermined.Theresults presentedherepointtowardplanningmanipulative,laboratorybasedstudiesdesignedto unravelthecontributiontosuccessfulreproductionforeachoftheseparametersinthis crustacean.

Acknowledgements

IamextremelygratefultoAlissaCalabrese,RobDavis,WallyGibb,Debra

Judge,KerryKnott,SadieK.Reed,DannyTang,MagdalenaZofkova,theSchoolof

AnimalBiologyatTheUniversityofWesternAustraliafortheirinvaluablehelpinthe organizationofthefieldstudy,andmostofalltoBrentonKnott.Manythanksaredueto

155

theemployeesofmanyshireofficesinWesternAustraliaforpreciousinformationand

DannyStefoniattheDepartmentofConservationandLandManagementofWestern

Australiaforallthepermitsrequiredtoperformthefieldwork.Iwouldliketothank

FranciscoMooreforhishelpwithstatisticalanalysis.Thisworkwassupportedbythe

NationalScienceFoundation[grantnumberIBN0213358];theKentStateUniversity

GraduateSenateInTraGrant;andtheKevinE.KelleherMemorialFund.

VI.GENERALDISCUSSIONANDCONCLUSIONS

Precopulatorymateguardingisacomplexbehavior,characterizedbya continuousinteractionbetweenthesexes.Thisinteractionisdynamicbecauseitvaries duringasinglematingeventasaresponsetochangesinfemalereceptivity.Mate guardinginvolvesi)matereceptivityassessmentbythemale,ii)amaledecisionto continueorstopguarding,andiii)afemaleresponsetothisdecision,eitherasacceptance orresistanceoftheguardingmale(Figure6.1).Oneofthekeyfactorsthatinfluencesthe startingofaguardingeventisthereceptivitystateofthefemale(e.g.,thetimelefttomolt incrustaceans,seeJormalainen,1998)whencopulationwillbepossible.Other parameterscanalsoaffecttheguardingdecisionsofbothmalesandfemales(seeChapter

Iforadetailaccountonparameters),oneofthemostinfluentialbeingtheencounterrate

(whichdependsondensityandsexratio)ofmatesinthepopulation(e.g.,Parker,1974;

Wickler&Seibt,1981;Jormalainen,1998).

Whenfemalesarereceptive,orclosetoreceptivity,maleswillstartguardingand femaleswillacceptit.Atthispoint,therewillbeashortguardingphasewhichquickly concludesinamatingevent.Bothmalesandfemalesare“inagreement”thatthe guardingphasewillbeshort,withlowcosts(intermsofenergyoruseoftime)anda highbenefit(asuccessfulmating)forbothofthem.Whenfemalesarenotreceptive(or notclosetoreceptivity),maleswillreleasethemdirectlyafteraquickencounterand therewillbenoguarding.Againbothsexesare“inagreement”thattheguardingphase

156 157

willbetoolong,andthuscostlyintermsofenergyandtime.Intheseinstances,itismore beneficialforbothsexesifthemaleleavestosearchforanother,morereceptivefemale.

Dependsondensityandsex ENCOUNTER rationinthepopulation

Dependson♀ ♂RELEASES ♂STARTSGUARDING receptivitystate (Ch.II)

Dependson♀ receptivitystate ACCEPTANCEBY ♀ RESISTANCEBY ♀ andmating system(Ch.II; Ch.IV)

CONFLICT ♂RELEASES Noconflic t Influencedbymultiple SHORTMATE parameters,i.e.,sexratio, GUARDING density,size,matingsystem (Ch.III;Ch.IV)

Dependon MATEGUARDING different “power” DURATION MATING amongsexes (Ch.II)

MATING

Figure 6.1 –Flowchartdescribingthepossibleinteractionsbetweensexesfromencounterto mating;♂:male;♀:femaleindioecioussystem,hermaphroditeinandrodioecioussystem.

158

Aconflictisinitiatedwhenthesexesareindisagreementonthedurationofmate guarding(Yamamura&Jormalainen,1996;Jormalainen,1998).Thishappenswhen malesdecidetostartguarding,becausetheircost(i.e.,timeinvestment)islowerthan theirbenefit(matingevent),butfemalesareresistingbecausetheircost(intermof energy)ishigherthantheirbenefit(matingevent).Mateguardingisathusachallenging exampleofintersexualconflict.

AsoutlinedinChapterI,mateguardinghasbeeninvestigatedinmanydifferent crustaceantaxa,withmultipleapproaches.Ianalyzedmateguardinginonespecific crustaceangroup,commonlycalledclamshrimp,inthesuborderSpinicaudata(class

Branchiopoda).Ialreadydescribedthroughoutthisthesistheadvantagesofworkingwith thisstudysystem:shortlifecycleandshortmateguardingphases,easybreedinginthe laboratory,thepossibilityofperformingmanipulativeexperimentsinthelabaswellas observationsinthefield,andthepossibilitytoobserve(throughthetransparentcarapace) thelevelofgutfullness(asanestimateofrateoffoodintake)andthepresenceor absenceofeggs(asaroughestimateofreceptivity).Moreover,clamshrimpallowfora uniqueopportunityamonganimalstocomparethesamebehaviorsamongspecies characterizedbydifferentmatingsystems.Iwasabletostudymateguardingbehaviorsin dioeciousandinandrodioeciousspecies,whichallowedmetotestanextensionofamate guardingmodel(Jormalainen,1998),whichwouldnotbepossibleinmostothersystems.

Iusedtheandrodioeciousspecies Eulimnadiatexana inthemajorityofmy projects.Thisspecieshasbeensuccessfullyusedinmanylaboratoryexperiments(e.g.,

Medlandetal.,2000;Zuckeretal.,2002;Weeks&Benvenuto,2008)aswellasfield

159

studies(e.g.,Weeks&Bernhardt,2004).Ialsousedanotherandrodioeciousspecies,

Eulimandiadahli ,fromWesternAustraliaandIcomparedthebehaviorofthesetwo specieswiththeAustraliandioecious Limnadiabadia and Limnadopsistatei .

Ianalyzedmateguardinginclamshrimpstartingfromtheproximatemechanism ofthisbehavior,i.e.,thecuesmalesareusingtoassesstheirmate’sreceptivestateand thematesearchingstrategiesemployedbyeachsexin E.texana .Iconfirmedthatmate searchingtacticsdifferbetweenthesexes,asalreadyproposedbyMedlandetal.(2000).

Malesarenotchemicallyattractedtotheoppositesex,whilehermaphroditesare.

Moreoverthissexdifferencechangeswiththehermaphrodite’sreceptivestate:non receptivehermaphroditesappeartobemoreattractedtomalesthanreceptive hermaphrodites(ChapterII).Malesdonotreacttomoltinghormoneasasolublecuein thewaterortotheapplicationofmoltinghormoneonthecarapaceofhermaphrodites.

Otherstudieshavequestionedtheroleofmoltinghormoneasacueofreceptivity

(Gleesonetal.,1984;Kamioetal.,2000;Kamioetal.,2002;Atema&Steinbach,2007).

Possibly,othermetabolitesproducedduringecdysiscouldactasacueformalestoassess thereceptivestateoftheirmates.Furtherstudiesareneededtounderstandthenatureof thechemicalcommunicationbetweenthesexesduringmateguarding.

Ithenmovedtotheultimatecausesofmateguardingbehaviorin E.texana .I analyzedcostsandbenefitsforeachsex,Icreateda“power”asymmetrybetweenmales andhermaphrodites(pairingindividualsofdifferentsizes)andImeasuredtheoptimal mateguardingtimeofeachsexinordertocompareitwiththecompromisedmate guardingtime(ChapterIII).Mateguardingismorecostlytohermaphroditesthanmales,

160

atleastconsideringfoodintake,duringmateguarding.Thiscostissignificantly correlatedwiththeguardingduration.Differentialcoststothesexesduringmate guardinghavebeenreportedinmultiplestudies[e.g.,foodmanipulationinamphipods

(Robinson&Doyle,1985);energeticcostsinamphipods(Plaistowetal.,2003); predationrisksinamphipods(Cothran,2004);survivalcostsinisopods(Beneshetal.,

2007)].

Aspredictedbytheory(Jormalainen,1998),themorepowerfulsex(inthiscase thelargerone)canhavemorecontroloverthelengthofmateguarding.Longermate guardingtimes,whenmaleswerelargerthantheirmates,havebeenreportedforthe isopod Idoteabaltica (Jormalainen&Merilaita,1993;Jormalainenetal.,1994a;

Jormalainen&Merilaita,1995).Withmanipulativeexperiments,Iwasabletomeasure theoptimalguardingtimeofmalesandhermaphrodites.Theresultsperfectlymatched thetheoreticalmodelproposedbyJormalainen(1998):hermaphrodites“prefer”tobe guardedlessthanthecompromisedguardingtime,whilemalesarewillingtoguard longer.Thisreflectstheintersexualconflictontheoptimaldurationofmateguardingthat differsinthetwosexes.Asimilarapproach,usingmanipulationoffemaleresistance,has beenusedinisopods(Jormalainen&Merilaita,1995;Jormalainen&Shuster,1999)and amphipods(Cothran,2008a),andtheresultsareinagreementwithwhatwasfoundin E. texana :longermateguardingtimesareachievedwhenmalescancontrolthemate guardingduration.Malemanipulationsdidnotresultindecreasedmateguardingduration

(contrarytowhatIreported)intheisopods I.baltica (Jormalainen&Merilaita,1995)and

Thermosphaeromathermophilum (Jormalainen&Shuster,1999).Variationsacross

161

species,infact,needtobetakenintoconsideration(i.e.,socialenvironment,different costsandbenefits,etc.).Overall,thereisageneralagreementwiththetheoryandthe existenceoftheconflictovermateguardingdurationhasalwaysbeenconfirmed,with differentstrengthsindifferentspecies(andevenpopulationsbelongingtothesame species;Jormalainenetal.,2000).

Thankstomyuniquestudyorganism,Iwasabletoinvestigatemateguarding behaviorsbeyondtheconflictbetweenmalesandhermaphrodites.Iwas,infact,ableto analyzeandcomparetheoptimalguardingtimeofmalesandhermaphroditesin androdioeciousspeciesandmalesandfemalesindioeciousspecies(ChapterIV).ThusI wasabletomeasurethestrengthoftheconflictamongthesexesandtheinfluenceofthe matingsystemonmateguardingstrategies.Thecomparisonbetweenfemalesand hermaphroditesisparticularlyinteresting.Thebenefitofoutcrossingismuchhigherfor femalesthanforhermaphrodites,whohavetheoptionofselffertilizationifthecostsof beingguardedaretoohigh.Alsomalesexperiencedifferentsocialenvironmentsinthe twomatingsystems.Malesindioeciousspeciessufferhigherrelativeproportionsof malesindioeciousrelativetoandrodioeciousmatingsystems(Pannell,2002;Weekset al.,2006a).Asaresult,malesindioeciousspeciesareguardinglongerthanmalesin androdioeciousspecies.Comparingfourspecies,twodioeciousandtwoandrodioecious,

Ianalyzedtheoveralleffectofthematingsystemonthemateguardingconflict.Iwas carefultoaccountfordifferencesotherthanthesexualsystem,suchassizeandlengthof thereceptivecycle.Aspredicted,dioeciousspeciesguardedlongerthanandrodioecious speciesirrespectiveofthesepotentiallyconfoundingdifferences.

162

Istartedmyanalysesinthelaboratory,usingmanipulativeexperiments(Chapter

II,III,andIV)andthenImovedtothefieldtoverifytheseresultsinanaturalsetting.I studiedonedioeciousspecies, Limnadiabadia ,initsnaturalenvironment(ChapterV).

Thisallowedforapowerfulverificationoftheresultsobtainedinthelaboratory.Inthe field,multipleparametersareactingsimultaneously.Consistentwithpredictions,female receptivestatusinfluencesmateguardingduration:thecloserthefemaleistomolting,the shorterthemateguardingtime.Smallmalesguardedforshorterperiodsthanlargeones, highlightingtheimportanceofsize.Also,highfemalerelativedensitywasfoundtobea keyfactorinincreasingmateguardingduration.Ipostulatedareductionoffemale resistancewhenfemalesareatriskofreachingreceptivitywithouthavingaguarding male.

Fromthefieldthereisthentheopportunitytogobacktoamorecontrolled setting,tofurtherclarifyindividualparameters.Inmyopinionthereisaneedfora continuousexchangeofinformationfromlabtofieldtolabagaininordertostrengthen ourunderstandingofmateguardingbehaviorincrustaceans.Thenextstep,whichI wouldliketopursueinthefuture,wouldbetoorganizetheseresultsusingatheoretical approach.Ibuiltmyoverallprojectonthebasisofexistingtheoreticalmodels(Parker,

1974;Wickler&Seibt,1981;Grafen&Ridley,1983;Yamamura,1987;Hunte&Myers,

1988;Elwood&Dick,1990;Jormalainenetal.,1994b;Yamamura&Jormalainen,1996;

Jormalainen,1998;Härdlingetal.,1999;Härdlingetal.,2004).Theuniquenessofthe studysystem,though,allowsfortheproposalofaninnovativemodelthatencompasses allthevariablespreviouslyconsidered,plustheinfluenceofmatingsystemtype.

163

Ithinkthatfromtheanalysisofaparticulargroupofcrustaceans,characterizedby ararematingsystem,itispossibletoextrapolateconclusionsthatgobeyondthespecific system.Eberhard(2005)proposedtheuseoffacultativehermaphroditesasaconceptual examplethatcouldincreaseourunderstandingofsexualselection.Androdioeciousclam shrimpbringthispropositiontoareality.Thisuniquestudysystempermitsthe investigationofmatinginteractionsamongsexesandtheanalysisoftheinfluenceofthe matingsystemonacomplexbehavior,suchasprecopulatorymateguardingin crustaceans.

REFERENCES

ALONSO PIMENTEL ,H.&P APAJ ,D.R.(1996).Operationalsexratioversusgender

densityasdeterminantsofcopulationdurationinthewalnutfly, Rhagoletis

juglandis (Diptera:Tephritidae).—BehavioralEcologyand39,

171180.

AMANO ,H.&H AYASHI ,K.(1998).Costsandbenefitsforwaterstrider( Aquarius

paludum )femalesofcarryingguarding,reproductivemales.—Ecological

Research13,263272.

ANDERSEN ,H.R.,W OLLENBERGER ,L.,H ALLING SORENSEN ,B.&K USK ,K.O.(2001).

DevelopmentofcopepodnaupliitocopepoditesAparameterforchronictoxicity

includingendocrinedisruption.—EnvironmentalToxicologyandChemistry20,

28212829.

ANDERSSON ,M.B.(1994).Sexualselection.—PrincetonUniversityPress,Princeton,

NJ,599pp.

ARNOLD ,S.J.&W ADE ,M.J.(1984a).OntheMeasurementofNaturalandSexual

SelectionApplications.—Evolution38,720734.

ARNOLD ,S.J.&W ADE ,M.J.(1984b).OntheMeasurementofNaturalandSexual

SelectionTheory.—Evolution38,709719.

ARNQVIST ,G.(1989).MultiplematinginawaterstriderMutualbenefitsorintersexual

conflict.—AnimalBehaviour38,749756.

164 165

ARNQVIST ,G.(1992a).Theeffectsofoperationalsexratioontherelativematingsuccess

ofextrememalephenotypesinthewaterstrider Gerrisodontogaster (Zett)

(Heteroptera,Gerridae).—AnimalBehaviour43,681683.

ARNQVIST ,G.(1992b).Precopulatoryfightinginawaterstrider:intersexualconflictor

mateassessment.—AnimalBehaviour43,559567.

ARNQVIST ,G.(1994).ThecostofmalesecondarysexualtraitsDevelopmental

constraintsduringontogenyinasexuallydimorphicwaterstrider.—American

Naturalist144,119132.

ARNQVIST ,G.(2004).Sexualconflictandsexualselection:Lostinthechase.—

Evolution58,13831388.

ARNQVIST ,G.&A NDRES ,J.A.(2006).Theeffectsofexperimentallyinducedpolyandry

onfemalereproductioninamonandrousmatingsystem.—Ethology112,748

756.

ARNQVIST ,G.&N ILSSON ,T.(2000).Theevolutionofpolyandry:multiplematingand

femalefitnessininsects.—AnimalBehaviour60,145164.

ARNQVIST ,G.&R OWE ,L.(2002).Antagonisticcoevolutionbetweenthesexesinagroup

ofinsects.—Nature415,787789.

ARNQVIST ,G.&R OWE ,L.(2005).SexualConflict.—PrincetonUniversityPress,

Princeton,NJ,330pp.

ATEMA ,J.&S TEINBACH ,M.H.(2007).ChemicalCommunicationandSocialBehavior

oftheLobster Homarusamericanus andOtherDecapodCrustacea.—In:

EvolutionaryEcologyOfSocialandSexualSystemsCrustaceansasModel

166

Organisms(J.E.Duffy&M.Thiel,eds).OxfordUniversityPress,NewYork,p.

115144.

BATEMAN ,A.J.(1948).Intrasexualselectionin Drosophila .—Heredity2,349368.

BATEMAN ,P.W.,G ILSON ,L.N.&F ERGUSON ,J.W.H.(2001).Investmentinmate

guardingmaycompensateforconstraintsonejaculateproductioninthecricket

Gryllodessigillatus .—Ethology107,10871098.

BAUER ,R.T.(1996).Atestofhypothesesonmalematingsystemsandfemalemoltingin

decapodshrimp,using Sicyoniadorsalis (:Penaeoidea).—Journalof

CrustaceanBiology16,429436.

BAUER ,R.T.&A BDALLA ,J.H.(2001).Malematingtacticsintheshrimp Palaemonetes

pugio (Decapoda,):Precopulatorymateguarding vs .puresearching.—

Ethology107,185199.

BEL VENNER ,M.C.&V ENNER ,S.(2006).Mateguardingstrategiesandmale

competitiveabilityinanorbweaving:resultsfromafieldstudy.—

AnimalBehaviour71,13151322.

BELK ,D.(1991).AnostracanMatingBehavior:ACaseofScrambleCompetition

Polygyny.—In:CrustaceanSexualBiology(R.T.Bauer&J.W.Martin,eds).

ColumbiaUniversityPress,NewYork,p.111125.

BENESH ,D.P.,V ALTONEN ,E.T.&J ORMALAINEN ,V.(2007).Reducedsurvival

associatedwithprecopulatorymateguardinginmale Asellusaquaticus (isopoda).

—AnnalesZoologiciFennici44,425434.

167

BENVENUTO ,C.,C ALABRESE ,A.,R EED ,S.K.&K NOTT ,B.(inpress).Multiplehatching

eventsinclamshrimp:implicationformateguardingbehaviorandcommunity

ecology.—CurrentScience.

BERTIN ,A.&C EZILLY ,F.(2003).Sexualselection,antennaelengthandthemating

advantageoflargemalesin Asellusaquaticus .—JournalofEvolutionaryBiology

16,491500.

BERTIN ,A.&C EZILLY ,F.(2005).Densitydependentinfluenceofmalecharacterson

matelocatingefficiencyandpairingsuccessinthewaterlouse Asellusaquaticus :

anexperimentalstudy.—JournalofZoology265,333338.

BOLLACHE ,L.&C EZILLY ,F.(2004a).Sexualselectiononmalebodysizeandassortative

pairingin Gammaruspulex (Crustacea:Amphipoda):fieldsurveysand

laboratoryexperiments.—JournalofZoology264,135141.

BOLLACHE ,L.&C EZILLY ,F.(2004b).Statedependentpairingbehaviourinmale

Gammaruspulex (L.)(Crustacea,Amphipoda):effectsoftimelefttomoultand

priorpairingstatus.—BehaviouralProcesses66,131137.

BOROWSKY ,B.(1983).Reproductivebehaviorofthreetubebuildingperacarid

crustaceans:theamphipods Jassafalcata and Amphitoevalida andthetanaid

Tanaiscavolinii .—MarineBiology77,257263.

BOROWSKY ,B.(1984).Theuseofthemales’gnathopodsduringprecopulationinsome

gammarideanamphipods.—Crustaceana47,245250.

BUSHMANN ,P.J.(1999).Concurrentsignalsandbehavioralplasticityinbluecrab

(Callinectessapidus Rathbun)courtship.—BiologicalBulletin197,6371.

168

BUSHMANN ,P.J.&A TEMA ,J.(2000).Chemicallymediatedmatelocationandevaluation

lnthelobster, Homarusamericanus .—JournalofChemicalEcology26,883

899.

CAMERON ,E.,D AY ,T.&R OWE ,L.(2003).Sexualconflictandindirectbenefits.—

JournalofEvolutionaryBiology16,10551060.

CASKEY ,J.L.&B AUER ,R.T.(2005).Behavioraltestsforapossiblecontactsex

pheromoneinthecarideanshrimp Palaemonetespugio .—JournalofCrustacean

Biology25,571576.

CHAPMAN ,T.(2006).Evolutionaryconflictsofinterestbetweenmalesandfemales.—

CurrentBiology16,R744R754.

CHAPMAN ,T.,A RNQVIST ,G.,B ANGHAM ,J.&R OWE ,L.(2003).Sexualconflict.—

TrendsinEcology&Evolution18,4147.

CHAPMAN ,T.,L IDDLE ,L.F.,K ALB ,J.M.,W OLFNER ,M.F.&P ARTRIDGE ,L.(1995).Cost

ofmatingin Drosophilamelanogaster femalesismediatedbymaleaccessory

glandproducts.—Nature373,241244.

CHASNOV ,J.R.&C HOW ,K.L.(2002).Whyaretheremalesinthehermaphroditic

species Caenorhabditiselegans ?—Genetics160,983994.

CHIPPINDALE ,A.K.,G IBSON ,J.R.&R ICE ,W.R.(2001).Negativegeneticcorrelationfor

adultfitnessbetweensexesrevealsontogeneticconflictin Drosophila .—

ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica

98,16711675.

169

CIVETTA ,A.&C LARK ,A.G.(2000).Correlatedeffectsofspermcompetitionand

postmatingfemalemortality.—ProceedingsoftheNationalAcademyof

SciencesoftheUnitedStatesofAmerica97,1316213165.

CLUTTON BROCK ,T.&L ANGLEY ,P.(1997).Persistentcourtshipreducesmaleand

femalelongevityincaptivetsetseflies Glossinamorsitansmorsitans Westwood

(Diptera:Glossinidae).—BehavioralEcology8,392395.

CLUTTON BROCK ,T.H.&P ARKER ,G.A.(1995).Sexualcoercioninanimalsocieties.—

AnimalBehaviour49,13451365.

CONLAN ,K.E.(1991).Precopulatorymatingbehaviorandsexualdimorphisminthe

amphipodcrustacea.—Hydrobiologia223,255282.

COOPER ,W.&V ITT ,L.(2002).Increasedpredationriskwhilemateguardingasacostof

reproductionformalebroadheadedskinks( Eumeceslaticeps ).—Acta

ethologica5,1923.

CORDERO ,C.&E BERHARD ,W.G.(2003).Femalechoiceofsexuallyantagonisticmale

adaptations:acriticalreviewofsomecurrentresearch.—JournalofEvolutionary

Biology16,16.

CORDERO ,C.&E BERHARD ,W.G.(2003).(2005).Interactionbetweensexually

antagonisticselectionandmatechoiceintheevolutionoffemaleresponsesto

maletraits.—EvolutionaryEcology19,111122.

COTHRAN ,R.D.(2004).Precopulatorymateguardingaffectspredationriskintwo

freshwateramphipodspecies.—AnimalBehaviour68,11331138.

170

COTHRAN ,R.D.(2008a).Directandindirectfitnessconsequencesoffemalechoiceina

crustacean.—Evolution62,16661675.

COTHRAN ,R.D.(2008b).Phenotypicmanipulationrevealssexualconflictoverprecopula

duration.—BehavioralEcologyandSociobiology62,14091416.

DALY ,M.(1978).Thecostofmating.—AmericanNaturalist112,771774.

DARWIN ,C.(1859).OntheoriginofspeciesAfacsimileofthefirstedition,1964.—

HarwardUniversityPress,Cambridge,MA,540pp.

DARWIN ,C.(1871).Thedescentofmanandselectioninrelationtosex.—JohnMurray,

London,706pp.

DAVIS ,E.S.(2002).Femalechoiceandthebenefitsofmateguardingbymalemallards.

—AnimalBehaviour64,619628.

DAWKINS ,R.(1976).Theselfishgene.—OxfordUniversityPress,Oxford,352pp.

DETTO ,T.,B ACKWELL ,P.R.Y.,H EMMI ,J.M.&Z EIL ,J.(2006).Visuallymediated

speciesandneighbourrecognitioninfiddlercrabs( Ucamjoebergi and Uca

capricomis ).—ProceedingsoftheRoyalSocietyBBiologicalSciences273,

16611666.

DIAZ ,E.R.&T HIEL ,M.(2004).Chemicalandvisualcommunicationduringmate

searchinginrockshrimp.—BiologicalBulletin206,134143.

DICK ,J.T.A.&E LWOOD ,R.W.(1996).Effectsofnaturalvariationinsexratioand

habitatstructureonmateguardingdecisionsinamphipods(Crustacea).—

Behaviour133,985996.

171

DUFFY ,J.E.&T HIEL ,M.(2007).EvolutionaryEcologyOfSocialandSexualSystems

CrustaceansasModelOrganisms.—OxfordUniversityPress,NewYork.

DUNHAM ,P.,A LEXANDER ,T.&H URSHMAN ,A.(1986).Precopulatorymateguardingin

anamphipod, Gammaruslawrencianus Bousfield.—AnimalBehaviour34,

16801686.

DUNHAM ,P.,H URSHMAN ,A.&G AVIN ,C.(1989).Precopulatorymateguardinginan

amphipod, Gammaruslawrencianus Effectsofthemalepostcopulation

interval.—MarineBehaviourandPhysiology14,181187.

DUNHAM ,P.J.(1978).SexpheromonesinCrustacea.—BiologicalReviewsofthe

CambridgePhilosophicalSociety,555583.

DUNHAM ,P.J.(1986).Mateguardinginamphipods:aroleforbroodpouchstimuli.—

BiologicalBulletin170,526531.

DUNHAM ,P.J.&H URSHMAN ,A.(1990).Precopulatorymateguardingintheamphipod,

Gammaruslawrencianus Effectsofsocialstimulationduringthepostcopulation

interval.—AnimalBehaviour39,976979.

DUNN ,A.M.(1998).Theroleofcalceoliinmateassessmentandprecopulaguardingin

Gammarus .—AnimalBehaviour56,14711475.

EBERHARD ,W.G.(1985).SexualSelectionandAnimalGenitalia.—HarvardUniversity

Press,Cambridge,MA,244pp.

EBERHARD ,W.G.(1996).FemaleControl:SexualSelectionbyCrypticFemaleChoice.

—PrincetonUniversityPress,Princeton,NJ,501pp.

172

EBERHARD ,W.G.(2004).Rapiddivergentevolutionofsexualmorphology:Comparative

testsofantagonisticcoevolutionandtraditionalfemalechoice.—Evolution58,

19471970.

EBERHARD ,W.G.(2005).Evolutionaryconflictsofinterest:Arefemalesexualdecisions

different?—AmericanNaturalist165,S19S25.

ELWOOD ,R.,G IBSON ,J.&N EIL ,S.(1987).TheAmorous Gammarus Sizeassortative

matingin Gammaruspulex .—AnimalBehaviour35,16.

ELWOOD ,R.W.&D ICK ,J.T.A.(1990).TheAmorous Gammarus therelationship

betweenprecopuladurationandsizeassortativematingin Gammaruspulex .—

AnimalBehaviour39,828833.

EMLEN ,S.T.(1976).Lekorganizationandmatingstrategiesinthebullfrog.—

BehavioralEcologyandSociobiology1,283313.

EMLEN ,S.T.&O RING ,L.(1977).Ecology,sexualselectionandtheevolutionofmating

systems.—Science197,215223.

ESHEL ,I.,V OLOVIK ,I.&S ANSONE ,E.(2000).OnFisherZahavi'shandicappedsexyson.

—EvolutionaryEcologyResearch2,509523.

FAUL ,F.,E RDFELDER ,E.,L ANG ,A.G.&B UCHNER ,A.(2007).G*Power3:Aflexible

statisticalpoweranalysisprogramforthesocial,behavioral,andbiomedical

sciences.—BehaviorResearchMethods39,175191.

FISHER ,R.A.(1930).Thegenetictheoryofnaturalselection.—ClarendonPress,

Oxford,272pp.

173

FOITZIK ,S.,H EINZE ,J.,O BERSTADT ,B.&H ERBERS ,J.M.(2002).Mateguardingand

alternativereproductivetacticsinthe Hypoponeraopacior .—Animal

Behaviour63,597604.

FRIBERG ,U.(2005).Geneticvariationinmaleandfemalereproductivecharacters

associatedwithsexualconflictin Drosophilamelanogaster .—BehaviorGenetics

35,455462.

FRIBERG ,U.&A RNQVIST ,G.(2003).Fitnesseffectsoffemalematechoice:preferred

malesaredetrimentalfor Drosophilamelanogaster females.—Journalof

EvolutionaryBiology16,797811.

FRIBERG ,U.,L EW ,T.A.,B YRNE ,P.G.&R ICE ,W.R.(2005).Assessingthepotentialfor

anongoingarmsracewithinandbetweenthesexes:Selectionandheritable

variation.—Evolution59,15401551.

GARLAND ,T.&A DOLPH ,S.C.(1994).Whynottodotwospeciescomparativestudies:

Limitationsoninferringadaptation.—PhysiologicalZoology67,797828.

GEMS ,D.&R IDDLE ,D.L.(1996).Longevityin Caenorhabditiselegans reducedby

matingbutnotgameteproduction.—Nature379,723725.

GLEESON ,R.A.(1980).Pheromonecommunicationinthereproductivebehaviorofthe

bluecrab, Callinectessapidus .—MarineBehaviourandPhysiology7,119134.

GLEESON ,R.A.,A DAMS ,M.A.&S MITH ,A.B.(1984).Characterizationofasex

pheromoneinthebluecrab, Callinectessapidus :Crustecdysonestudies.—

JournalofChemicalEcology10,913921.

174

GRAFEN ,A.&R IDLEY ,M.(1983).Amodelofmateguarding.—JournalofTheoretical

Biology102,549567.

GRIFFITH ,S.C.,O WENS ,I.P.F.&T HUMAN ,K.A.(2002).Extrapairpaternityinbirds:a

reviewofinterspecificvariationandadaptivefunction.—MolecularEcology11,

21952212.

GWYNNE ,D.T.(1991).Sexualcompetitionamongfemales:Whatcausescourtshiprole

reversal.—TrendsinEcology&Evolution6,118121.

HAIG ,D.(2000).Thekinshiptheoryofgenomicimprinting.—AnnualReviewof

EcologyandSystematics31,932.

HAMILTON ,W.D.&Z UK ,M.(1982).Heritabletruefitnessandbrightbirdsarolefor

parasites.—Science218,384387.

HAMMERSTEIN ,P.&P ARKER ,G.A.(1987).Sexualselection:gamesbetweenthesexes.

—In:SexualSelection:TestingtheAlternatives(J.W.Bradbury&M.B.

Andersson,eds).JohnWileyandSons,p.119142.

HARARI ,A.R.,L ANDOLT ,P.J.,O'BRIEN ,C.W.&B ROCKMANN ,H.J.(2003).Prolonged

mateguardingandspermcompetitionintheweevil Diaprepesabbreviatus (L.).

—Behav.Ecol.14,8996.

HÄRDLING ,R.,J ORMALAINEN ,V.&T UOMI ,J.(1999).Fightingcostsstabilizeaggressive

behaviorinintersexualconflicts.—EvolutionaryEcology13,245265.

HÄRDLING ,R.,K OKKO ,H.&E LWOOD ,R.W.(2004).Priorityversusbruteforce:When

shouldmalesbeginguardingresources?—AmericanNaturalist163,240252.

175

HÄRDLING ,R.,S MITH ,H.G.,J ORMALAINEN ,V.&T UOMI ,J.(2001).Resolutionof

evolutionaryconflicts:costlybehavioursenforcetheevolutionofcostfree

competition.—EvolutionaryEcologyResearch3,829844.

HARTNOLL ,R.G.&S MITH ,S.M.(1978).Pairformationandthereproductivecyclein

Gammarusduebeni .—JournalofNaturalHistory50,501512.

HARTNOLL ,R.G.&S MITH ,S.M.(1980).Anexperimentalstudyofsexdiscrimination

andpairformationin Gammarusduebenii (Amphipoda).—Crustaceana38,253

264.

HASSELQUIST ,D.&B ENSCH ,S.(1991).Tradeoffbetweenmateguardingandmate

attractioninthepolygynousGreatReedWarbler.—BehavioralEcologyand

Sociobiology28,187193.

HATCHER ,M.J.&D UNN ,A.M.(1997).Sizeandpairingsuccessin Gammarusduebeni :

canfemalesbetoobig?—AnimalBehaviour54,13011308.

HENZI ,S.P.,L YCETT ,J.E.&W EINGRILL ,T.(1998).Mateguardingandriskassessment

bymalemountainbaboonsduringintertroopencounters.—AnimalBehaviour

55,14211428.

HOLLAND ,B.&R ICE ,W.R.(1998).Perspective:Chaseawaysexualselection:

Antagonisticseductionversusresistance.—Evolution52,17.

HOLLAND ,B.&R ICE ,W.R.(1999).Experimentalremovalofsexualselectionreverses

intersexualantagonisticcoevolutionandremovesareproductiveload.—

ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica

96,50835088.

176

HOLM ,S.(1979).Asimplesequentiallyrejectivemultipletestprocedure.—

ScandinavianJournalofStatistics6,6570.

HOSKEN ,D.&S NOOK ,R.(2005).Howimportantissexualconflict?—American

Naturalist165,S1S4.

HOSKEN ,D.J.,G ARNER ,T.W.J.&W ARD ,P.I.(2001).Sexualconflictselectsformale

andfemalereproductivecharacters.—CurrentBiology11,489493.

HOSKEN ,D.J.&S TOCKLEY ,P.(2005).Sexualconflict.—CurrentBiology15,R535

R536.

HUME ,K.D.,E LWOOD ,R.W.,D ICK ,J.T.A.&C ONNAGHAN ,K.M.(2002).Size

assortativepairingin Gammaruspulex (Crustacea:Amphipoda):atestofthe

timinghypothesis.—AnimalBehaviour64,239244.

HUNTE ,W.&M YERS ,R.A.(1988).Maleinvestmenttimeandmatingdecisionsin

amphipodsUncertaintyordeprivation?—AnimalBehaviour36,608609.

HUNTE ,W.,M YERS ,R.A.&D OYLE ,R.W.(1985).BayesianMatingDecisionsinan

Amphipod, Gammaruslawrencianus Bousfield.—AnimalBehaviour33,366

372.

HURST ,L.D.,A TLAN ,A.&B ENGTSSON ,B.O.(1996).Geneticconflicts.—Quarterly

ReviewofBiology71,317364.

HUXLEY ,J.S.(1938a).Darwin'stheoryofsexualselectionandthedatasubsumedbyit,

inthelightofrecentresearch.—AmericanNaturalist72,416433.

177

HUXLEY ,J.S.(1938b).Thepresentstandingofthetheoryofsexualselection.—In:

Evolution.Essaysonaspectsofevolutionarybiology(G.R.DeBeer,ed).Oxford

UniversityPress,Oxford,p.1142.

IRIBARNE ,O.,F ERNANDEZ ,M.&A RMSTRONG ,D.(1995).Precopulatoryguardingtimeof

themaleamphipod Eogammarusoclairi :Effectofpopulationstructure.—

MarineBiology124,219223.

JENNIONS ,M.D.&P ETRIE ,M.(2000).Whydofemalesmatemultiply?Areviewofthe

geneticbenefits.—BiologicalReviews75,2164.

JIVOFF ,P.&H INES ,A.H.(1998a).Effectoffemalemoltstageandsexratiooncourtship

behaviorofthebluecrab Callinectessapidus .—MarineBiology131,533542.

JIVOFF ,P.&H INES ,A.H.(1998b).Femalebehaviour,sexualcompetitionandmate

guardinginthebluecrab, Callinectessapidus .—AnimalBehaviour55,589603.

JOHANSSON ,B.G.&J ONES ,T.M.(2007).Theroleofchemicalcommunicationinmate

choice.—BiologicalReviews82,265289.

JORMALAINEN ,V.(1998).Precopulatorymateguardingincrustaceans:Malecompetitive

strategyandintersexualconflict.—TheQuarterlyReviewofBiology73,275

304.

JORMALAINEN ,V.(2007).MatingStrategiesinIsopods.FromMateMonopolizationto

Conflicts.—In:EvolutionaryEcologyOfSocialandSexualSystems

CrustaceansasModelOrganisms(J.E.Duffy&M.Thiel,eds).Oxford

UniversityPress,NewYork,p.167190.

178

JORMALAINEN ,V.&M ERILAITA ,S.(1993).Femaleresistanceandprecopulatory

guardingintheisopod Idoteabaltica (Pallas).—Behaviour125,219231.

JORMALAINEN ,V.&M ERILAITA ,S.(1995).Femaleresistanceanddurationofmate

guardinginthreeaquaticperacarids(Crustacea).—BehavioralEcologyand

Sociobiology36,4348.

JORMALAINEN ,V.,M ERILAITA ,S.&H ARDLING ,R.(2000).Dynamicsofintersexual

conflictoverprecopulatorymateguardingintwopopulationsoftheisopod Idotea

baltica .—AnimalBehaviour60,8593.

JORMALAINEN ,V.,M ERILAITA ,S.&R IIHIMAKI ,J.(2001).Costsofintersexualconflictin

theisopod Idoteabaltica .—JournalofEvolutionaryBiology14,763772.

JORMALAINEN ,V.&S HUSTER ,S.M.(1999).Femalereproductivecycleandsexual

conflictoverprecopulatorymateguardingin Thermosphaeroma (Crustacea,

Isopoda).—Ethology105,233246.

JORMALAINEN ,V.,S HUSTER ,S.M.&W ILDEY ,H.C.(1999).Reproductiveanatomy,

precopulatorymateguarding,andpaternityinthesocorroisopod,

Thermosphaeromathermophilum .—MarineandFreshwaterBehaviourand

Physiology32,3956.

JORMALAINEN ,V.,T UOMI ,J.&M ERILAITA ,S.(1994a).Effectoffemaleresistanceon

sizedependentprecopuladurationinmateguardingCrustacea.—Animal

Behaviour47,14711474.

179

JORMALAINEN ,V.,T UOMI ,J.&Y AMAMURA ,N.(1994b).Intersexualconflictover

precopuladurationinmateguardingCrustacea.—BehaviouralProcesses32,

265283.

KAMIO ,M.,M ATSUNAGA ,S.&F USETANI ,N.(2000).Studiesonsexpheromonesofthe

helmetcrab, Telmessuscheiragonus 1.Anassaybasedonprecopulatorymate

guarding.—ZoologicalScience17,731733.

KAMIO ,M.,M ATSUNAGA ,S.&F USETANI ,N.(2002).Copulationpheromoneinthecrab

Telmessuscheiragonus (Brachyura:Decapoda).—MarineEcologyProgress

Series234,183190.

KELLY ,L.S.&S NELL ,T.W.(1998).Roleofsurfaceglycoproteinsinmateguardingof

themarineharpacticoid Tigriopusjaponicus .—MarineBiology130,605612.

KIRKPATRICK ,M.(1987).Sexualselectionbyfemalechoiceinpolygynousanimals.—

AnnualReviewofEcologyandSystematics18,4370.

KIRKPATRICK ,M.(1996).Goodgenesanddirectselectioninevolutionofmating

preferences.—Evolution50,21252140.

KIRKPATRICK ,M.&R YAN ,M.J.(1991).Theevolutionofmatingpreferencesandthe

paradoxofthelek.—Nature350,3338.

KNOLL ,L.(1995).Matingbehaviorandtimebudgetofanandrodioeciouscrustacean,

Eulimnadiatexana (Crustacea,Conchostraca).—Hydrobiologia298,7381.

KNOLL ,L.&Z UCKER ,N.(1995).Issexualselectionoperatingintheandrodioeciousclam

shrimp, Eulimnadiatexana (Crustacea,Conchostraca)?—Hydrobiologia298,

6772.

180

KOKKO ,H.,B ROOKS ,R.,J ENNIONS ,M.D.&M ORLEY ,J.(2003).Theevolutionofmate

choiceandmatingbiases.—ProceedingsoftheRoyalSocietyofLondonSeries

BBiologicalSciences270,653664.

KOKKO ,H.,B ROOKS ,R.,M CNAMARA ,J.M.&H OUSTON ,A.I.(2002).Thesexual

selectioncontinuum.—ProceedingsoftheRoyalSocietyofLondonSeriesB

BiologicalSciences269,13311340.

KOKKO ,H.&W ONG ,B.B.M.(2007).Whatdeterminessexrolesinmatesearching?—

Evolution61,11621175.

KOMDEUR ,J.(2001).MateguardingintheSeychelleswarblerisenergeticallycostlyand

adjustedtopaternityrisk.—ProceedingsoftheRoyalSocietyofLondonSeries

BBiologicalSciences268,21032111.

LANDE ,R.(1981).Modelsofspeciationbysexualselectiononpolygenictraits.—

ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesof

AmericaBiologicalSciences78,37213725.

LANDRY ,C.,G EYER ,L.B.,A RAKAKI ,Y.,U EHARA ,T.&P ALUMBI ,S.R.(2003).Recent

speciationintheIndoWestPacific:rapidevolutionofgameterecognitionand

spermmorphologyincrypticspeciesofseaurchin.—ProceedingsoftheRoyal

SocietyofLondonSeriesBBiologicalSciences270,18391847.

LAUER ,M.J.,S IH ,A.&K RUPA ,J.J.(1996).Maledensity,femaledensityandinter

sexualconflictinastreamdwelling.—AnimalBehaviour52,929939.

LONSDALE ,D.J.,F REY ,M.A.&S NELL ,T.W.(1998).Theroleofchemicalsignalsis

copepodreproduction.—JournalofMarineSystems15,112.

181

MANNING ,J.T.(1975).Malediscriminationandinvestmentin Asellusaquaticus (L.)and

A.meridianus Racovitza(Crustacea:Isopoda).—Behaviour55,114.

MANNING ,J.T.(1980).Sexratioandoptimalmaletimeinvestmentstrategiesin Asellus

aquaticus (L.)and A.meridianus Racovitza.—Behaviour74,265273.

MARTIN ,J.W.&D AVIS ,G.E.(2001).AnUpdatedClassificationoftheRecent

Crustacea.—ScienceSeries39,NaturalHistoryMuseumofLosAngeles

County,LosAngelesCounty,CA,124pp.

MARTIN ,O.Y.&H OSKEN ,D.J.(2003).Theevolutionofreproductiveisolationthrough

sexualconflict.—Nature423,979982.

MATHEWS ,L.M.(2003).Testsofthemateguardinghypothesisforsocialmonogamy:

malesnappingshrimpprefertoassociatewithhighvaluefemales.—Behavioral

Ecology14,6367.

MATSUBARA ,M.(2003).Costsofmateguardingandopportunisticmatingamongwild

maleJapanesemacaques.—InternationalJournalofPrimatology24,10571075.

MAYNARD SMITH ,J.(1982).Evolutionandthetheoryofgames.—Cambridge

UniversityPress,Cambridge,226pp.

MCNAMARA ,J.M.,G REEN ,R.F.&O LSSON ,O.(2006).Bayes'theoremandits

applicationsinanimalbehaviour.—Oikos112,243251.

MEDLAND ,V.L.,Z UCKER ,N.&W EEKS ,S.C.(2000).Implicationsforthemaintenance

ofandrodioecyinthefreshwatershrimp, Eulimnadiatexana Packard:Encounters

betweenmalesandhermaphroditesarenotrandom.—Ethology106,839848.

182

MICHIELS ,N.K.(1998).Matingconflictsandspermcompetitioninsimultaneous

hermaphrodites.—In:Spermcompetitionandsexualselection(T.R.Birkhead&

A.P.M øller,eds).AcademicPress,London,pp.219255.

O'DONALD ,P.(1980).Geneticmodelsofsexualselection.—CambridgeUniversity

Press,Cambridge,250pp.

OLSSON ,M.(1993).Contestsuccessandmateguardinginmalesandlizards, Lacerta

agilis .—AnimalBehaviour46,408409.

ORTIGOSA ,A.&R OWE ,L.(2003).Theroleofmatinghistoryandmalesizein

determiningmatingbehavioursandsexualconflictinawaterstrider.—Animal

Behaviour65,851858.

PANNELL ,J.R.(2002).Theevolutionandmaintenanceofandrodioecy.—Annual

ReviewofEcologyandSystematics33,397425.

PARKER ,G.A.(1974).Courtshippersistenceandfemaleguardingasmaletime

investmentstrategies.—Behaviour48,157184.

PARKER ,G.A.(1979).Sexualselectionandsexualconflict.—In:Sexualselectionand

reproductivecompetitionininsects(M.S.Blum&N.A.Blum,eds).Academic

Press,NewYork,pp.123166.

PARKER ,G.A.(2006).Sexualconflictovermatingandfertilization:anoverview.—

PhilosophicalTransactionsoftheRoyalSocietyBBiologicalSciences361,235

259.

183

PARKER ,G.A.&P ARTRIDGE ,L.(1998).Sexualconflictandspeciation.—Philosophical

TransactionsoftheRoyalSocietyofLondonSeriesBBiologicalSciences353,

261274.

PARKER ,G.A.&S IMMONS ,L.W.(1994).Evolutionofphenotypicoptimaandcopula

durationindungflies.—Nature370,5356.

PARTRIDGE ,L.&H URST ,L.D.(1998).Sexandconflict.—Science281,20032008.

PASCOE ,D.,C ARROLL ,K.&B OWKER ,D.W.(2004).Doessocialisolationduringearly

developmentaffectthereproductivebehaviouroftheamphipodHyalellaazteca

(SAUSSURE,1858)?—ArchivFürHydrobiologie159,137144.

PIZZARI ,T.&S NOOK ,R.R.(2003).Perspective:Sexualconflictandsexualselection:

Chasingawayparadigmshifts.—Evolution57,12231236.

PIZZARI ,T.&S NOOK ,R.R.(2004).Sexualconflictandsexualselection:Measuring

antagonisticcoevolution.—Evolution58,13891393.

PLAISTOW ,S.J.,B OLLACHE ,L.&C EZILLY ,F.(2003).Energeticallycostlyprecopulatory

mateguardingintheamphipod Gammaruspulex :causesandconsequences.—

AnimalBehaviour65,683691.

PRENTER ,J.,E LWOOD ,R.W.&M ONTGOMERY ,W.I.(2003).Mateguarding,competition

andvariationinsizeinmaleorbwebspiders, Metellinasegmentata :afield

experiment.—AnimalBehaviour66,10531058.

PRICE ,G.R.(1970).Selectionandcovariance.—Nature227,520521.

PRICE ,T.,S CHLUTER ,D.&H ECKMAN ,N.E.(1993).Sexualselectionwhenthefemale

directlybenefits.—BiologicalJournaloftheLinneanSociety48,187211.

184

RICE ,W.R.(1992).SexuallyAntagonisticGenesExperimentalEvidence.—Science

256,14361439.

RICE ,W.R.(1996).Sexuallyantagonisticmaleadaptationtriggeredbyexperimental

arrestoffemaleevolution.—Nature381,232234.

RICE ,W.R.(1998).Intergenomicconflict,interlocusantagonisticcoevolution,andthe

evolutionofreproductiveisolation.—In:EndlessForms:SpeciesandSpeciation.

(D.J.Howard&S.H.Berlocher,eds).OxfordUniversityPress,p.261270.

RICE ,W.R.(2000).Dangerousliaisons.—ProceedingsoftheNationalAcademyof

SciencesoftheUnitedStatesofAmerica97,1295312955.

RICE ,W.R.&H OLLAND ,B.(1997).Theenemieswithin:intergenomicconflict,

interlocuscontestevolution(ICE),andtheintraspecificRedQueen.—

BehavioralEcologyandSociobiology41,110.

RICE ,W.R.&H OLLAND ,B.(2005).Experimentallyenforcedmonogamy:Inadvertent

selection,inbreeding,orevidenceforsexuallyantagonisticcoevolution?—

Evolution59,682685.

RICHTER ,S.&T IMMS ,B.V.(2005).Alistoftherecentclam(Crustacea:

Laevicaudata,Spinicaudata,Cyclestherida)ofAustralia,includingadescription

ofanewspeciesof Eocyzicus .—RecordsoftheAustralianMuseum57,341354.

RIDLEY ,M.(1983).TheexplanationoforganicdiversityThecomparativemethodand

adaptationsformating.—ClarendonPress,Oxford,272pp.

RIDLEY ,M.&T HOMPSON ,D.J.(1979).Sizeandmatingin Asellusaquaticus (Crustacea:

Isopoda).—ZeitschriftfurTierpsychologie51,380397.

185

ROBINSON ,B.W.&D OYLE ,R.W.(1985).Tradeoffbetweenmalereproduction

(amplexus)andgrowthintheamphipod Gammaruslawrencianus .—Biological

Bulletin168,482488.

ROGERS ,D.C.(2002).TheamplexialmorphologyofselectedAnostraca.—

Hydrobiologia486,118.

ROWE ,L.(1994).Thecostsofmatingandmatechoiceinwaterstriders.—Animal

Behaviour48,10491056.

ROWE ,L.&A RNQVIST ,G.(1996).Analysisofthecausalcomponentsofassortative

matinginwaterstriders.—BehavioralEcologyandSociobiology38,279286.

ROWE ,L.&A RNQVIST ,G.(2002).Sexuallyantagonisticcoevolutioninamatingsystem:

Combiningexperimentalandcomparativeapproachestoaddressevolutionary

processes.—Evolution56,754767.

ROWE ,L.,A RNQVIST ,G.,S IH ,A.&K RUPA ,J.(1994).Sexualconflictandthe

evolutionaryecologyofmatingpatternswaterstridersasamodelsystem.—

TrendsinEcology&Evolution9,289293.

ROWE ,L.,C AMERON ,E.&D AY ,T.(2005).Escalation,retreat,andfemaleindifferenceas

alternativeoutcomesofsexuallyantagonisticcoevolution.—AmericanNaturalist

165,S5S18.

RYAN ,M.J.(1990).Sexualselection,sensorysystemsandsensoryexploitation.—

OxfordSurveysinEvolutionaryBiology7,157195.

SAEKI ,Y.,K RUSE ,K.C.&S WITZER ,P.V.(2005).Physiologicalcostsofmateguarding

intheJapanese( Popilliajaponica Newman).—Ethology111,863877.

186

SASSAMAN ,C.(1989).Inbreedingandsexratiovariationinfemalebiasedpopulationsof

aclamshrimp, Eulimnadiatexana .—BulletinofMarineScience45,425432.

SASSAMAN ,C.(1995).Sexdeterminationandevolutionofunisexualityinthe

Conchostraca.—Hydrobiologia298,4565.

SASSAMAN ,C.&W EEKS ,S.C.(1993).Thegeneticmechanismofsexdeterminationin

theconchostracanshrimp Eulimnadiatexana .—AmericanNaturalist141,314

328.

SCHENK ,K.,S UHLING ,F.&M ARTENS ,A.(2004).Eggdistribution,mateguarding

intensityandoffspringcharacteristicsindragonflies(Odonata).—Animal

Behaviour68,599606.

SCHNEIDER ,J.M.(1997).Timingofmaturationandthematingsystemofthespider,

Stegodyphuslineatus (Eresidae):Howimportantisbodysize?—Biological

JournaloftheLinneanSociety60,517525.

SCHRÖDER ,T.(2003).Precopulatorymateguardingandmatingbehaviourintherotifer

Epiphanessenta (Monogononta:Rotifera).—ProceedingsoftheRoyalSociety

ofLondonSeriesBBiologicalSciences270,19651970.

SEIBT ,U.&W ICKLER ,W.(1979).Thebiologicalsignificanceofthepairbondinthe

shrimp Hymenocerapicta .—ZeitschriftfürTierpsychologie50,166179.

SHUSTER ,S.M.(2007).TheEvolutionofCrustaceanMatingSystems.—In:

EvolutionaryEcologyOfSocialandSexualSystemsCrustaceansasModel

Organisms(J.E.Duffy&M.Thiel,eds).OxfordUniversityPress,NewYork,p.

2947.

187

SHUSTER ,S.M.&W ADE ,M.J.(2003).Matingsystemsandstrategies.—Princeton

UniversityPress,Princeton,NJ,533pp.

SIH ,A.,L AUER ,M.&K RUPA ,J.J.(2002).Pathanalysisandtherelativeimportanceof

malefemaleconflict,femalechoiceandmalemalecompetitioninwaterstriders.

—AnimalBehaviour63,10791089.

SIMON ,J.M.&S TERNBERG ,P.W.(2002).Evidenceofamatefindingcueinthe

hermaphroditenematode Caenorhabditiselegans .—ProceedingsoftheNational

AcademyofSciencesoftheUnitedStatesofAmerica99,15981603.

SPARKES ,T.C.,K EOGH ,D.P.&H ASKINS ,K.E.(2000).Femaleresistanceandmale

preferenceinastreamdwellingisopod:effectsoffemalemoltcharacteristics.—

BehavioralEcologyandSociobiology47,145155.

SPARKES ,T.C.,K EOGH ,D.P.&O RSBURN ,T.H.(2002).Femaleresistanceandmating

outcomesinastreamdwellingisopod:effectsofmaleenergyreservesandmating

history.—Behaviour139,875895.

SPARKES ,T.C.,K EOGH ,D.P.&P ARY ,R.A.(1996).Energeticcostsofmateguarding

behaviorinmalestreamdwellingisopods.—Oecologia106,166171.

STRONG ,D.R.(1973).Amphipodamplexus,thesignificanceofecotypicvariation.—

Ecology54,13831388.

SUTHERLAND ,D.L.,H OGG ,I.D.&W AAS ,J.R.(2007).Issizeassortativematingin

Paracalliopefluviatilis (Crustacea:Amphipoda)explainedbymalemale

competitionorfemalechoice?—BiologicalJournaloftheLinneanSociety92,

173181.

188

THOMPSON ,D.J.&M ANNING ,J.T.(1981).Mateselectionby Asellus (Crustacea,

Isopoda).—Behaviour78,178187.

THORNHILL ,R.(1976).Sexualselectionandpaternalinvestmentininsects.—American

Naturalist110,153163.

TRIVERS ,R.L.(1972).Parentalinvestmentandsexualselection.—In:Sexualselection

andthedescentofman(B.Campbell,ed).Aladine,Chicago,p.136179.

TRIVERS ,R.L.(1974).Parentoffspringconflict.—AmericanZoologist14,249264.

VAN SON ,T.C.&T HIEL ,M.(2006).Matingbehaviourofmalerockshrimp,

Rhynchocinetestypus (Decapoda:Caridea):effectofrecentmatinghistoryand

predationrisk.—AnimalBehaviour71,6170.

VEPSÄLÄINEN ,K.&S AVOLAINEN ,R.(1995).Operationalsexratiosandmatingconflict

betweenthesexesinthewaterstrider Gerrislacustris .—AmericanNaturalist

146,869880.

VEUILLE ,M.(1980).Sexualbehaviourandevolutionofsexualdimorphisminbodysize

in Jaera (IsopodaAsellota).—BiologicalJournaloftheLinneanSociety13,89

100.

WADA ,S.,T ANAKA ,K.&G OSHIMA ,S.(1999).Precopulatorymateguardinginthe

hermitcrab Pagurusmiddendorfii (Brandt)(Decapoda:Paguridae):effectsof

populationparametersonmaleguardingduration.—JournalofExperimental

MarineBiologyandEcology239,289298.

WADE ,M.J.(1979).Sexualselectionandvarianceinreproductivesuccess.—American

Naturalist114,742747.

189

WADE ,M.J.&S HUSTER ,S.M.(2002).Theevolutionofparentalcareinthecontextof

sexualselection:Acriticalreassessmentofparentalinvestmenttheory.—

AmericanNaturalist160,285292.

WALLACE ,A.R.(1889).Darwinism:AnExpositionoftheTheoryofNaturalSelection

withSomeofItsApplications.—Macmillan&Co.,London,494pp.

WARD ,P.I.(1983).Advantagesandadisadvantageoflargesizeformale Gammarus

pulex (Crustacea,Amphipoda).—BehavioralEcologyandSociobiology14,69

76.

WARD ,P.I.(1984a).Theeffectsofsizeonthematingdecisionsof Gammaruspulex

(Crustacea,Amphipoda).—ZeitschriftFürTierpsychologieJournalof

ComparativeEthology64,174184.

WARD ,P.I.(1984b). Gammaruspulex controltheirmoulttimingtosecuremates.—

AnimalBehaviour32,927.

WARD ,P.I.(1986).Acomparativefieldstudyofthebreedingbehaviorofastreamanda

pondpopulationof Gammaruspulex (Amphipoda).—Oikos46,2936.

WATSON ,P.J.,A RNQVIST ,G.&S TALLMANN ,R.R.(1998).Sexualconflictandthe

energeticcostsofmatingandmatechoiceinwaterstriders.—American

Naturalist151,4658.

WATSON ,P.J.&L IGHTON ,J.R.B.(1994).Sexualselectionandtheenergeticsof

copulatorycourtshipintheSierradomespider, Linyphialitigiosa .—Animal

Behaviour48,615626.

190

WEATHERHEAD ,P.J.&R OBERTSON ,R.J.(1979).Offspringqualityandthepolygyny

threshold:'thesexysonhypothesis'.—AmericanNaturalist113,201208.

WEEKS ,S.C.&B ENVENUTO ,C.(2008).Mateguardingintheandrodioeciousclam

shrimp Eulimnadiatexana :maleassessmentofhermaphroditereceptivity.—

Ethology114,6474.

WEEKS ,S.C.,B ENVENUTO ,C.&R EED ,S.K.(2006a).Whenmalesandhermaphrodites

coexist:areviewofandrodioecyinanimals.—IntegrativeandComparative

Biology46,449464.

WEEKS ,S.C.&B ERNHARDT ,R.L.(2004).Maintenanceofandrodioecyinthefreshwater

shrimp, Eulimnadiatexana :fieldestimatesofinbreedingdepressionandrelative

malesurvival.—EvolutionaryEcologyResearch6,227242.

WEEKS ,S.C.,C ROSSER ,B.R.,B ENNETT ,R.,G RAY ,M.&Z UCKER ,N.(2000a).

Maintenanceofandrodioecyinthefreshwatershrimp, Eulimnadiatexana :

Estimatesofinbreedingdepressionintwopopulations.—Evolution54,878887.

WEEKS ,S.C.,C ROSSER ,B.R.,G RAY ,M.M.,M ATWEYOU ,J.A.&Z UCKER ,N.(2000b).

Istherespermstorageintheclamshrimp Eulimnadiatexana ?—

Biology119,215221.

WEEKS ,S.C.,H UTCHISON ,J.A.&Z UCKER ,N.(2001).Maintenanceofandrodioecyin

thefreshwatershrimp, Eulimnadiatexana :dohermaphroditesneedmalesfor

completefertilization?—EvolutionaryEcology15,205221.

191

WEEKS ,S.C.,M ARCUS ,V.&C ROSSER ,B.R.(1999).Inbreedingdepressioninaself

compatible,androdioeciouscrustacean, Eulimnadiatexana .—Evolution53,472

483.

WEEKS ,S.C.,M ARQUETTE ,C.L.&L ATSCH ,E.(2004).Barrierstooutcrossingsuccessin

theprimarilyselffertilizingclamshrimp, Eulimnadiatexana (Crustacea,

Branchiopoda).—InvertebrateBiology123,146155.

WEEKS ,S.C.,S ANDERSON ,T.F.,Z OFKOVA ,M.&K NOTT ,B.(2008).Breedingsystemsin

theclamshrimpfamilyLimnadiidae(Branchiopoda,Spinicaudata).—

InvertebrateBiology127,336349.

WEEKS ,S.C.,Z OFKOVA ,M.&K NOTT ,B.(2006b).Limnadiidclamshrimpbiogeography

inAustralia(Crustacea:Branchiopoda:Spinicaudata).—JournaloftheRoyal

SocietyofWesternAustralia89,155161.

WEEKS ,S.C.&Z UCKER ,N.(1999).Ratesofinbreedingintheandrodioeciousclam

shrimp Eulimnadiatexana .—CanadianJournalofZoologyRevueCanadienne

DeZoologie77,14021408.

WELLBORN ,G.A.&C OTHRAN ,R.D.(2007).EcologyandEvolutionofMatingBehavior

inFreshwaterAmphipods.—In:EvolutionaryEcologyOfSocialandSexual

SystemsCrustaceansasModelOrganisms(J.E.Duffy&M.Thiel,eds).Oxford

UniversityPress,NewYork,p.147166.

WICKLER ,W.&S EIBT ,U.(1981).Monogamyincrustaceaandman.—ZeitschriftFür

TierpsychologieJournalofComparativeEthology57,215234.

192

WIGBY ,S.&C HAPMAN ,T.(2004).Femaleresistancetomaleharmevolvesinresponse

tomanipulationofsexualconflict.—Evolution58,10281037.

WILCOX ,R.S.(1984).Malecopulatoryguardingenhancesfemaleforaginginawater

strider.—BehavioralEcologyandSociobiology15,171174.

WILLIAMS ,G.C.(1966).Adaptationandnaturalselection;acritiqueofsomecurrent

evolutionarythought.—PrincetonUniversityPress,Princeton,NJ,307pp.

WOLF ,E.(1911).Phyllopoda.—In:DieFaunaSüdwestAustraliens.Ergebnisseder

HamburgersüdwestaustralischenForschungsreise1905(W.Michaelsen&R.

Hartmeyer,eds),VerlagvonGustavFisher,Jena,pp.270275.

YAMAMURA ,N.(1987).Amodeloncorrelationbetweenprecopulatoryguardingand

shortreceptivitytocopulation.—JournalofTheoreticalBiology127,171180.

YAMAMURA ,N.&J ORMALAINEN ,V.(1996).Compromisedstrategyresolvesintersexual

conflictoverprecopulatoryguardingduration.—EvolutionaryEcology10,661

680.

ZAHAVI ,A.(1975).Mateselection:aselectionforahandicap.—JournalofTheoretical

Biology53,205214.

ZAHAVI ,A.(1977).Thecostofhonesty(furtherremarksonhandicapprinciple).—

JournalofTheoreticalBiology67,603605.

ZEISS,C.,M ARTENS ,A.&R OLFF ,J.(1999).Malemateguardingincreasesfemales'

predationrisk?Acasestudyontandemovipositioninthedamselfly Coenagrion

puella (Insecta:Odonata).—CanadianJournalofZoologyRevueCanadienne

DeZoologie77,10131016.

193

ZHANG ,D.&L IN ,J.D.(2006).Materecognitioninasimultaneoushermaphroditic

shrimp, Lysmatawurdemanni (Caridea:Hippolytidae).—AnimalBehaviour71,

11911196.

ZIMMER ,R.K.&B UTMAN ,C.A.(2000).Chemicalsignalingprocessesinthemarine

environment.—BiologicalBulletin198,168187.

ZUCKER ,N.,A GUILAR ,G.A.,W EEKS ,S.C.&M CCANDLESS ,L.G.(2002).Impactof

malesonvariationinthereproductivecycleinanandrodioeciousdesertshrimp.

—InvertebrateBiology121,6672.

ZUCKER ,N.,C UNNINGHAM ,M.&A DAMS ,H.P.(1997).Anatomicalevidencefor

androdioecyintheclamshrimp Eulimnadiatexana .—Hydrobiologia359,171

175.