Caractérisation Et Sources De Variation Du Métabolome: Le Cas De L'algue Brune Lobophora Des Écosystèmes Coralliens De N

Total Page:16

File Type:pdf, Size:1020Kb

Caractérisation Et Sources De Variation Du Métabolome: Le Cas De L'algue Brune Lobophora Des Écosystèmes Coralliens De N Caractérisation et sources de variation du métabolome : le cas de l’algue brune Lobophora des écosystèmes coralliens de Nouvelle-Calédonie Julie Gaubert To cite this version: Julie Gaubert. Caractérisation et sources de variation du métabolome : le cas de l’algue brune Lobophora des écosystèmes coralliens de Nouvelle-Calédonie. Biodiversité et Ecologie. Sorbonne Université, 2018. Français. NNT : 2018SORUS530. tel-02926162 HAL Id: tel-02926162 https://tel.archives-ouvertes.fr/tel-02926162 Submitted on 31 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale des Sciences de l’Environnement (ED 129) IRD Nouméa / UMR Entropie NUI Galway/ Marine Biodiscovery Laboratory Caractérisation et sources de variation du métabolome : le cas de l’algue brune Lobophora des écosystèmes coralliens de Nouvelle-Calédonie Par Julie GAUBERT Thèse de doctorat de Biologie Marine – Ecologie Chimique Dirigée par Claude PAYRI et co-dirigée par Olivier THOMAS Présentée et soutenue publiquement le 12 Octobre 2018 Devant un jury composé de : CULIOLI, Gérald (Maître de conférences, MAPIEM) Examinateur HELLIO, Claire (Professeur, UBO) Rapporteur LEBLANC, Catherine (Directrice de Recherche, CNRS) Examinatrice LEMEE, Rodolphe (Professeur, UPMC) Examinateur PRADO, Soizic (Professeur, MNHN-CNRS) Rapporteur ZUBIA, Mayalen (Maître de conférences, UPF) Examinatrice PAYRI, Claude (Directrice de Recherche, IRD) Directrice de thèse THOMAS, Olivier (Professeur, NUIG) Co-directeur de thèse Remerciements Je tiens tout d’abord à remercier mes encadrants Claude Payri & Olivier Thomas pour m’avoir permis de réaliser cette thèse. Merci de m’avoir soutenu depuis mon stage de master II dans ce projet. Merci pour tout ce que vous m’avez appris et vos précieux conseils. Un très grand merci à Stéphane Greff pour toute l’aide que tu m’as apportée dans le traitement des données métabolomiques et les analyses. Merci pour m’avoir initiée à la GC- MS, appris les réseaux moléculaires, pour ta patience et ta sympathie ainsi que ton accueil à la Station Marine d’Endoume. C’est un plaisir de travailler avec toi. « Grâce » à mes échantillons, tu es devenu expert en remplacement de capillaires UHPLC-MS-qTOF. Merci également à Thierry Pérez pour m’avoir permis de faire deux séjours à la Station Marine d’Endoume sur la plateforme Mallabar. Merci à Jean-Charles Martin pour les scripts R de filtrage des matrices en sortie d’XCMS. Un grand merci à toute l’équipe de l’Université de Galway avec qui j’ai passé 5 mois : Hiren Solanki, pour ton aide sur la VLC et la LC-MS, avec ces nombreux problèmes techniques à résoudre; Navdeep pour la purification de composés et la VLC ; Kevin Calabro, pour ta présence indispensable au labo, tes bons conseils et les analyses des spectres RMN ; Daniel Rodriguez pour ton aide sur la SPE. Merci à Perrine Lasserre pour les pauses café- gâteaux et les séances de sport qui m’ont fait beaucoup de bien entre de longues heures de labo. Je tiens également à remercier les chercheurs qui m’ont aidé à Nouméa car on peut parfois se sentir éloignés dans un centre à l’autre bout du monde. Un grand merci à Vincent Dumontet pour tes conseils en chimie, ton aide au labo, ta sympathie et ta bonne humeur. Merci à Linda Guentas pour ta gentillesse, ton accueil à l’UNC et ton aide dans les tests antibactériens. C’est toujours agréable de travailler avec toi. Merci à toute l’équipe de l’IAC qui m’a permis de faire différents tests de bioactivité sur la mouche des fruits, les champignons et la tique des bovins: Marine Toussirot, Valérie 1 Kagy, Christian Mile, Thomas Hue et Carole Martin. Merci pour votre accueil chaleureux et votre sympathie. Merci à Riccardo Rodolpho-Metalpa pour m’avoir aidé dans la réalisation de ma dernière expérience de thèse sur l’effet de l’acidification. J’ai enfin pu découvrir le fameux site de Bouraké ! Merci également aux membres du comité de thèse pour leurs conseils avisés : Christophe Vieira, Mayalen Zubia et Gérald Culioli ainsi qu’aux membres du jury et rapporteurs de cette thèse qui ont accepté de lire et d’évaluer ce travail. Merci aux pilotes de l’IRD : Miguel, Sam et Philippe, ainsi qu’à mes binômes de plongée : Bertrand, Christophe, Eric, Thomas et Valentin, sans qui toutes ces sorties en mer n’auraient pu être réalisées. Premier dugong de ma vie lors d’une sortie avec vous ! Merci également à tous mes amis du caillou, aux nombreux doctorants et stagiaires qui m’ont soutenu dans les moments plus difficiles, les hauts et les bas de la thèse et qui ont su ne pas me tenir trop rigueur de mes gros coups de stress. Merci à ma chère collègue de bureau Chloé Martias pour tous les rires et les pleurs partagés. Ta joie de vivre des îles et ta générosité vont beaucoup ma manquer. Une pensée pour mes amies d’enfance, Sophie, Elodie et Charlotte ainsi que Manue, pour votre regard captivé quand je parle de ma thèse même si vous ne comprenez pas trop ce que je fais. Un immense merci à ma famille et leur soutien sans faille dans tout ce que j’entreprends. Merci d’être toujours là malgré la distance, j’ai tellement de chance de vous avoir et de pouvoir partager la passion de la plongée avec vous. Enfin merci à Germain Boussarie pour toute l’aide scientifique et psychologique que tu m’auras apporté tout au long de cette thèse. Sans toi, je n’en saurais pas là aujourd’hui et je serais probablement toujours derrière mon écran à chercher à résoudre mes erreurs sur R… Merci pour le bonheur que tu m’apportes chaque jour et pour supporter mes pics de stress... 2 Sorbonne Université Ecole doctorale des Sciences de l’Environnement (ED 129) IRD Nouméa / UMR Entropie NUI Galway/ Marine Biodiscovery Laboratory Caractérisation et sources de variation du métabolome : le cas de l’algue brune Lobophora des écosystèmes coralliens de Nouvelle-Calédonie Par Julie GAUBERT Thèse de doctorat de Biologie Marine – Ecologie Chimique Dirigée par Claude PAYRI et co-dirigée par Olivier THOMAS Présentée et soutenue publiquement le 12 Octobre 2018 Devant un jury composé de : CULIOLI, Gérald (Maître de conférences, MAPIEM) Examinateur HELLIO, Claire (Professeur, UBO) Rapporteur LEBLANC, Catherine (Directrice de Recherche, CNRS) Examinatrice LEMEE, Rodolphe (Professeur, UPMC) Examinateur PRADO, Soizic (Professeur, MNHN-CNRS) Rapporteur ZUBIA, Mayalen (Maître de conférences, UPF) Examinatrice PAYRI, Claude (Directrice de Recherche, IRD) Directrice de thèse THOMAS, Olivier (Professeur, NUIG) Co-directeur de thèse 3 4 Sommaire INTRODUCTION GENERALE 11 1. Importance des algues dans les écosystèmes coralliens 13 2. Les macroalgues, un réservoir de molécules 15 2.1. La chimie et l’écologie chimique chez les macroalgues 15 2.2. Des connaissances sur l’écologie chimique des algues à renforcer 17 3. Le genre Lobophora 19 3.1. Une macroalgue commune des récifs coralliens 19 3.2. Un genre souvent associé aux récifs dégradés 20 3.3. Qu’en est-il des connaissances sur la chimie des Lobophora ? 21 3.4. Quatre espèces choisies pour notre étude 25 4. La métabolomique, un outil intéressant au service de l’écologie chimique des algues 28 4.1. Le métabolome: brève présentation 28 4.2. La métabolomique, la dernière branche des techniques « omiques » 28 4.3. Un peu de technique… 29 4.4. Les applications de la métabolomique 34 4.5. La métabolomique du côté des algues 34 4.6. La métabolomique pour étudier le métabolome de Lobophora 37 Sites d’étude 39 Objectifs de thèse 42 Plan de thèse 43 Références 47 PARTIE 1. DIVERSITE CHIMIQUE DE LOBOPHORA ET POTENTIEL DE VALORISATION 55 CHAPITRE 1. Caractérisation de la diversité chimique de trois espèces de Lobophora 57 1. Contexte de l’étude 59 2. Matériel & méthodes 60 2.1. Récoltes de Lobophora 60 2.2. Extraction brute 60 2.3. Chromatographie liquide sous vide (VLC Vacuum Liquid Chromatography) 61 2.4. Purification de la fraction F4 (100% MeOH) de L. rosacea 62 2.5. Purification de la fraction F4 (100% MeOH) de L. sonderii 63 2.6. Purification des fractions F3 et F4 L. monticola 63 2.7. SPE en phase normale des fractions F5 issues de la VLC (§ 2.3) de L. rosacea, L. monticola et L, sonderii. 64 2.7.1 Analyses en Résonance Magnétique Nucléaire (RMN) 65 2.7.2 Purifications des fractions issues de la SPE en phase normale 65 2.8. Fractionnement sur colonne de silice ouverte des nouvelles collectes de masse 67 3. Résultats & discussion 69 3.1. Purification des premières collectes de masse de L. sonderii, L. rosacea et L. monticola fractionnées en phase inverse 69 3.2. SPE en phase normale des fractions F5 issues de la VLC de L. rosacea, L. monticola et L. sonderii 73 3.3. Fractionnement en phase normale de secondes collectes de masse 77 5 3.4. Bilan sur les études chimiques entreprises sur les trois espèces de Lobophora 78 4. Conclusion 79 Figures supplémentaires 81 Références 82 CHAPITRE 2. Mise au point des tests de bioactivité sur les fractions algales 83 I- Recherche de bioactivités des extraits et fractions de L. sonderii, L. rosacea et L. monticola 85 A. Recherche d’activités pesticides à partir d’extraits bruts issus de L.
Recommended publications
  • Extraction Assistée Par Enzyme De Phlorotannins Provenant D'algues
    Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques Maya Puspita To cite this version: Maya Puspita. Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques. Biotechnologie. Université de Bretagne Sud; Universitas Diponegoro (Semarang), 2017. Français. NNT : 2017LORIS440. tel-01630154v2 HAL Id: tel-01630154 https://hal.archives-ouvertes.fr/tel-01630154v2 Submitted on 9 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Enzyme-assisted extraction of phlorotannins from Sargassum and biological activities by: Maya Puspita 26010112510005 Doctoral Program of Coastal Resources Managment Diponegoro University Semarang 2017 Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques Maria Puspita 2017 Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques par: Maya Puspita Ecole Doctorale
    [Show full text]
  • UV-Protective Compounds in Marine Organisms from the Southern Ocean
    marine drugs Review UV-Protective Compounds in Marine Organisms from the Southern Ocean Laura Núñez-Pons 1 , Conxita Avila 2 , Giovanna Romano 3 , Cinzia Verde 1,4 and Daniela Giordano 1,4,* 1 Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy; [email protected] (L.N.-P.); [email protected] (C.V.) 2 Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain; [email protected] 3 Department of Marine Biotechnology (Biotech), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy; [email protected] 4 Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy * Correspondence: [email protected]; Tel.: +39-081-613-2541 Received: 12 July 2018; Accepted: 12 September 2018; Published: 14 September 2018 Abstract: Solar radiation represents a key abiotic factor in the evolution of life in the oceans. In general, marine, biota—particularly in euphotic and dysphotic zones—depends directly or indirectly on light, but ultraviolet radiation (UV-R) can damage vital molecular machineries. UV-R induces the formation of reactive oxygen species (ROS) and impairs intracellular structures and enzymatic reactions. It can also affect organismal physiologies and eventually alter trophic chains at the ecosystem level. In Antarctica, physical drivers, such as sunlight, sea-ice, seasonality and low temperature are particularly influencing as compared to other regions. The springtime ozone depletion over the Southern Ocean makes organisms be more vulnerable to UV-R.
    [Show full text]
  • Adjustment of Pigment Composition in Desmarestia
    RESEARCH/REVIEW ARTICLE Adjustment of pigment composition in Desmarestia (Desmarestiaceae) species along a sub-Antarctic to Antarctic latitudinal gradient Andre´ s Mansilla,1,2 Fabio Me´ ndez,1,2,3 Silvia Murcia,1 Juan Pablo Rodrı´guez,1,2,3 Johanna Marambio,1,2,3 Sebastia´ n Rosenfeld,1,2,3 Nair Yokoya4 & Kai Bischof5 1 Laboratory of Antarctic and Sub-Antarctic Marine Ecosystems, University of Magallanes, 01855 Bulnes Ave., Punta Arenas 6200000, Chile 2 Institute of Ecology and Biodiversity, Las Palmeras St. 3425, N˜ un˜ oa, Santiago 8320000, Chile 3 Conservation and Management of Natural Resources in Sub-Antarctic Environments MS Program, University of Magallanes, 01855 Bulnes Ave., Punta Arenas 6200000, Chile 4 Institute of Botany, Sa˜ o Paulo State Department of the Environment, 3687 Miguel Este´ fano Ave., Sa˜ o Paulo 04301-012, SP, Brazil 5 Marine Botany Department, University of Bremen, NW2 Leobener St., Bremen DE-28359, Germany Keywords Abstract Macroalgae; Phaeophyceae; photosynthesis; physiology; environmental Photosynthesis at high latitudes demands efficient strategies of light utilization heterogeneity; Chile. to maintain algal fitness and performance. The fitness, and physiological adaptation, of a plant or algae species depends in part on the abundance and Correspondence efficiency of the pigments it can produce to utilize the light resource from its Silvia Murcia, Laboratory of Antarctic and environment. We quantified pigment composition and concentration in six Sub-Antarctic Marine Ecosystems, species of the brown macroalgal genus Desmarestia, collected from sub- University of Magallanes, 01855 Bulnes Antarctic sites (Strait of Magellan, Beagle ChannelÁCape Horn Province) and Ave., Punta Arenas 6200000, Chile. E-mail: [email protected] sites on the Antarctic Peninsula and adjacent islands.
    [Show full text]
  • 389 © Springer Nature Switzerland AG 2020 I. Gómez, P. Huovinen (Eds.), Antarctic Seaweeds
    Index A successional patterns, 243, 244 Abiotic factors, 175 successional processes, 242 Accelerated regional warming, 7 temporal and spatial reduction, 255 Actinobacteria, 286 UV radiation, 255 Adenocystis utricularis, 199 Antarctic benthic system, 14 Algal assemblages, 88 Antarctic biodiversity, 10 Alien competitors, 267, 269 Antarctic biota, 10 Alien macroalgae, 267, 268 Antarctic brown algae, 5 Alien species, 96 Antarctic Circumpolar Current (AAC), Amphipods 4, 8, 267 assemblages, 269 circumpolar path, 49 chemical defenses, 347, 348 description, 44 description, 342 eddies, 47 feeding bioassays, 342 eastward movement, 84 Lambia antarctica, 349 Gigartina skottsbergii, 95 mortality rates, 270 high-level endemism, 44 populations, 271 mesoscale variability, 47 WAP ocean circulation in SO, 84 coastal food webs, 269 oceanic features, 44 macroalgae, 347 as oceanographic barriers, 46 macroalga-invertebrate primary fronts, 46 interactions, 352–355 Antarctic coastal areas Antarctic algal succession carbon fluxes, 157, 158 glacier retreat, 252–253 macroalgae, 157, 158 grazing, 249–252 Antarctic coastal ecosystems, 15 UV-B, 248–249 Antarctic coastal systems, 8 Antarctic benthic algae Antarctic coastal zone, 174, 175 biological drivers, 255 Antarctic Convergence, 84 colonization processes, 255 Antarctic costal systems, 6 constraints and difficulties, 254 Antarctic cyanobacteria, 88 in situ succession, 253, 254 Antarctic Desmarestiales, 196 interannual changes, 243 Antarctic environment, 256 macroalgae, 243 algae, 25 sessile faunal assemblages, 242
    [Show full text]
  • Bottom Macroalgae of the Admiralty Bay (King George Island, South Shetlands, Antarctica)
    POLISH POLAR RESEARCH 11 1—2 95—131 1990 Krzysztof ZIELIŃSKI Department of Polar Research, Institute of Ecology, Polish Academy of Sciences Dziekanów Leśny 05—092 Łomianki, POLAND Bottom macroalgae of the Admiralty Bay (King George Island, South Shetlands, Antarctica) ABSTRACT: In the Admiralty Bay 36 taxa of macroalgae were found. Among them the most common were: green alga Monostroma hariotti, red algae — Georyielta confluens, Iridaea cordata, leptosarca simplex and Plocamium cartilagineum, and brown algae — Adenocystis utricularis, Ascoseira mirabilis, Desmarestia anceps, D. ligulata, D. menziesii and Himatothallus grandifolius. The bottom surface covered with macroalgae (in the orthogonal projection on the water mirror) amounts to 36,9 km2 i.e. 31% of the total surface of the bay. In the central part of the Admiralty Bay the macroalgae aggregations occupy 35% of the bottom surface and are most abundant in respect to the density, biomass, number of taxa (33) and diversity. There were distinguished 3 zones of vertical distribution of phytobenthos in the Admiralty Bay. I zone includes the macroalgae in epilittoral, littoral and sublittoral to the depth of 10 m. II and III zones are situated in sublittoral within the depths of 10 60 m and 60—90 m, respectively. Each zone is characterized by the occurrence of different aggregation of taxa. The bottom areas belong to I, II and III zone of macroalgae make 28%, 64% and 8% respectively in relation to the total surface of phytobenthos in the bay. Vertical range of the distinguished zones varies in different parts of the Bay in relation to the bottom character.
    [Show full text]
  • Ligulate Desmarestia (Desmarestiales, Phaeophyceae) Revisited: D
    Erschienen in: Journal of Phycology ; 50 (2014), 1. - S. 149-166 https://dx.doi.org/10.1111/jpy.12148 LIGULATE DESMARESTIA (DESMARESTIALES, PHAEOPHYCEAE) REVISITED: D. JAPONICA SP. NOV. AND D. DUDRESNAYI DIFFER FROM D. LIGULATA1 Eun Chan Yang Culture Collection of Algae and Protozoa (CCAP), The Scottish Association for Marine Science Dunstaffnage Marine Laboratory, Oban, Argyll, Scotland PA37 1QA, UK Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology, 787 Haeanro, Ansan 426 744, Korea Akira F. Peters Bezhin Rosko, 40 rue des pecheurs,^ 29250 Santec, Brittany, France Hiroshi Kawai Kobe University Research Center for Inland Seas, Rokkodai, Nadaku, Kobe 657 8501, Japan Rowena Stern SAHFOS, The Laboratory, Citadel Hill, The Hoe, Plymouth PL1 2PB, UK Takeaki Hanyuda Kobe University Research Center for Inland Seas, Rokkodai, Nadaku, Kobe 657 8501, Japan Ignacio Barbara Coastal Biology Research Group, Facultad de Ciencias, Universidad de A Coruna,~ Campus de la Zapateira, A Coruna~ 15071, Spain Dieter Gerhard Muller€ Fachbereich Biologie, Universit€at Konstanz, Konstanz D 78457, Germany Martina Strittmatter2 Culture Collection of Algae and Protozoa (CCAP), The Scottish Association for Marine Science Dunstaffnage Marine Laboratory, Oban, Argyll, Scotland PA37 1QA, UK Willem F. Prud’Homme van Reine Netherlands Centre for Biodiversity Naturalis, Leiden University (section NHN), P.O. Box 9514, RA Leiden 2300, The Netherlands and Frithjof C. Kupper€ 3 Culture Collection of Algae and Protozoa (CCAP), The Scottish Association for Marine Science Dunstaffnage Marine Laboratory, Oban, Argyll, Scotland PA37 1QA, UK Oceanlab, University of Aberdeen, Main Street, Newburgh, Scotland AB41 6AA, UK The phylogeny of ligulate and sulfuric-acid taxa to four different species.
    [Show full text]
  • Estudo Químico Bioguiado Da Macroalga Marinha Da Antártica Desmarestia Menziesii (Phaeophyceae) Para Isolamento De Substâncias
    ISAC JOSÉ DA SILVA FILHO Estudo químico bioguiado da macroalga marinha da Antártica Desmarestia menziesii (Phaeophyceae) para isolamento de substâncias com atividades biológicas Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de MESTRE em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Avasculares e Fungos em Análises Ambientais. SÃO PAULO 2018 II ISAC JOSÉ DA SILVA FILHO Estudo químico bioguiado da macroalga marinha da Antártica Desmarestia menziesii (Phaeophyceae) para isolamento de substâncias com atividades biológicas Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de MESTRE em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Avasculares e Fungos em Análises Ambientais. ORIENTADORA: DRA. LUCIANA RETZ DE CARVALHO III Ficha Catalográfica elaborada pelo NÚCLEO DE BIBLIOTECA E MEMÓRIA Silva Filho, Isac José da S586e Estudo químico bioguiado da macroalga marinha da Antártica Desmarestia Menziesii (Phaeophyceae) para isolamento de substâncias com atividades biológicas. / Isac José da Silva Filho -- São Paulo, 2018. 106p. ; il. Dissertação (Mestrado) -- Instituto de Botânica da Secretaria de Estado do Meio Ambiente, 2018. Bibliografia. 1. Algas extremófilas. 2. Manitol. 3. Anticongelante. I. Título. CDU: 582.26 IV É necessário sempre acreditar que o sonho é possível Que o céu é o limite e você, truta, é imbatível Que o tempo ruim vai passar, é só uma fase E o sofrimento alimenta mais a sua coragem (Racionais MC's) V Dedico ao meu filho Nicolas Davi e a minha mãe Maria José que são a minha base e também a toda a minha família com muito amor e carinho.
    [Show full text]
  • Consistent Richness-Biomass Relationship Across Environmental Gradients in a Marine Macroalgal-Dominated Subtidal Community on the Western Antarctic Peninsula
    RESEARCH ARTICLE Consistent Richness-Biomass Relationship across Environmental Gradients in a Marine Macroalgal-Dominated Subtidal Community on the Western Antarctic Peninsula Nelson Valdivia*, María José Díaz, Ignacio Garrido, Iván Gómez Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile * [email protected] Abstract OPEN ACCESS Biodiversity loss has spurred the biodiversity-ecosystem functioning research over a range of ecosystems. In Antarctica, however, the relationship of taxonomic and functional diversity Citation: Valdivia N, Díaz MJ, Garrido I, Gómez I (2015) Consistent Richness-Biomass Relationship with ecosystem properties (e.g., community biomass) has received less attention, despite across Environmental Gradients in a Marine the presence of sharp and dynamic environmental stress gradients that might modulate Macroalgal-Dominated Subtidal Community on the these properties. Here, we investigated whether the richness-biomass relationship in Western Antarctic Peninsula. PLoS ONE 10(9): macrobenthic subtidal communities is still apparent after accounting for environmental e0138582. doi:10.1371/journal.pone.0138582 stress gradients in Fildes Bay, King George Island, Antarctica. Measurements of biomass Editor: Andrew R. Mahon, Central Michigan of mobile and sessile macrobenthic taxa were conducted in the austral summer 2013/4 University, UNITED STATES across two environmental stress gradients: distance from nearest glaciers and subtidal Received: June 20, 2015 depth (from 5 to 30 m). In general, community biomass increased with distance from gla- Accepted: September 1, 2015 ciers and water depth. However, generalised additive models showed that distance from Published: September 18, 2015 glaciers and depth accounted for negligible proportions of variation in the number of func- Copyright: © 2015 Valdivia et al.
    [Show full text]
  • Stress Tolerance of the Endemic Antarctic Brown Alga Desmarestia Anceps to UV Radiation and Temperature Is Mediated by High Concentrations of Phlorotannins
    Photochemistry and Photobiology, 2016, 92: 455–466 Stress Tolerance of the Endemic Antarctic Brown Alga Desmarestia anceps to UV Radiation and Temperature is Mediated by High Concentrations of Phlorotannins Marıa Rosa Flores-Molina1,2*, Ralf Rautenberger2, Pamela Munoz~ 2, Pirjo Huovinen2,3 and Ivan Gomez 2,3 1Doctorado en Biologıa Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile 2Instituto de Ciencias Marinas y Limnologicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile 3Centro Fondap de Investigacion de Altas Latitudes (IDEAL), Valdivia, Chile Received 24 September 2015, accepted 19 January 2016, DOI: 10.1111/php.12580 ABSTRACT 400–700 nnm) that may impose severe limitations for photosyn- thesis. Thus, Antarctic macroalgae, are not only able to respond The endemic Antarctic brown macroalga Desmarestia anceps with the extreme seasonality in day lengths, but also exhibit a is strongly shade-adapted, but shows also a high capacity to remarkable capacity to photosynthesize efficiently at low PAR cope with different environmental stressors, e.g. UV radiation irradiances under constant low temperatures ranging between and temperature. Therefore, this species colonizes wide depth À1.8 and +2°C (reviewed in 2). gradients, which are characterized by changing environmen- Although subtidal macroalgae are usually exposed to very low tal conditions. In this study, we examine whether the differ- irradiances of solar radiation due to snow-covered sea-ice in win- ent physiological abilities allowing D. anceps to grow across a ter, many Antarctic coastal waters are highly transparent to both wide depth range is determined by high levels of phlorotan- PAR after the break-up of sea ice in spring and early summer fl nins.
    [Show full text]
  • Phaeophyceae) in the Sub-Antarctic Ecoregion of Magallanes, Chile
    Journal of Applied Phycology (2019) 31:905–913 https://doi.org/10.1007/s10811-018-1675-z VI REDEALGAS WORKSHOP (RIO DE JANEIRO, BRAZIL) Variation of the photosynthetic activity and pigment composition in two morphotypes of Durvillaea antarctica (Phaeophyceae) in the sub-Antarctic ecoregion of Magallanes, Chile F. Méndez1,2,3 & J. Marambio1 & J. Ojeda1 & S. Rosenfeld1 & J. P. Rodríguez1,2,3 & F. Tala4,5 & A. Mansilla1,2 Received: 26 March 2018 /Revised and accepted: 19 October 2018 /Published online: 9 November 2018 # Springer Nature B.V. 2018 Abstract The environment of the sub-Antarctic ecoregion of Magallanes is highly heterogenous due to the influence of three oceans (Pacific, Atlantic, and Southern) and the effects of postglacial events such as the Last Glacial Maximum. In the sub-Antarctic ecoregion of Magallanes, the presence of two morphotypes of Durvillaea antarctica has recently been recorded that are related to the specific hydrodynamic configuration of the sites in the region. This study investigates the photosynthetic activity and pigment composition during two periods of the year in these two morphotypes of D. antarctica. One of them has broad and laminar fronds and occurs in wave-protected environments, while the other morphotype is characterized by cylindrical and elongated fronds and inhabits wave-exposed environments. The adult specimens of the Belongated-cylindrical^ morphotype were collected in Seno Otway (53.1° S, 71.5° W) and the specimens of the Blaminar^ morphotype in Bahía el Águila, San Isidro (53.7° S, 70.9° W). ETRmax, α,andEk as parameters of the ETR-E curves were higher for the Blaminar^ than the Belongated-cylindrical^ morphotype, resulting in significant values.
    [Show full text]
  • Seaweeds and Their Communities in Polar Regions
    Chapter 13 Seaweeds and Their Communities in Polar Regions Christian Wiencke and Charles D. Amsler 13.1 Introduction The natural environment of polar seaweeds is characterized by strong seasonal light conditions and constant low temperatures (Zacher et al. 2011). At the northern and southern distribution limits of seaweeds in the Arctic (80N) and Antarctic (77S), the polar night lasts for about 4 months. At lower latitudes, e.g., the northern border of the Antarctic region, at King George Island (South Shetland Islands; 62S) daylength varies between 20 h in summer and 5 h in winter. Sea-ice cover extends the period of hibernal darkness. If the ice is covered by snow under-ice irradiance can be reduced to <2% of the surface value. Extremely low irradiances 6.5 mmol photons mÀ2 sÀ1 have been measured even in midsummer (June) below a sea-ice cover and a snow layer of 30 cm in June on Arctic Spitsbergen (Hanelt et al. 2001). So, seaweeds can be exposed for long periods to darkness and very low light conditions. However, when the sea-ice breaks up solar radiation can penetrate deeply into the relatively clear water. In October/November 1993, average midday irradiances as high as 70 mmol photons mÀ2 sÀ1 were measured in 30 m water depth at King George Island (Go´mez et al. 1997). At Signy Island (South Orkney Islands), the mean 1% depth of surface photosynthetically active radiation (PAR) is at about 29 m (Brouwer 1996a). Ultraviolet (UV) radiation as well can go down to consid- erable depths. In coastal areas, the 10% level for UV-A/UV-B radiation can be as deep as 7.1/4.3 m water depth, respectively, in summer (Richter et al.
    [Show full text]