Exotic Particles in Topological Insulators

Total Page:16

File Type:pdf, Size:1020Kb

Exotic Particles in Topological Insulators EXOTIC PARTICLES IN TOPOLOGICAL INSULATORS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Rundong Li July 2010 © 2010 by Rundong Li. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/yx514yb1109 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Shoucheng Zhang, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Ian Fisher I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Steven Kivelson Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Recently a new class of quantum state of matter, the time-reversal invariant topo- logical insulators, have been theoretically proposed and experimentally discovered. These topological quantum states of matter are insulating in the bulk, but have gap- less edge or surface states protected by the time-reversal symmetry. In particular, topological insulators in three dimensions are characterized by topological field theory which gives rise to the topological magnetoelectric effect, and is analogous to that describing the electromagnetism of the hypothetical particle called axion. In this thesis we will show that in these topologically nontrivial insulators, mag- netic monopoles and axions, which are originally postulated in elementary particle physics, may emerge. Firstly we will show that when time-reversal symmetry is bro- ken on the surface of a topological insulator, an electric charge near the surface will induce an image magnetic monopole. The composite particle consisting of an elec- tron and its image monopole forms a dyon and obeys fractional statistics. Secondly, when there is an antiferromagnetic order in the bulk of a topological insulator, the magnetic fluctuations couple to the electromagnetic fields exactly like axions. The physical effect of the dynamical axion and its detection will also be discussed. Then finally we propose transition metal oxide of corundum structure as a candidate for topological magnetic insulators which can give rise to the dynamical axion. iv Acknowledgments It is my great pleasure to express my gratitude to my advisor Shou-Cheng Zhang for his education and guidance through my PhD years. He is one of the physicists who opened up the field of topological insulator. In participating the development of this field, what I have learned from his breadth and depth of knowledge and his inexhaustible creativity is invaluable. Most of all he taught me how to identify beautiful and profound physics out of a complicated problem. I greatly appreciate Steve Kivelson for his stimulating discussions and inspiring lectures. I greatly appreciate Ian Fisher for his discussions and help in searching for materials for topological magnetic insulators, as well as for being the Chair of my oral examination. I wish to thank David Goldhaber-Gordon, Aharon Kapitulnik and Zhi-Xun Shen for being my thesis committee members and for their support. I would like to thank Xiao-Liang Qi and Taylor Hughes, they are always ready to teach me and share their knowledge, and in particular have helped me a lot to start on the topological insulator. I would like to thank my officemate Joseph Maciejko, for numerous intriguing discussions. I also wish to sincerely thank my academic colleagues, collaborators and friends: Ophir Auslaender, Suk-Bum Chung, Chao-Xing Liu, Qin Liu, Lan Luan, Srinavas Raghu, Jing Wang, Zhong Wang, Binghai Yan, Hong Yao, Jiadong Zang, Hai-Jun Zhang, Xiao Zhang. Last but not least, I wish to sincerely thank my parents, whose love supports me throughout my life. v Dedicated to my parents vi Contents Abstract iv Acknowledgments v 1 Introduction 1 1.1 Background . .1 1.2 Thesis overview . .2 1.3 Contributions . .3 2 The image magnetic monopole 4 2.1 Introduction . .4 2.2 The topological magnetoelectric effect . .5 2.3 The image magnetic monopole and its detection . .9 2.3.1 The image magnetic monopole . .9 2.3.2 The experimental detection of image monopoles . 12 2.3.3 The dyon gas with fractional statistics . 14 3 The dynamical axion in topological magnetic insulators 17 3.1 Introduction . 17 3.2 Effective model for 3D topological insulators . 19 3.3 P; T breaking terms . 21 3.3.1 Time-reversal breaking masses . 21 3.3.2 Surface states with time reversal breaking masses . 23 3.3.3 Chiral edge states and quantum anomalous Hall effect . 28 vii 3.4 The topological magnetic insulator . 30 3.4.1 The mean field Hamiltonian . 30 3.4.2 The minimization of free energy . 32 3.5 The dynamical axion field . 34 3.6 The axionic polariton . 36 3.6.1 The frequency dependence of reflectivity . 41 3.6.2 A physical interpretation and analogy to phonon . 44 3.7 Measuring the axion by microcantilever. 46 4 Topological magnetic insulators with corundum structure 48 4.1 Introduction . 48 4.2 The tight binding Hamiltonian . 49 4.3 The effect of electron correlation . 62 5 Conclusions and outlook 67 A Appendix 69 A.1 The image monopole for a point charge outside a sphere . 69 A.2 Detection of image monopoles by MFM . 76 A.3 Derivation of the expression for θ .................... 80 A.4 RPA calculation of the axion dynamics . 84 Bibliography 91 viii List of Tables ix List of Figures 2.1 Illustration of the image charge and monopole of an electric charge . 11 2.2 Experimental setting to measure the image monopole . 13 2.3 The fractional statistics induced by image monopole effect . 14 2.4 Measuring the fractional statistics of the dyons . 15 3.1 Crystal Structure of Bi(Fe)2Se3 ..................... 19 3.2 The chiral edge states of a ferromagnetic topological insulator . 29 3.3 Axionic polariton and ATR experiment . 37 3.4 The spectrum of the magnetic polariton . 41 4.1 The corundum structure . 50 4.2 One honeycomb layer of the corundum structure . 51 4.3 The Brillouin zone of the corundum structure . 52 4.4 Band structure for the corundum structure . 62 4.5 Magnetic orders of the corundum structure . 63 4.6 The phase diagram of the corundum structure . 66 A.1 The image charge and monopole of an applied electric charge . 70 A.2 The image charge densities seen from outside the sphere . 73 A.3 The image charge densities seen from inside the sphere . 74 A.4 The ratio of fields induced by line and point charge . 75 A.5 Experimental setup for testing the image monopole . 80 x Chapter 1 Introduction 1.1 Background One of the most important goals in condensed matter physics is to discover and clas- sify different states of matter. Most states of matter are classified by the symmetries they break. Since the discovery of the quantum Hall effect, new types of order called topological orders, which cannot be described by local order parameters, come into sight in condensed matter physics. These topological states of matter can not be adi- abatically connected to topologically trivial states and are robust under disorder and interaction. Recently a new class of topological states called topological insulators has been theoretically predicted and experimentally discovered [1, 2, 3, 4, 5, 6, 7, 8, 9]. These topological quantum states of matter are insulating in the bulk, but have gap- less edge or surface states protected by the time-reversal symmetry. The first example of these states is the quantum spin Hall (QSH) system predicted and realized in HgTe quantum wells. They have counter-propagating edge modes with opposite spins, ro- bust under non-magnetic impurities and interactions. Then topological insulators in three dimensions are soon discovered in Bi1−xSbx alloy, Bi2Te3 and Bi2Se3. They have topologically protected surface states described by the relativistic Dirac equation for massless fermions. One of the most striking discoveries of 3D topological insulators is that they are 1 CHAPTER 1. INTRODUCTION 2 characterized by topological field theory, which gives rise to the topological mag- netoelectric effect, where an electric field induces a magnetic field along the same direction inside a topological insulator, with a constant of proportionality given by odd multiples of the fine structure constant. Moreover, the topological field theory that describe 3D topological insulators is analogous to that describing the electro- magnetism of a hypothetical particle called axion. Axions are weakly interacting particles of low mass, and were postulated more than 30 years ago in the framework of the Standard Model of particle physics. Their existence could explain the missing dark matter of the Universe. However, despite intensive searches, axions have yet to be observed. Now it is predicted that in condensed matter system like topological insulators, an static axion field taking the value of π may emerge. 1.2 Thesis overview In this thesis we will explore the novel physical effect that take place in 3D topological insulators. Very interestingly, many particles that were originally postulated in the context of elementary particle physics, but yet to be experimentally detected, are now predicted to emerge in 3D topological insulators.
Recommended publications
  • Electromagnetic Duality, Quaternion and Supersymmetric Gauge
    Electromagnetic Duality, Quaternion and Supersymmetric Gauge Theories of Dyons H. Dehnen and O. P. S. Negi∗ 2nd July 2021 Universitt Konstanz Fachbereich Physik Postfach M 677 D-78457 Konstanz,Germany Email:[email protected] ops [email protected] Abstract Starting with the generalized potentials, currents, field tensors and elec- tromagnetic vector fields of dyons as the complex complex quantities with real and imaginary counter parts as electric and magnetic constituents, we have established the electromagnetic duality for various fields and equations of motion associated with dyons in consistent way. It has been shown that the manifestly covariant forms of generalized field equations and equation of motion of dyons are invariant under duality transformations. Quaternionic formulation for generalized fields of dyons are developed and corresponding field equations are derived in compact and simpler manner. Supersymmetric gauge theories are accordingly reviewed to discuss the behaviour of duali- ties associated with BPS mass formula of dyons in terms of supersymmetric charges. Consequently, the higher dimensional supersymmetric gauge the- ories for N=2 and N=4 supersymmetries are analysed over the fields of arXiv:hep-th/0608164v1 23 Aug 2006 complex and quaternions respectively. 1 Introduction The asymmetry between electricity and magnetism became very clear at the end of 19th century with the formulation of Maxwell’s equations. Magnetic monopoles were advocated [1] to symmetrize these equations in a manifest way that the mere existence of an isolated magnetic charge implies the quantization of electric charge and accordingly the considerable literature [2, 3, 4, 5, 6, 7] has come in force.
    [Show full text]
  • Magnetic Monopoles and Dyons Revisited
    European Journal of Physics PAPER Related content - Magnetic monopoles Magnetic monopoles and dyons revisited: a useful Kimball A Milton - On the classical motion of a charge in the contribution to the study of classical mechanics field of a magnetic monopole Jean Sivardière To cite this article: Renato P dos Santos 2015 Eur. J. Phys. 36 035022 - Magnetic monopoles in gauge field theories P Goddard and D I Olive View the article online for updates and enhancements. Recent citations - A discussion of Bl conservation on a two dimensional magnetic field plane in watt balances Shisong Li et al This content was downloaded from IP address 131.169.5.251 on 15/11/2018 at 01:17 European Journal of Physics Eur. J. Phys. 36 (2015) 035022 (22pp) doi:10.1088/0143-0807/36/3/035022 Magnetic monopoles and dyons revisited: a useful contribution to the study of classical mechanics Renato P dos Santos PPGECIM, ULBRA—Lutheran University of Brazil, Av. Farroupilha, 8001—Pr. 14, S. 338—92425-900 Canoas, RS, Brazil E-mail: [email protected] Received 6 October 2014, revised 20 February 2015 Accepted for publication 23 February 2015 Published 27 March 2015 Abstract Graduate-level physics curricula in many countries around the world, as well as senior-level undergraduate ones in some major institutions, include classical mechanics courses, mostly based on Goldstein’s textbook masterpiece. During the discussion of central force motion, however, the Kepler problem is vir- tually the only serious application presented. In this paper, we present another problem that is also soluble, namely the interaction of Schwinger’s dual- charged (dyon) particles.
    [Show full text]
  • Axions and Other Similar Particles
    1 91. Axions and Other Similar Particles 91. Axions and Other Similar Particles Revised October 2019 by A. Ringwald (DESY, Hamburg), L.J. Rosenberg (U. Washington) and G. Rybka (U. Washington). 91.1 Introduction In this section, we list coupling-strength and mass limits for light neutral scalar or pseudoscalar bosons that couple weakly to normal matter and radiation. Such bosons may arise from the spon- taneous breaking of a global U(1) symmetry, resulting in a massless Nambu-Goldstone (NG) boson. If there is a small explicit symmetry breaking, either already in the Lagrangian or due to quantum effects such as anomalies, the boson acquires a mass and is called a pseudo-NG boson. Typical examples are axions (A0)[1–4] and majorons [5], associated, respectively, with a spontaneously broken Peccei-Quinn and lepton-number symmetry. A common feature of these light bosons φ is that their coupling to Standard-Model particles is suppressed by the energy scale that characterizes the symmetry breaking, i.e., the decay constant f. The interaction Lagrangian is −1 µ L = f J ∂µ φ , (91.1) where J µ is the Noether current of the spontaneously broken global symmetry. If f is very large, these new particles interact very weakly. Detecting them would provide a window to physics far beyond what can be probed at accelerators. Axions are of particular interest because the Peccei-Quinn (PQ) mechanism remains perhaps the most credible scheme to preserve CP-symmetry in QCD. Moreover, the cold dark matter (CDM) of the universe may well consist of axions and they are searched for in dedicated experiments with a realistic chance of discovery.
    [Show full text]
  • Gaugino Mass in Heavy Sfermion Scenario
    IPMU 15-0137 Gaugino mass in heavy sfermion scenario Keisuke Harigaya1, 2 1Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, 277-8583, Japan 2ICRR, University of Tokyo, Kashiwa, Chiba 277-8582, Japan (Dated: May 8, 2018) Abstract The heavy sfermion scenario is naturally realized when supersymmetry breaking fields are charged under some symmetry or are composite fields. There, scalar partners of standard model fermions and the gravitino are as heavy as O(10-1000) TeV while gauginos are as heavy as O(1) TeV. The scenario is not only consistent with the observed higgs mass, but also is free from cosmo- logical problems such as the Polonyi problem and the gravitino problem. In the scenario, gauginos are primary targets of experimental searches. In this thesis, we discuss gaugino masses in the heavy sfermion scenario. First, we derive the so-called anomaly mediated gaugino mass in the superspace formalism of supergravity with a Wilsonian effective action. Then we calculate gaugino masses generated through other possible one-loop corrections by extra light matter fields and the QCD axion. Finally, we consider the case where some gauginos are degenerated in their masses with each other, because the thermal relic abundance of the lightest supersymmetric particle as well as the the strategy to search gauginos drastically change in this case. After calculating the thermal relic abundance of the lightest supersymmetric particle for the degenerated case, we discuss the phenomenology of gauginos at the Large Hadron Collider and cosmic ray experiments. arXiv:1508.04811v1 [hep-ph] 19 Aug 2015 1 Contents I. Introduction 6 II.
    [Show full text]
  • Dyon-Axion Dynamics
    Volume 125B, number 2,3 PHYSICS LETTERS 26 May 1983 DYON-AXION DYNAMICS Willy FISCHLER 1 Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA and John PRESKILL 2 Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA Received 25 February 1983 We examine the coupling between magnetic monopoles and axions induced by the Witten effect, and discuss the cosmo- logical implications of monopole-axion interactions. The discovery by Witten [ 1] that a magnetic mono- oscillations of the axion field [5] to relax to a cosmo- pole of minimal magnetic charge acquires electric logically acceptable value. charge -e0/2~r in a 0-vacuum has led to deep insights To derive the connection between the Witten effect into the fermionic structure of monopoles [2]. In this and the monopole-axion coupling, we recall that the note, we point out another implication of the Witten lagrangian density of electrodynamics may contain the effect - this effect induces a coupling between mono- term poles and axions. We compute the energy of the axion •120 = (Oe2/47r2)E.B, (1) ground state in the field of a magnetic monopole and the cross section for axion-monopole scattering, in an where 0 is a free parameter. In the absence of magnet- idealized world in which there are no light electrically- ic charges, this term is a total divergence, and has no charged fermions. Unfortunately, axion-monopole physical consequences. But if a magnetic monopole is interactions become drastically modified if light present, this term has important effects. charged fermions exist, and our calculations do not In unified models in which the CP-nonconservation apply to this more realistic case.
    [Show full text]
  • QCD Axion Dark Matter with a Small Decay Constant
    UC Berkeley UC Berkeley Previously Published Works Title QCD Axion Dark Matter with a Small Decay Constant. Permalink https://escholarship.org/uc/item/61f6p95k Journal Physical review letters, 120(21) ISSN 0031-9007 Authors Co, Raymond T Hall, Lawrence J Harigaya, Keisuke Publication Date 2018-05-01 DOI 10.1103/physrevlett.120.211602 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PHYSICAL REVIEW LETTERS 120, 211602 (2018) Editors' Suggestion QCD Axion Dark Matter with a Small Decay Constant Raymond T. Co,1,2,3 Lawrence J. Hall,2,3 and Keisuke Harigaya2,3 1Leinweber Center for Theoretical Physics, University of Michigan, Ann Arbor, Michigan 48109, USA 2Department of Physics, University of California, Berkeley, California 94720, USA 3Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Received 20 December 2017; published 23 May 2018) The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from 11 misalignment or defect mechanisms, which generically require an axion decay constant fa ∼ Oð10 Þ GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from 8 11 oscillations of the Peccei-Quinn symmetry breaking field, that requires fa ∼ ð10 –10 Þ GeV. The axions may be warm enough to give deviations from cold dark matter in large scale structure. DOI: 10.1103/PhysRevLett.120.211602 Introduction.—The absence of CP violation from QCD is unstable and decays into axions [10], yielding a dark is a long-standing problem in particle physics [1] and is matter density [11,12] elegantly solved by the Peccei-Quinn (PQ) mechanism 1.19 [2,3] involving a spontaneously broken anomalous sym- 2 fa Ω h j − ≃ 0.04–0.3 : ð2Þ metry.
    [Show full text]
  • Unifying Inflation with the Axion, Dark Matter, Baryogenesis, and the Seesaw Mechanism
    Unifying Inflation with the Axion, Dark Matter, Baryogenesis, and the Seesaw Mechanism. Andreas Ringwald Astroteilchenseminar Max-Planck-Institut für Kernphysik Heidelberg, D 13 November 2017 [Guillermo Ballesteros, Javier Redondo, AR, Carlos Tamarit, 1608.05414; 1610.01639] Fundamental Problems > Standard Model (SM) describes interactions of all known particles with remarkable accuracy Andreas Ringwald | Unifying Inflation with Axion, Dark Matter, Baryogenesis, and Seesaw, Seminar, MPIK HD, D, 13 November 2017 | Page 2 Fundamental Problems > Standard Model (SM) describes interactions of all known particles with remarkable accuracy > Big fundamental problems in par- ticle physics and cosmology seem to require new physics § Dark matter § Neutrino masses and mixing § Baryon asymmetry § Inflation § Strong CP problem [PLANCK] Andreas Ringwald | Unifying Inflation with Axion, Dark Matter, Baryogenesis, and Seesaw, Seminar, MPIK HD, D, 13 November 2017 | Page 3 Fundamental Problems > Standard Model (SM) describes interactions of all known particles with remarkable accuracy > Big fundamental problems in par- ticle physics and cosmology seem to require new physics § Dark matter § Neutrino masses and mixing § Baryon asymmetry § Inflation § Strong CP problem > These problems may be intertwin- ed in a minimal way, with a solu- tion pointing to a new physics sca- le around [Ballesteros,Redondo,AR,Tamarit, 1608.05414; 1610.01639] Andreas Ringwald | Unifying Inflation with Axion, Dark Matter, Baryogenesis, and Seesaw, Seminar, MPIK HD, D, 13 November 2017 | Page 4 Strong CP Problem > Most general gauge invariant Lagrangian of QCD: § Parameters: strong coupling ↵s, quark masses and theta angle [Belavin et al. `75;´t Hooft 76;Callan et al. `76;Jackiw,Rebbi `76 ] Andreas Ringwald | Unifying Inflation with Axion, Dark Matter, Baryogenesis, and Seesaw, Seminar, MPIK HD, D, 13 November 2017 | Page 5 Strong CP Problem > Most general gauge invariant Lagrangian of QCD: § Parameters: strong coupling ↵s, quark masses and theta angle [Belavin et al.
    [Show full text]
  • L Gauge and Higgs Bosons at the DUNE Near Detector
    FERMILAB-PUB-21-200-T, MI-TH-218 Light, Long-Lived B L Gauge and Higgs Bosons at the DUNE − Near Detector P. S. Bhupal Dev,a Bhaskar Dutta,b Kevin J. Kelly,c Rabindra N. Mohapatra,d Yongchao Zhange;a aDepartment of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130, USA bMitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77845, USA cTheoretical Physics Department, Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA dMaryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742, USA eSchool of Physics, Southeast University, Nanjing 211189, China E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: The low-energy U(1)B−L gauge symmetry is well-motivated as part of beyond Standard Model physics related to neutrino mass generation. We show that a light B L gauge boson Z0 and the associated − U(1)B−L-breaking scalar ' can both be effectively searched for at high-intensity facilities such as the near detector complex of the Deep Underground Neutrino Experiment (DUNE). Without the scalar ', the Z0 −9 can be probed at DUNE up to mass of 1 GeV, with the corresponding gauge coupling gBL as low as 10 . In the presence of the scalar ' with gauge coupling to Z0, the DUNE capability of discovering the gauge 0 boson Z can be significantly improved, even by one order of magnitude in gBL, due to additional production from the decay ' Z0Z0.
    [Show full text]
  • Axions (A0) and Other Very Light Bosons, Searches for See the Related Review(S): Axions and Other Similar Particles
    Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) Axions (A0) and Other Very Light Bosons, Searches for See the related review(s): Axions and Other Similar Particles A0 (Axion) MASS LIMITS from Astrophysics and Cosmology These bounds depend on model-dependent assumptions (i.e. — on a combination of axion parameters). VALUE (MeV) DOCUMENT ID TECN COMMENT We do not use the following data for averages, fits, limits, etc. ••• ••• >0.2 BARROSO 82 ASTR Standard Axion >0.25 1 RAFFELT 82 ASTR Standard Axion >0.2 2 DICUS 78C ASTR Standard Axion MIKAELIAN 78 ASTR Stellar emission >0.3 2 SATO 78 ASTR Standard Axion >0.2 VYSOTSKII 78 ASTR Standard Axion 1 Lower bound from 5.5 MeV γ-ray line from the sun. 2 Lower bound from requiring the red giants’ stellar evolution not be disrupted by axion emission. A0 (Axion) and Other Light Boson (X 0) Searches in Hadron Decays Limits are for branching ratios. VALUE CL% DOCUMENT ID TECN COMMENT We do not use the following data for averages, fits, limits, etc. ••• ••• <2 10 10 95 1 AAIJ 17AQ LHCB B+ K+ X 0 (X 0 µ+ µ ) × − → → − <3.7 10 8 90 2 AHN 17 KOTO K0 π0 X 0, m = 135 MeV × − L → X 0 11 3 0 0 + <6 10− 90 BATLEY 17 NA48 K± π± X (X µ µ−) × 4 → 0 0 →+ WON 16 BELL η γ X (X π π−) 9 5 0→ 0 0 → 0 + <1 10− 95 AAIJ 15AZ LHCB B K∗ X (X µ µ−) × 6 6 0 → 0 0 →+ <1.5 10− 90 ADLARSON 13 WASA π γ X (X e e−), × m→ = 100 MeV→ X 0 <2 10 8 90 7 BABUSCI 13B KLOE φ η X0 (X 0 e+ e ) × − → → − 8 ARCHILLI 12 KLOE φ η X0, X 0 e+ e → → − <2 10 15 90 9 GNINENKO 12A BDMP π0 γ X 0 (X 0 e+ e ) × − → → −
    [Show full text]
  • On Large Lepton Number Asymmetries of the Universe
    FTUV-17-03-17 IFIC/17-19 On large lepton number asymmetries of the Universe Gabriela Barenboim1∗ and Wan-Il Park2y 1 Departament de F´ısica Te`orica and IFIC, Universitat de Val`encia-CSIC,E-46100, Burjassot, Spain and 2 Department of Science Education (Physics), Chonbuk National University, Jeonju 561-756, Korea (Dated: July 15, 2018) A large lepton number asymmetry of O(0:1 − 1) at present universe might not only be allowed but also necessary for consistency among cosmological data. We show that, if a sizeable lepton number asymmetry were produced before the electroweak phase transition, the requirement for not producing too much baryon number asymmetry through sphalerons processes, forces the high scale lepton number asymmetry to be larger than about 30. Therefore a mild entropy release causing O(10 − 100) suppression of pre-existing particle density should take place, when the background temperature of the universe is around T = O(10−2 − 102)GeV for a large but experimentally consistent asymmetry to be present today. We also show that such a mild entropy production can be obtained by the late-time decays of the saxion, constraining the parameters of the Peccei-Quinn sector such as the mass and the vacuum expectation value of the saxion field to be mφ & O(10)TeV 14 and φ0 & O(10 )GeV, respectively. INTRODUCTION baryon number asymmetry. However, breaking the elec- troweak symmetry requires jLj to be larger than about Extensive analysis of Big Bang Nucleosynthesis (BBN) 10 [10] which is already too large to be consistent with and cosmic microwave background (CMB) data showed CMB data [2].
    [Show full text]
  • Hadronic Axion Model in Gauge-Mediated Supersymmetry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server TU-558, RCNS-98-20 Hadronic Axion Model in Gauge-Mediated Supersymmetry Breaking and Cosmology of Saxion T. Asaka Institute for Cosmic Ray Research, University of Tokyo, Tanashi 188-8502, Japan Masahiro Yamaguchi Department of Physics, Tohoku University, Sendai 980-8579, Japan (November 1998) Abstract Recently we have proposed a simple hadronic axion model within gauge- mediated supersymmetry breaking. In this paper we discuss various cosmo- logical consequences of the model in great detail. A particular attention is paid to a saxion, a scalar partner of an axion, which is produced as a coherent oscillation in the early universe. We show that our model is cosmologically viable, if the reheating temperature of inflation is sufficiently low. We also discuss the late decay of the saxion which gives a preferable power spectrum of the density fluctuation in the standard cold dark matter model when com- pared with the observation. 1 I. INTRODUCTION The most attractive candidate for the solution of the strong CP problem is the Peccei- Quinn (PQ) mechanism [1]. In this mechanism, there exists an axion which is the Nambu- Goldstone (NG) boson associated with the global U(1)PQ PQ symmetry breaking. In the framework of gauge mediated supersymmetry (SUSY) breaking theories [2], we have proposed an interesting possibility [3] to dynamically generate the PQ symmetry break- ing scale in a so-called hadronic axion model [4]. A gauge singlet PQ multiplet X and colored PQ quark multiplets QP and QP are introduced with the superpotential W = λP XQPQP , (1) where λP is a coupling constant.
    [Show full text]
  • Electromagnetic Duality for Children
    Electromagnetic Duality for Children JM Figueroa-O'Farrill [email protected] Version of 8 October 1998 Contents I The Simplest Example: SO(3) 11 1 Classical Electromagnetic Duality 12 1.1 The Dirac Monopole ....................... 12 1.1.1 And in the beginning there was Maxwell... 12 1.1.2 The Dirac quantisation condition . 14 1.1.3 Dyons and the Zwanziger{Schwinger quantisation con- dition ........................... 16 1.2 The 't Hooft{Polyakov Monopole . 18 1.2.1 The bosonic part of the Georgi{Glashow model . 18 1.2.2 Finite-energy solutions: the 't Hooft{Polyakov Ansatz . 20 1.2.3 The topological origin of the magnetic charge . 24 1.3 BPS-monopoles .......................... 26 1.3.1 Estimating the mass of a monopole: the Bogomol'nyi bound ........................... 27 1.3.2 Saturating the bound: the BPS-monopole . 28 1.4 Duality conjectures ........................ 30 1.4.1 The Montonen{Olive conjecture . 30 1.4.2 The Witten e®ect ..................... 31 1.4.3 SL(2; Z) duality ...................... 33 2 Supersymmetry 39 2.1 The super-Poincar¶ealgebra in four dimensions . 40 2.1.1 Some notational remarks about spinors . 40 2.1.2 The Coleman{Mandula and Haag{ÃLopusza¶nski{Sohnius theorems .......................... 42 2.2 Unitary representations of the supersymmetry algebra . 44 2.2.1 Wigner's method and the little group . 44 2.2.2 Massless representations . 45 2.2.3 Massive representations . 47 No central charges .................... 48 Adding central charges . 49 1 [email protected] draft version of 8/10/1998 2.3 N=2 Supersymmetric Yang-Mills .
    [Show full text]