Carex Livida Cyperaceae Perigynia Elliptic to Pale Sedge Triangular, +/- Beakless

Total Page:16

File Type:pdf, Size:1020Kb

Carex Livida Cyperaceae Perigynia Elliptic to Pale Sedge Triangular, +/- Beakless Carex livida Cyperaceae Perigynia elliptic to Pale sedge triangular, +/- beakless Bruce Newhouse inflorescence a solitary, terminal staminate spike, and 1-3 lateral pistillate spikes Lois Kemp Illustration by Jeanne R. Janish. VASCULAR PLANTS OF THE PACIFIC NORTHWEST (1969) Hitchcock, Cronquist, & Ownbey, courtesy of University of Washington Press. rootstocks with scaly, white stolons Rootstocks long and slender with scaly, white stolons. Stems arising sin- gly, 50-60 cm tall, old leaves conspicuous, some old basal sheaths present. Leaves mostly basal, blades are channeled, thick, and glaucus-green, sheaths Bruce Newhouse brownish below, ligule short, lowest bract sheathing. Inflorescence a solitary, terminal staminate spike, and lateral pistillate spikes 1-3, erect, long-peduncled; scales obtuse or ovate, shorter than perigynia, chestnut to purplish color with hyaline margins; perigynia closely ascending, obscurely triangular, glaucous- Bruce Newhouse green and beakless or with a very short straight beak. Achene triangular and jointed to the style. Lookalikes differs from featured plant by Carex spp. The longer, fusiform and beakless or straight-beaked peri- best survey times gynia distinguish C. livida from other Carex species. J | F | M | A | M | J | J | A | S | O | N | D C. klamathensis its shorter, obovate perigynia with curved beaks. Carex livida (Wahlenb.) Willd. Pale sedge PLANTS symbol: CALI August 2019 status ORBIC: List 2 Distribution: Circumboreal, Labrador to Alaska and south to New Jersey and North- ern California. In Oregon it occurs in Clackamas and counties south, in Washington it occurs in Gray's Harbor County. Populations in Oregon are remnants from glacial times. Habitat: Found in sphagnum bogs, swampy woods and other wet, poorly drained places. Elevation: 700-1850 m Best survey time (in flower): May through August Associated species: Carex spp. (Sedges) Kobresia simpliciuscula (Compound kobresia) Diphasiastrum alpinum (Alpine clubmoss) Darlingtonia californica (California pitcher plant, cobra lily).
Recommended publications
  • Squarrose Sedge Carex Squarrosa
    Natural Heritage Squarrose Sedge & Endangered Species Carex squarrosa L. Program www.mass.gov/nhesp State Status: Threatened Federal Status: None Massachusetts Division of Fisheries & Wildlife GENERAL DESCRIPTION: Squarrose Sedge is a perennial, herbaceous, grass-like plant that grows in loose clumps up to 3 feet (0.9 m) in height. This species was recently rediscovered in Massachusetts. Squarrose Sedge is typically found within riparian habitats that have alluvial soils. The uppermost spikes are pistillate (ovule-bearing) flowers borne above staminate (pollen- bearing) flowers. The large, dense, reproductive spikes of Squarrose Sedge make this species rather distinctive from other members of the genus Carex. AIDS TO IDENTIFICATION: To positively identify the Squarrose Sedge and other members of the genus Carex, a technical manual should be consulted. Species in this genus have small unisexual wind-pollinated flowers that are borne in clusters or spikes. Each flower Photo by Brett Trowbridge is unisexual, and is closely subtended by small, flat scales. The staminate flowers are subtended by a single perigynium. The morphological characteristics of these flat scale (the staminate scale); the pistillate flowers are reproductive structures are important in identifying subtended by one flat scale (the pistillate scale) and are plants of the genus Carex. enclosed by a second sac-like modified scale, the perigynium (plural: perigynia). After flowering, the Squarrose Sedge is a large sedge that grows in tufts from achene (a dry, one-seeded fruit) develops within the short rhizomes. Its stout, leafy stems range in height from 1 to 3 ft. (0.3 to 0.9 m). The elongate leaves are 3 to 6 mm (1/8 to ¼ in.) in width.
    [Show full text]
  • Lecture 24: "Graminoid" Monocots IB 168, Spring 2006
    Lecture 24: "Graminoid" monocots IB 168, Spring 2006 Graminoid monocots: A clade in Poales of usually wind-pollinated taxa, sister to Bromeliaceae and without showy flowers. Three families of graminoid monocots have a worldwide distribution and are prominent members of north temperate and boreal regions of the world: (1) Cyperaceae (sedges, tules, papyrus, and relatives), (2) Juncaceae (rushes and wood-rushes), and, especially, (3) Poaceae (grasses). All three families share conspicuous attributes (and appear superficially similar): Narrow, elongate leaves (parallel venation) with sheath (basal) and blade Perianth reduced or absent (not showy) Nectaries lacking (wind-pollinated) In Cyperaceae and Poaceae, seeds are only 1 per ovary (Ovaries superior, with 1--3 locules, 2--3 stigmas) (Stamens 3 or 6) Family attributes: (1) Poaceae (grasses), also called Gramineae (conserved name) - Highly diverse (ca. 10,000 species in 600--650 genera), but not quite as many species as Compositae/Asteraceae, Orchidaceae, Fabaceae, or Rubiaceae - Worldwide distribution (except Antarctica) - Ecologically of critical importance in African savannas and veldt, Asian steppes, South American paramo/puna and pampas, and North American plains/prairie - Economically the most important plant family because it includes the grain or cereal crops [rice (Oryza), wheat (Triticum), corn or maize (Zea), rye (Secale), barley (Hordeum), oats (Avena), sorghum (Sorghum), millet (Panicum)] and sugar cane (Saccharum) -- all but corn/maize from Old World - Also economically critical because of importance for livestock fodder, soil conservation, wildlife habitat, and turf (intercalary growth allows for grazing or mowing without killing the plant), in addition to building materials (bamboos) Fossil record of grasses goes back ca.
    [Show full text]
  • Table of Contents
    Appendix C Botanical Resources Table of Contents Purpose Of This Appendix ............................................................................................................. Below Tables C-1. Federal and State Status, Current and Proposed Forest Service Status, and Global Distribution of the TEPCS Plant Species on the Sawtooth National Forest ........................... C-1 C-2. Habit, Lifeform, Population Trend, and Habitat Grouping of the TEPCS Plant Species for the Sawtooth National Forest ............................................................................... C-3 C-3. Rare Communities, Federal and State Status, Rarity Class, Threats, Trends, and Research Natural Area Distribution for the Sawtooth National Forest ................................... C-5 C-4. Plant Species of Cultural Importance for the Sawtooth National Forest ................................... C-6 PURPOSE OF THIS APPENDIX This appendix is designed to provide detailed information about habitat, lifeform, status, distribution, and habitat grouping for the Threatened, Proposed, Candidate, and Sensitive (current and proposed) plant species found on the Sawtooth National Forest. The detailed information is provided to enable managers to more efficiently direct the implementation of Botanical Resources goals, objectives, standards, and guidelines. Additionally, this appendix provides detailed information about the rare plant communities located on the Sawtooth National Forest and should provide additional support of Forest-wide objectives. Species of cultural
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Arctic and Boreal Plant Species Decline at Their Southern Range Limits in the Rocky Mountains
    Ecology Letters, (2017) 20: 166–174 doi: 10.1111/ele.12718 LETTER Arctic and boreal plant species decline at their southern range limits in the Rocky Mountains Abstract Peter Lesica1,2* and Climate change is predicted to cause a decline in warm-margin plant populations, but this hypoth- Elizabeth E. Crone3 esis has rarely been tested. Understanding which species and habitats are most likely to be affected is critical for adaptive management and conservation. We monitored the density of 46 populations representing 28 species of arctic-alpine or boreal plants at the southern margin of their ranges in the Rocky Mountains of Montana, USA, between 1988 and 2014 and analysed population trends and relationships to phylogeny and habitat. Marginal populations declined overall during the past two decades; however, the mean trend for 18 dicot populations was À5.8% per year, but only À0.4% per year for the 28 populations of monocots and pteridophytes. Declines in the size of peripheral populations did not differ significantly among tundra, fen and forest habitats. Results of our study support predicted effects of climate change and suggest that vulnerability may depend on phylogeny or associated anatomical/physiological attributes. Keywords arctic-alpine plants, boreal plants, climate change, fens, marginal populations, peripheral popula- tions, range margins, Rocky Mountains. Ecology Letters (2017) 20: 166–174 2009; Sexton et al. 2009; Brusca et al. 2013), which suggests INTRODUCTION that in some cases climate does not determine a species’ range. Climate of the earth is changing at an unprecedented rate Nonetheless, most plant ecologists believe that climate is an (Jackson & Overpeck 2000; IPCC 2013) and is predicted to important factor determining geographic range limits.
    [Show full text]
  • Chapter 5: Vegetation of Sphagnum-Dominated Peatlands
    CHAPTER 5: VEGETATION OF SPHAGNUM-DOMINATED PEATLANDS As discussed in the previous chapters, peatland ecosystems have unique chemical, physical, and biological properties that have given rise to equally unique plant communities. As indicated in Chapter 1, extensive literature exists on the classification, description, and ecology of peatland ecosystems in Europe, the northeastern United States, Canada, and the Rocky Mountains. In addition to the references cited in Chapter 1, there is some other relatively recent literature on peatlands (Verhoeven 1992; Heinselman 1963, 1970; Chadde et al., 1998). Except for efforts on the classification and ecology of peatlands in British Columbia by the National Wetlands Working Group (1988), the Burns Bog Ecosystem Review (Hebda et al. 2000), and the preliminary classification of native, low elevation, freshwater vegetation in western Washington (Kunze 1994), scant information exists on peatlands within the more temperate lowland or maritime climates of the Pacific Northwest (Oregon, Washington, and British Columbia). 5.1 Introduction There are a number of classification schemes and many different peatland types, but most use vegetation in addition to hydrology, chemistry and topological characteristics to differentiate among peatlands. The subject of this report are acidic peatlands that support acidophilic (acid-loving) and xerophytic vegetation, such as Sphagnum mosses and ericaceous shrubs. Ecosystems in Washington state appear to represent a mosaic of vegetation communities at various stages of succession and are herein referred to collectively as Sphagnum-dominated peatlands. Although there has been some recognition of the unique ecological and societal values of peatlands in Washington, a statewide classification scheme has not been formally adopted or widely recognized in the scientific community.
    [Show full text]
  • A List of Grasses and Grasslike Plants of the Oak Openings, Lucas County
    A LIST OF THE GRASSES AND GRASSLIKE PLANTS OF THE OAK OPENINGS, LUCAS COUNTY, OHIO1 NATHAN WILLIAM EASTERLY Department of Biology, Bowling Green State University, Bowling Green, Ohio 4-3403 ABSTRACT This report is the second of a series of articles to be prepared as a second "Flora of the Oak Openings." The study represents a comprehensive survey of members of the Cyperaceae, Gramineae, Juncaceae, Sparganiaceae, and Xyridaceae in the Oak Openings region. Of the 202 species listed in this study, 34 species reported by Moseley in 1928 were not found during the present investigation. Fifty-seven species found by the present investi- gator were not observed or reported by Moseley. Many of these species or varieties are rare and do not represent a stable part of the flora. Changes in species present or in fre- quency of occurrence of species collected by both Moseley and Easterly may be explained mainly by the alteration of habitats as the Oak Openings region becomes increasingly urbanized or suburbanized. Some species have increased in frequency on the floodplain of Swan Creek, in wet ditches and on the banks of the Norfolk and Western Railroad right-of-way, along newly constructed roadsides, or on dry sandy sites. INTRODUCTION The grass family ranks third among the large plant families of the world. The family ranks number one as far as total numbers of plants that cover fields, mead- ows, or roadsides are concerned. No other family is used as extensively to pro- vide food or shelter or to create a beautiful landscape. The sedge family does not fare as well in terms of commercial importance, but the sedges do make avail- able forage and food for wild fowl and they do contribute plant cover in wet areas where other plants would not be as well adapted.
    [Show full text]
  • Site Synopsis
    SITE SYNOPSIS SITE NAME: LOUGH FAD BOG NHA SITE CODE: 001159 Lough Fad Bog NHA is a relatively large and primarily upland blanket bog, situated approximately 7 km from Pettigo, north of the Donegal to Pettigo road. It lies at altitudes between 130 m and 280 m on acidic gneiss bedrock. The site is situated in the townlands of Meensheefin, Belalt North, Lough Fad and Lough Ultan. Plantation forestry largely surrounds the site on its western, eastern and northern sides, while to the south it is bounded by the road between Donegal and Pettigo. The site contains upland and lowland blanket bog developed as relatively shallow peat. The bog lies on a series of gently sloping plateaux, separated by rocky knolls and east-west trending ridges, situated on a catchment divide (watershed) between the Waterfoot and Ballintra Rivers. A number of lakes occur in the northern part of the site, including Lough Nageage, Lough Natragh, Lough Nacraghan, Lough Fad, Lough Atarriff and Lough Nabrackmore. The vegetation of the site is characterised by blanket bog species. The most dominant include Ling Heather (Calluna vulgaris), Purple Moor-grass (Molinia caerulea), Common Cottongrass (Eriophorum angustifolium), the locally occurring species Oblong-leaved Sundew (Drosera intermedia), Bog-myrtle (Myrica gale), Cross- leaved Heath (Erica tetralix), White Beak-sedge (Rhynchospora alba), Bog Asphodel (Narthecium ossifragum), Deergrass (Scirpus cespitosus), Carnation Sedge (Carex panicea) and lichens (Cladonia portentosa and C. uncialis). Bog moss lawns and hummocks are locally frequent, consisting of Sphagnum capillifolium, S. subnitens, S. imbricatum, S. auriculatum, S. papillosum and S. compactum. Large cushions of Racomitrium lanuginosum and Leucobryum glaucum also occur.
    [Show full text]
  • Evolution in Sedges (Carex, Cyperaceae)
    Evolution in sedges (Carex, Cyperaceae) A. A. REZNICEK University of Michigan Herbarium, North University Building, Ann Arbor, MI 48/09, U.S.A. Received January 2, 1990 REZNICEK,A. A. 1990. Evolution in sedges (Carex, Cyperaceae). Can. J. Bot. 68: 1409-1432. Carex is the largest and most widespread genus of Cyperaceae, but evolutionary relationships within it are poorly under- stood. Subgenus Primocarex was generally thought to be artificial and derived from diverse multispicate species. Relation- ships of rachilla-bearing species of subgenus Primocarex, however, were disputed, with some authors suggesting derivation from other genera, and others believing them to be primitive. Subgenus Indocarex, with compounded inflorescence units, was thought to be primitive, with subgenera Carex and Vignea reduced and derived. However, occurrence of rachillas is not confined to a few unispicate species, as previously thought, but is widespread. The often suggested connection between Uncinia and unispicate Carex is shown, based on rachilla morphology, to be founded on incorrect interpretation OF homology. Uncinia kingii, the alleged connecting link, is, in fact, a Carex. Unispicate Carex without close multispicate relatives probably originated from independent, ancient reductions of primitive, rachilla-bearing, multispicate Carex. The highly compounded inflorescences occumng in subgenus Vignea are hypothesized to represent a primitive state in Carex, and the more specialized inflorescences in subgenus Carex derived from inflorescences of this type. The relationships of subgenus Indocurex, with its unique perigynium-like inflorescence prophylls, remain unclear. REZNICEK,A. A. 1990. Evolution in sedges (Carex, Cyperaceae). Can. J. Bot. 68 : 1409-1432. Le Carex est le genre le plus irilportant et le plus rCpandu des Cyperaceae, mais les affinites Cvolutives a I'intCrieur de ce genre sont ma1 connues.
    [Show full text]
  • Carex Barrattii Schwein
    New England Plant Conservation Program Conservation and Research Plan Carex barrattii Schwein. & Torr. Barratt's Sedge Prepared by: Penelope C. Sharp Environmental Consultant Northford, Connecticut For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, May 2001 SUMMARY Barratt’s sedge (Carex barrattii) is a regionally rare plant species that ranges from Alabama northward along the Atlantic coastal states to Connecticut. Primarily a species of the Atlantic Coastal Plain, it has also been documented at a number of disjunct sites in Virginia, Tennessee, North Carolina, South Carolina, Georgia, and Alabama. Its presence in New England is limited to Connecticut where there are seven occurrences, five of which are historic. The two extant sites for C. barrattii are in relatively close proximity, and the occurrences may be considered to be sub-populations of a single population. Population size is estimated to exceed 10,000 ramets. The state rank for the species is S1, and it is listed under Connecticut’s Endangered Species Act as State Endangered. The occurrence locations are on private property; therefore, C. barrattii is vulnerable to a number of potential threats including alteration of wetland hydrology and development activities. Natural succession and canopy closure also threaten the species, which appears to produce few fruiting culms under dense shade. Carex barrattii is an obligate wetland species and, in Connecticut, grows in seasonally saturated, acidic, sandy wetlands. In other parts of its range, it is found in wetland depressions in pine barrens, along the shores of rivers and ponds or in peaty bogs.
    [Show full text]