HURRICANE JIMENA (EP132015) 26 August – 9 September 2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NOAA Technical Memorandum NWSTM PR-51 2003 Central North Pacific Tropical Cyclones Andy Nash Tim Craig Robert Farrell Hans Rosen
NOAA Technical Memorandum NWSTM PR-51 2003 Central North Pacific Tropical Cyclones Andy Nash Tim Craig Robert Farrell Hans Rosendal Central Pacific Hurricane Center Honolulu, Hawaii February 2004 TABLE OF CONTENTS Acknowledgements Overview Remnants of Tropical Storm Guillermo Tropical Depression 01-C Hurricane Jimena Acronyms ACKNOWLEDGMENTS Appreciation is extended to Sam Houston for assisting with developing the best track data and to Treena Loos, who created the best track figures. Finally, it must be acknowledged that the writeup of Hurricane Jimena owes much to the work by Richard Pasch of the TPC. Overview of the 2003 Central North Pacific Tropical Cyclone Season Total tropical activity for the season was below normal, with two named systems occurring within the area of responsibility of the Central Pacific Hurricane Center (CPHC). One tropical cyclone (01-C) developed within the central Pacific, with one system (Jimena) moving into the area from the eastern Pacific. A third tropical system, Guillermo, weakened to a remnant low just to the east of CPHC's area of responsibility, and although CPHC issued one advisory on the system it will not be considered in the final count of tropical activity for the central Pacific for the season. The season was generally quiet, but Hurricane Jimena still managed to take the spotlight. Jimena, at one point a category two hurricane, was the first direct threat to Hawaii in several years. Although it ended up passing about 100 nm south of the Big Island as a rapidly weakening tropical storm, it had the potential of coming closer as a hurricane. As a final note, this was the first year that CPHC tropical cyclone track and intensity forecasts went out 5 days, or 120 hours. -
Eastern North Pacific Hurricane Season of 1997
2440 MONTHLY WEATHER REVIEW VOLUME 127 Eastern North Paci®c Hurricane Season of 1997 MILES B. LAWRENCE Tropical Prediction Center, National Weather Service, National Oceanic and Atmospheric Administration, Miami, Florida (Manuscript received 15 June 1998, in ®nal form 20 October 1998) ABSTRACT The hurricane season of the eastern North Paci®c basin is summarized and individual tropical cyclones are described. The number of tropical cyclones was near normal. Hurricane Pauline's rainfall ¯ooding killed more than 200 people in the Acapulco, Mexico, area. Linda became the strongest hurricane on record in this basin with 160-kt 1-min winds. 1. Introduction anomaly. Whitney and Hobgood (1997) show by strat- Tropical cyclone activity was near normal in the east- i®cation that there is little difference in the frequency of eastern Paci®c tropical cyclones during El NinÄo years ern North Paci®c basin (east of 1408W). Seventeen trop- ical cyclones reached at least tropical storm strength and during non-El NinÄo years. However, they did ®nd a relation between SSTs near tropical cyclones and the ($34 kt) (1 kt 5 1nmih21 5 1852/3600 or 0.514 444 maximum intensity attained by tropical cyclones. This ms21) and nine of these reached hurricane force ($64 kt). The long-term (1966±96) averages are 15.7 tropical suggests that the slightly above-normal SSTs near this storms and 8.7 hurricanes. Table 1 lists the names, dates, year's tracks contributed to the seven hurricanes reach- maximum 1-min surface wind speed, minimum central ing 100 kt or more. pressure, and deaths, if any, of the 1997 tropical storms In addition to the infrequent conventional surface, and hurricanes, and Figs. -
Hurricane Ignacio
HURRICANE TRACKING ADVISORY eVENT™ Hurricane Ignacio Information from CPHC Advisory 21, 5:00 PM HST Saturday August 29, 2015 The Hawaiian Islands remain vulnerable as Major Hurricane Ignacio continues moving steadily northwest. On the forecast track, Ignacio is expected to pass northeast of the Big Island on Monday. Maximum sustained winds are near 140 mph with higher gusts. Ignacio is a category four hurricane on the Saffir-Simpson Hurricane Scale. Little change in intensity is expected tonight and a weakening trend is expected to begin on Sunday. Intensity Measures Position & Heading U.S. Landfall (NHC) Max Sustained Wind 140 mph Position Relative to 525 miles ESE of Hilo, HI Speed: (category 4) Land: 735 miles ESE of Honolulu, HI Est. Time & Region: n/a Min Central Pressure: 952 mb Coordinates: 17.0 N, 147.6 W Trop. Storm Force Est. Max Sustained Wind 140 miles Bearing/Speed: NW or 315 degrees at 9 mph n/a Winds Extent: Speed: Forecast Summary The CPHC forecast map (below left) shows Ignacio passing northeast of the Hawaiian Islands at hurricane strength with maximum sustained winds of 74 mph or greater. The map also shows the main Hawaiian Islands are not within Ignacio’s potential track area. The windfield map (below right) is based on the CPHC’s forecast track which is shown in bold black. The map shows Ignacio’s tropical storm force and greater winds passing just northeast of the Hawaiian Islands. To illustrate the uncertainty in Ignacio’s forecast track, forecast tracks for all current models are shown in pale gray. -
Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs. -
Mexico: Hurricane Jimena MDRMX003
DREF operation n° MDRMX003 Mexico: Hurricane GLIDE TC-2009-000167-MEX Update n° 1 22 September 2009 Jimena The International Federation’s Disaster Relief Emergency Fund (DREF) is a source of un-earmarked money created by the Federation in 1985 to ensure that immediate financial support is available for Red Cross and Red Crescent response to emergencies. The DREF is a vital part of the International Federation’s disaster response system and increases the ability of national societies to respond to disasters. Period covered by this update: 15 to 17 September 2009. Summary: CHF 331,705 (USD 319,632 or EUR 219,302) was allocated from the Federation’s Disaster Relief Emergency Fund (DREF) to support the Mexican Red Cross (MRC) in delivering immediate assistance to some 3,000 families on 15 September 2009. The budget was revised to CHF 193,476 since the American Red Cross provided a bilateral contribution to the MRC consisting of 3,000 kitchen kits and 1,840 hygiene kits. Therefore, CHF MRC personnel carrying out assessments in the 133,730 will be reimbursed to DREF. community of Santa Rosalia. Source: Mexican Red Cross The Canadian Red Cross kindly contributed 48,314 Swiss francs (CAD 50,000) to the DREF in replenishment of the allocation made for this operation. The major donors to the DREF are the Irish, Italian, Netherlands and Norwegian governments and ECHO. Details of all donors can be found on http://www.ifrc.org/what/disasters/responding/drs/tools/dref/donors.asp On 3 September 2009, Hurricane Jimena hit the coast of Baja California, Mexico as a category two hurricane. -
GPM Satellite Shows Double Eye-Wall in Hurricane Jimena 1 September 2015, by Rob Gutro
GPM satellite shows double eye-wall in Hurricane Jimena 1 September 2015, by Rob Gutro "Enhanced infrared images and an earlier microwave overpass from the Global Precipitation Measurement satellite continue to show the presence of a double eyewall structure with evidence of erosion of Jimena's inner eyewall in the southern portion. Since the overall presentation reveals decay of the eyewall, the initial intensity is lowered to 105 knots." On September 1 at 5 a.m. EDT (0900 UTC), the eye of Hurricane Jimena was located near latitude 16.4 North and longitude 139.1 West. That's about 1,075 miles (1,730 km) east of Hilo, Hawaii. Maximum sustained winds remained near 130 mph (215 kph) and Jimena is a category 4 hurricane on the Saffir-Simpson Hurricane Wind Scale. The National Hurricane Center expects slow weakening during the next two days. Jimena was moving toward the west near 13 mph (20 kph). A turn toward the west-northwest is This GPM satellite image of Hurricane Jimena shows the expected later on September 1. The estimated presence of a double eye-wall structure. Heaviest rainfall minimum central pressure is 948 millibars. in red and pink. Cloud imagery from NOAA's GOES- West satellite. Credit: NASA/JAXA/NRL/NOAA Jimena has moved into the Central Pacific basin, so the Central Pacific Hurricane Center will take over forecasting for this storm. The Global Precipitation Measurement or GPM core satellite showed a double eye-wall in Hurricane Jimena on September 1 as it moved through the Eastern Pacific and into the Central Pacific Ocean. -
(May 2008 to April 2010): Climate Variability and Weather Highlights
1 2 The "Year" of Tropical Convection (May 2008 to April 2010): 3 Climate Variability and Weather Highlights 4 5 6 7 Duane E. Waliser1, Mitch Moncrieff2, David Burrridge3, Andreas H. Fink4, Dave Gochis2, 8 B. N. Goswami2, Bin Guan1, Patrick Harr6, Julian Heming7, Huang-Hsuing Hsu8, Christian 9 Jakob9, Matt Janiga10, Richard Johnson11, Sarah Jones12, Peter Knippertz13, Jose Marengo14, 10 Hanh Nguyen10, Mick Pope9, Yolande Serra15, Chris Thorncroft10, Matthew Wheeler16, 11 Robert Wood17, Sandra Yuter18 12 13 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 14 2National Center for Atmospheric Research, Boulder, CO, USA 15 3THORPEX International Programme Office, World Meteorological Office, Geneva, Switzerland 16 4der Universitaet zu Koeln, Koeln, Germany 17 5Indian Institute of Tropical Meteorology, Pune, India 18 6Naval Postgraduate School, Monterey, CA, USA 19 7United Kingdom Meteorological Office, Exeter, England 20 8National Taiwan University, Taipei, Taiwan 21 9Melbourne University, Melbourne, Australia 22 10State University of New York, Albany, NY, USA 23 11Colorado State University, Fort Collins, CO, USA 24 12 Karlsruhe Institute of Technology, Karlsruhe, Germany 25 13University of Leeds, Leeds, England 26 14Centro de Previsão de Tempo e Estudos Climáticos, Sao Paulo, Brazil 27 15University of Arizona, Tucson, AZ, USA 28 16Centre for Australian Weather and Climate Research, Melbourne, Australia 29 17University of Washington, Seattle, USA 30 18North Caroline State University, Raleigh, NC, USA 31 32 33 34 Submitted to the 35 Bulletin of the American Meteorological Society 36 November 2010 37 38 Corresponding author: Duane Waliser, [email protected], Jet Propulsion Laboratory, MS 39 183-505, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 40 1 1 Abstract 2 The representation of tropical convection remains a serious challenge to the skillfulness of our 3 weather and climate prediction systems. -
MASARYK UNIVERSITY BRNO Diploma Thesis
MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories. -
GPM Sees Hurricane Jimena's Eroding Eyewall 3 September 2015
GPM sees Hurricane Jimena's eroding eyewall 3 September 2015 Hurricane Jimena, a once powerful Category 4 storm with maximum sustained winds estimated at 140 mph by the National Hurricane Center, has continued to weaken well east of Hawaii. The Global Precipitation Measurement or GPM core satellite analyzed rainfall rates and saw the eyewall was eroding. The eyewall of a hurricane contains a storm's most damaging winds and intense rainfall. It consists of a vertical wall of powerful thunderstorms circling a hurricane's open eye. GPM is a joint mission between NASA and the Japanese space agency JAXA. GPM captured data on Jimena on Thursday, September 3, 2015 at 10:01 UTC (6:01 a.m. PDT). At the time Jimena, which began to recurve to the northwest yesterday, steering it away from the Hawaiian Islands, was located about 750 east of Hilo, Hawaii and was moving slowly towards the northwest at 3 mph with maximum sustained winds estimated at 110 mph by the central Pacific Hurricane Center. GPM shows that Jimena's eyewall continued to erode away on the southern side. Most of the rain bands south of the center have also greatly diminished. Jimena is forecast to continue to weaken and take a more north-northwest track over the next few days. NOAA's Central Pacific Hurricane Center noted that large swells from Jimena will produce hazardous surf along east facing shores of the main Hawaiian Islands. Surf produced by these swells will build and continue through the weekend of September 5 and 6. Provided by NASA's Goddard Space Flight Center APA citation: GPM sees Hurricane Jimena's eroding eyewall (2015, September 3) retrieved 27 September 2021 from https://phys.org/news/2015-09-gpm-hurricane-jimena-eroding-eyewall.html This document is subject to copyright. -
Climate Variability and Weather Highlights
THE “YEAR” OF TROPICAL CONVECTION (MAY 2008–APRIL 2010) Climate Variability and Weather Highlights BY DUANE E. WALISER, MITCHELL W. MONCRIEFF, DAVID BURRIDGE, ANDREAS H. FINK, DAVE GOCHIS, B. N. GOSWAMI, BIN GUAN, PATRICK HARR, JULIAN HEMING, HUANG-HSUING HSU, CHRISTIAN JAKOB, MATT JANIGA, RICHARD JOHNSON, SARAH JONES, PETER KNIppERTZ, JOSE MARENGO, HANH NGUYEN, MICK POPE, YOLANDE SERRA, CHRIS THORNCROFT, MATTHEW WHEELER, ROBERT WOOD, AND SANDRA YUTER May 2008–April 2010 provided a diverse array of scientifically interesting and socially important weather and climate events that emphasizes the impact and reach of tropical convection over the globe. he realistic representation of tropical convection Oscillation (ENSO), monsoons and their active/break in our global atmospheric models is a long- periods, the Madden–Julian oscillation (MJO), east- T standing grand challenge for numerical weather erly waves and tropical cyclones, subtropical stratus forecasts and global climate predictions [see com- decks, and even the diurnal cycle. Furthermore, panion article Moncrieff et al. (2012), hereafter M12]. tropical climate and weather disturbances strongly Our lack of fundamental knowledge and practical influence stratospheric–tropospheric exchange capabilities in this area leaves us disadvantaged in and the extratropics. To address this challenge, the simulating and/or predicting prominent phenom- World Climate Research Programme (WCRP) and ena of the tropical atmosphere, such as the inter- The Observing System Research and Predictability tropical -
Downloaded 09/26/21 01:08 AM UTC
MAY 2005 ANNUAL SUMMARY 1403 Eastern North Pacific Hurricane Season of 2003 JOHN L. BEVEN II, LIXION A. AVILA,JAMES L. FRANKLIN,MILES B. LAWRENCE,RICHARD J. PASCH, AND STACY R. STEWART National Hurricane Center, Tropical Prediction Center, NOAA/NWS, Miami, Florida (Manuscript received 13 April 2004, in final form 5 October 2004) ABSTRACT The tropical cyclone activity for 2003 in the eastern North Pacific hurricane basin is summarized. Activity during 2003 was slightly below normal. Sixteen tropical storms developed, seven of which became hurri- canes. However, there were no major hurricanes in the basin for the first time since 1977. The first hurricane did not form until 24 August, the latest observed first hurricane at least since reliable satellite observations began in 1966. Five tropical cyclones made landfall on the Pacific coast of Mexico, resulting in 14 deaths. 1. Overview of the 2003 season North Pacific Ocean. Avila et al. (2000) describe the methodology the NHC uses to track tropical waves The National Hurricane Center (NHC) tracked 16 from Africa across the tropical Atlantic, the Caribbean tropical cyclones (TCs) in the eastern North Pacific ba- Sea, and Central America into the Pacific. Sixty-six sin during 2003, all of which became tropical storms and tropical waves were tracked from the west coast of Af- 7 of which became hurricanes. This is at or slightly rica across the tropical Atlantic and the Caribbean Sea below the climatological average of 16 tropical storms from May to November 2003. Most of these waves and 9 hurricanes. However, no “major hurricanes” [cat- reached the eastern North Pacific, where they played a egory 3 or higher on the Saffir–Simpson hurricane scale role in tropical cyclogenesis, as noted in the individual (SSHS) (Simpson 1974)] with maximum 1-min average cyclone summaries. -
NASA Satellite Sees Hurricane Jimena Explode in Strength Over 4 Days 31 August 2009
NASA satellite sees Hurricane Jimena explode in strength over 4 days 31 August 2009 captured Jimena when she became Tropical Depression 13-E. By 2 a.m. EDT August 29, Jimena was a Tropical Storm, and AIRS saw a better organized, more rounded storm with growing thunderstorms. By 8 p.m. EDT August 29, Jimena became a Hurricane. By 1:30 p.m. August 30, Hurricane Jimena strengthened to a Category Four Hurricane on the Saffir-Simpson Scale and AIRS revealed towering thunderstorms around her center of circulation. In infrared imagery, NASA's false-colored purple clouds are as cold as or colder than 220 Kelvin or minus 63 degrees Fahrenheit (F). The blue colored This time-series of AIRS satellite image shows Jimena's clouds are about 240 Kelvin, or minus 27F. Today's high, cold clouds (depicted in purple and blue) become satellite imagery indicated Jimena's cloud top organized from Aug. 27-30 when she went from a low temperatures were colder than minus 63F pressure area to a powerful Category 4 hurricane. indicating powerful thunderstorms in her center. Credit: NASA/JPL, Ed Olsen At 11 a.m. EDT today, August 31, Jimena had maximum sustained winds near 145 mph making Hurricane Warnings are up for the southern Baja her a powerful Category Four hurricane on the California, as powerful Category Four Hurricane Saffir-Simpson Scale (It is 10 mph under Category Jimena threatens. Jimena developed over the Five status). Jimena is a compact storm, with weekend, and the infrared instrument on NASA's hurricane force winds only extending only 30 miles Aqua satellite captured that explosive out, and tropical storm force winds out to 80 miles development.