389 © Springer Nature Switzerland AG 2020 I. Gómez, P. Huovinen (Eds.), Antarctic Seaweeds

Total Page:16

File Type:pdf, Size:1020Kb

389 © Springer Nature Switzerland AG 2020 I. Gómez, P. Huovinen (Eds.), Antarctic Seaweeds Index A successional patterns, 243, 244 Abiotic factors, 175 successional processes, 242 Accelerated regional warming, 7 temporal and spatial reduction, 255 Actinobacteria, 286 UV radiation, 255 Adenocystis utricularis, 199 Antarctic benthic system, 14 Algal assemblages, 88 Antarctic biodiversity, 10 Alien competitors, 267, 269 Antarctic biota, 10 Alien macroalgae, 267, 268 Antarctic brown algae, 5 Alien species, 96 Antarctic Circumpolar Current (AAC), Amphipods 4, 8, 267 assemblages, 269 circumpolar path, 49 chemical defenses, 347, 348 description, 44 description, 342 eddies, 47 feeding bioassays, 342 eastward movement, 84 Lambia antarctica, 349 Gigartina skottsbergii, 95 mortality rates, 270 high-level endemism, 44 populations, 271 mesoscale variability, 47 WAP ocean circulation in SO, 84 coastal food webs, 269 oceanic features, 44 macroalgae, 347 as oceanographic barriers, 46 macroalga-invertebrate primary fronts, 46 interactions, 352–355 Antarctic coastal areas Antarctic algal succession carbon fluxes, 157, 158 glacier retreat, 252–253 macroalgae, 157, 158 grazing, 249–252 Antarctic coastal ecosystems, 15 UV-B, 248–249 Antarctic coastal systems, 8 Antarctic benthic algae Antarctic coastal zone, 174, 175 biological drivers, 255 Antarctic Convergence, 84 colonization processes, 255 Antarctic costal systems, 6 constraints and difficulties, 254 Antarctic cyanobacteria, 88 in situ succession, 253, 254 Antarctic Desmarestiales, 196 interannual changes, 243 Antarctic environment, 256 macroalgae, 243 algae, 25 sessile faunal assemblages, 242 benthic organisms, 25 structural patterns and changes, 244–248 diversity, 27 subtidal communities, 253 macroalgae, 27 © Springer Nature Switzerland AG 2020 389 I. Gómez, P. Huovinen (eds.), Antarctic Seaweeds, https://doi.org/10.1007/978-3-030-39448-6 390 Index Antarctic environment (cont.) B physical and chemical, 25 Bacterial community diversity temperature and salinity, 24 Actinobacteria, 286 Antarctic flora, 10 differences, 285 Antarctic high-intertidal tidepools, 272 epiphytic and endophytic bacterial, 286 Antarctic intertidal ecosystems, 52 marine prokaryotic, 284 Antarctic light regime, 4 PacBio SMRT sequencing, 285 Antarctic macroalgae, 89, 158, 252, 267 phylum Ochrophyta, 285 chemical roles, in sensory ecology, 340 predominant bacteria, 285 Antarctic marine ecosystems, 157 proteobacteria and Firmicutes, 286 Antarctic marine flora, 4, 7, 28 Benthic algae, 294 Antarctic marine macroalgae Benthic algal community, 160 ACC, 104 Benthic Antarctic grazers, 274 diversity, 104 Benthic communities genetic diversity, 109–111 canopy-forming algae physiology, 230 population fragmentation, 109 structure and maintenance, 230 Quaternary glacial events, 106–108 Benthic primary producer communities, 243, reconstruction, 105 245, 248 Antarctic maritime islands, 37 Biofouling, 340 Antarctic organisms, 16 Biogeographic barriers, 38 Antarctic ozone depletion, 6 Biogeographic processes Antarctic Polar Front (APF), 9, 62–67, 69, 70, Antarctic Convergence, 84 74, 104–107, 116, 117 barriers and ecological corridors, 84 Antarctic Program, 88 clusters, 87 Antarctic rocky shores, 50, 52 cryptic species, 87 Antarctic seaweeds, 12 diversity and endemism, 86 ACC, 8, 9 eco-regions, isolation and biogeographical regions, 8 endemism, 93–96 biomass values, 11 faunal provinces, 86 chlorophyceans, 10 GWR model, 86 climate change, 8, 16 meteorological and oceanographic ecological succession, 12 patterns, 98 ecosystem level, 6 temperature, 86 environmental features, 10 Biological invasions global climate changes, 7 anthropogenic threats, 266 inorganic and organic pollutants, 16 biological isolation, 266 logistical constraints, 15 isolated ecosystems, 266 long-term assessment, 15 macroalgae, 267 macromorphology, 26 Biomass reduction, 251 molecular ecology, 15 Blue autofluorescence, phenolic compounds, 379 photobiological adaptations, 132 Brown algae photosynthetic shade adaptation, adverse effects, copper, 374 137, 138 dry weight, 367 phylogenetic relationships, 285 enzymatic machinery, 380 solar radiation, 11 old-temperate genera, 374 Antarctic terrestrial fauna, 45 phlorotannins Anti-herbivory defences, 269 Cystosphaera jacquinotii, 378 Antioxidant activity, 370, 373, 374 depths, 376 (see also Phlorotannins) Antioxidant capacity, 14 and metals, 373 Apparent optical properties (AOPs), 133 photoprotective role, 371 Aquatic organisms, 131 UV-absorbing characteristics, 380 Ascendency framework, 311, 317–319 UV protection and antioxidant activity, 370 Ascoseira mirabilis, 196 Brown species, 60, 62 Index 391 C D Canopy-forming algae Dark respiration, 181 Desmarestiales, 232 Deception Island functional groups, 231 aerial view, 91 physical disturbance, 230 anthropic activity, 92 taxonomic richness, 230 Chlorophyta, 92 Carbon balance (CB) circular-shaped volcano, 91 daily net CB, 182, 183 Crustose calcareous algae, 92 estimations, 11 definition, 90 glacier influence, 178 diversity, macroalgae, 92 glacier melting, 178 environmental changes, 91 irradiance vs. photosynthesis, 177 filamentous Cyanobacteria, 89 light availability, 179, 180 fumarolic emissions and thermal mathematical models, 177 springs, 91 newly ice-free areas, 178 fungal species, 93 photosynthesis, 183, 184 geographical position, 85, 90 photosynthetic acclimation, human activity, 91 181, 182 microclimates, 91 positive CB, 177 tourism, 92 Potter Cove, 178 Denaturing-gradient gel electrophoresis primary production, 176, 177 (DGGE), 283 turbidity, 177 Desmarestia anceps, 196 WAP, 178 Desmarestiales, 245, 247 Carbon flux, 157, 158, 163 Detached seaweeds Changing light environment, 175 connectivity, 61 Cheirimedon femoratus, 346, 347 D. anceps and D. menziesii, 62 Chemical ecology drift brown algae, 67 defenses, 348, 349 drift D. anceps, 67 in feeding deterrence, macroalga, 341 green algae, 67 mediation, defensive interactions, 340 macroalgae, 62–67 Plocamium cartilagineum, 347 red algae, 62 signals, 340 decomposition rates, 68 Chemical signals, 340 stranded seaweeds, 62, 68, 69 Chilean South Patagonia (CSP), 268 Dispersal of organisms, 46 Chlorophyll fluorescence, 182 DNA damage, 135, 139, 206 Climate changes, 4, 87, 89, 174, 175, 211 Drifting seaweeds Coastal benthic-pelagic ecosystems, 310, detached macroalgae, 62 319–321, 327, 328, 330 in hollows, 62 Coastal ecosystems, 310 Durvillaea antarctica, 46, 51–52 Coastal marine ecosystems, 156, 157 Dynamic growth models, 162–165 Coastal waters, 50 Dynamic photoinhibition, 138, 139 Colored dissolved organic matter (CDOM), 132, 141, 144 Community structure, 302 E Constitutive anti-stress mechanisms, 14 Early colonizers, 244 Crude extracts, 341, 343–345, 347, 348, East Antarctic Peninsula (EAP), 37 350, 352 Ecological functions, 12 Cultivation-based methods, 282 Ecological systems, 302 Cyanobacteria, 88, 91, 92 Ecosystem engineering functions, 6 Cyclobutane pyrimidine dimers Ecosystem functioning, 295, 298, 302 (CPDs), 205 Ecosystem functions, 12 Cystosphaera jacquinotii, 64, 74, 75 Eddies, 47, 49 Cystosphaera jacquinotti, 60–62, 72, 74, 75 Ekman transport, 47 392 Index Electron transport rates (ETR), 204, 205 life strategies and stress tolerance, 227–229 Endemic species, 28, 30, 31, 35 light use characteristics, 225–227 Endemism, 85, 86, 88, 96 morpho-genetic-based program, 218 Energy mass balance, 313 morphological plasticity, 218 Environmental factors phenotypic plasticity, 218 copper, 210 photochemical adjustments, 219 high solar radiation, 205–208 vertical zonation, 222–224 human activities, 210 Functional form groups, 219, 221 ocean acidification, 210 Functional groups, 219 reproduction, 210 Antarctic green algae, 222 salinity, 210 gross morphology, 220 temperature, 208, 209 L. antarctica and M. hariotii, 219 Environmental filtering, 266 Functional traits Expansion-contraction model, 108 benthic communities, 230 biological interactions, 230 crustose species, 230 F form models, 230 Feeding bioassay, 340–341 low light conditions, 231 Filamentous fungi and yeasts, 282 polar coastal ecosystems, 229 Floating alga temperate ecosystems, 231 abiotic factors, 69–71 biotic factors, 71–72 C. jacquinotti, 60, 61 G dispersal mechanism, 73 Gametogenesis, 196 kelps, 61 Gastropods, 354–356 M. pyrifera and D. antarctica, 70 Antarctic grazing, 270 physiological responses, 73–75 mesocosm experiments, 269 species, described, 60 GenBank data, 36 See also Detached seaweeds Generalized additive model (GAM), 157 Floating seaweeds, 9 Genetic diversity biotic factors, 69–71 COI and TufA sequences data sets, 109, 110 cold-temperate, 70 genetic drift, 108 description, 62 Geographically weighted regression (GWR) drift and stranded seaweeds, 61 model, 86 environmental change, 73 Gigartina skottsbergii, 198 flora and fauna, 61 Glacial refugia in temperate latitudes, 72 Antarctic macroalgae, 115 nutrient abundance, 70 genetic diversity, 116, 117 Fluorescence in situ hybridization (FISH), 283 geothermal, 107 Fluorescence method, 204 ice coverage, 116 Food webs in situ marine refugia, 107 macroalgae, 294 LGM, 113 macroalgal community, 295 peri-Antarctic islands, 107 modular patterns, 303 population effective size, 116 network, 296, 301 population fragmentation, 108 Potter Cove ecosystem, 296–298 vs. single Antarctic refugium, 108–109 properties, 295, 296 “Glacier influence”, 178 robustness, 300 Glacier melting, 178 trophic levels (TL) of species, 296 Glacier retreat, 162, 164 Food web theory, 295 Global change phenomena, 256 Form and functions Global warming, 46, 166 functional groups, 219–222 Grazing, 13 heteromorphic phase expression, 218 algal
Recommended publications
  • Extraction Assistée Par Enzyme De Phlorotannins Provenant D'algues
    Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques Maya Puspita To cite this version: Maya Puspita. Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques. Biotechnologie. Université de Bretagne Sud; Universitas Diponegoro (Semarang), 2017. Français. NNT : 2017LORIS440. tel-01630154v2 HAL Id: tel-01630154 https://hal.archives-ouvertes.fr/tel-01630154v2 Submitted on 9 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Enzyme-assisted extraction of phlorotannins from Sargassum and biological activities by: Maya Puspita 26010112510005 Doctoral Program of Coastal Resources Managment Diponegoro University Semarang 2017 Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques Maria Puspita 2017 Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques par: Maya Puspita Ecole Doctorale
    [Show full text]
  • UV-Protective Compounds in Marine Organisms from the Southern Ocean
    marine drugs Review UV-Protective Compounds in Marine Organisms from the Southern Ocean Laura Núñez-Pons 1 , Conxita Avila 2 , Giovanna Romano 3 , Cinzia Verde 1,4 and Daniela Giordano 1,4,* 1 Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy; [email protected] (L.N.-P.); [email protected] (C.V.) 2 Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain; [email protected] 3 Department of Marine Biotechnology (Biotech), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy; [email protected] 4 Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy * Correspondence: [email protected]; Tel.: +39-081-613-2541 Received: 12 July 2018; Accepted: 12 September 2018; Published: 14 September 2018 Abstract: Solar radiation represents a key abiotic factor in the evolution of life in the oceans. In general, marine, biota—particularly in euphotic and dysphotic zones—depends directly or indirectly on light, but ultraviolet radiation (UV-R) can damage vital molecular machineries. UV-R induces the formation of reactive oxygen species (ROS) and impairs intracellular structures and enzymatic reactions. It can also affect organismal physiologies and eventually alter trophic chains at the ecosystem level. In Antarctica, physical drivers, such as sunlight, sea-ice, seasonality and low temperature are particularly influencing as compared to other regions. The springtime ozone depletion over the Southern Ocean makes organisms be more vulnerable to UV-R.
    [Show full text]
  • Adjustment of Pigment Composition in Desmarestia
    RESEARCH/REVIEW ARTICLE Adjustment of pigment composition in Desmarestia (Desmarestiaceae) species along a sub-Antarctic to Antarctic latitudinal gradient Andre´ s Mansilla,1,2 Fabio Me´ ndez,1,2,3 Silvia Murcia,1 Juan Pablo Rodrı´guez,1,2,3 Johanna Marambio,1,2,3 Sebastia´ n Rosenfeld,1,2,3 Nair Yokoya4 & Kai Bischof5 1 Laboratory of Antarctic and Sub-Antarctic Marine Ecosystems, University of Magallanes, 01855 Bulnes Ave., Punta Arenas 6200000, Chile 2 Institute of Ecology and Biodiversity, Las Palmeras St. 3425, N˜ un˜ oa, Santiago 8320000, Chile 3 Conservation and Management of Natural Resources in Sub-Antarctic Environments MS Program, University of Magallanes, 01855 Bulnes Ave., Punta Arenas 6200000, Chile 4 Institute of Botany, Sa˜ o Paulo State Department of the Environment, 3687 Miguel Este´ fano Ave., Sa˜ o Paulo 04301-012, SP, Brazil 5 Marine Botany Department, University of Bremen, NW2 Leobener St., Bremen DE-28359, Germany Keywords Abstract Macroalgae; Phaeophyceae; photosynthesis; physiology; environmental Photosynthesis at high latitudes demands efficient strategies of light utilization heterogeneity; Chile. to maintain algal fitness and performance. The fitness, and physiological adaptation, of a plant or algae species depends in part on the abundance and Correspondence efficiency of the pigments it can produce to utilize the light resource from its Silvia Murcia, Laboratory of Antarctic and environment. We quantified pigment composition and concentration in six Sub-Antarctic Marine Ecosystems, species of the brown macroalgal genus Desmarestia, collected from sub- University of Magallanes, 01855 Bulnes Antarctic sites (Strait of Magellan, Beagle ChannelÁCape Horn Province) and Ave., Punta Arenas 6200000, Chile. E-mail: [email protected] sites on the Antarctic Peninsula and adjacent islands.
    [Show full text]
  • Bottom Macroalgae of the Admiralty Bay (King George Island, South Shetlands, Antarctica)
    POLISH POLAR RESEARCH 11 1—2 95—131 1990 Krzysztof ZIELIŃSKI Department of Polar Research, Institute of Ecology, Polish Academy of Sciences Dziekanów Leśny 05—092 Łomianki, POLAND Bottom macroalgae of the Admiralty Bay (King George Island, South Shetlands, Antarctica) ABSTRACT: In the Admiralty Bay 36 taxa of macroalgae were found. Among them the most common were: green alga Monostroma hariotti, red algae — Georyielta confluens, Iridaea cordata, leptosarca simplex and Plocamium cartilagineum, and brown algae — Adenocystis utricularis, Ascoseira mirabilis, Desmarestia anceps, D. ligulata, D. menziesii and Himatothallus grandifolius. The bottom surface covered with macroalgae (in the orthogonal projection on the water mirror) amounts to 36,9 km2 i.e. 31% of the total surface of the bay. In the central part of the Admiralty Bay the macroalgae aggregations occupy 35% of the bottom surface and are most abundant in respect to the density, biomass, number of taxa (33) and diversity. There were distinguished 3 zones of vertical distribution of phytobenthos in the Admiralty Bay. I zone includes the macroalgae in epilittoral, littoral and sublittoral to the depth of 10 m. II and III zones are situated in sublittoral within the depths of 10 60 m and 60—90 m, respectively. Each zone is characterized by the occurrence of different aggregation of taxa. The bottom areas belong to I, II and III zone of macroalgae make 28%, 64% and 8% respectively in relation to the total surface of phytobenthos in the bay. Vertical range of the distinguished zones varies in different parts of the Bay in relation to the bottom character.
    [Show full text]
  • Ligulate Desmarestia (Desmarestiales, Phaeophyceae) Revisited: D
    Erschienen in: Journal of Phycology ; 50 (2014), 1. - S. 149-166 https://dx.doi.org/10.1111/jpy.12148 LIGULATE DESMARESTIA (DESMARESTIALES, PHAEOPHYCEAE) REVISITED: D. JAPONICA SP. NOV. AND D. DUDRESNAYI DIFFER FROM D. LIGULATA1 Eun Chan Yang Culture Collection of Algae and Protozoa (CCAP), The Scottish Association for Marine Science Dunstaffnage Marine Laboratory, Oban, Argyll, Scotland PA37 1QA, UK Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology, 787 Haeanro, Ansan 426 744, Korea Akira F. Peters Bezhin Rosko, 40 rue des pecheurs,^ 29250 Santec, Brittany, France Hiroshi Kawai Kobe University Research Center for Inland Seas, Rokkodai, Nadaku, Kobe 657 8501, Japan Rowena Stern SAHFOS, The Laboratory, Citadel Hill, The Hoe, Plymouth PL1 2PB, UK Takeaki Hanyuda Kobe University Research Center for Inland Seas, Rokkodai, Nadaku, Kobe 657 8501, Japan Ignacio Barbara Coastal Biology Research Group, Facultad de Ciencias, Universidad de A Coruna,~ Campus de la Zapateira, A Coruna~ 15071, Spain Dieter Gerhard Muller€ Fachbereich Biologie, Universit€at Konstanz, Konstanz D 78457, Germany Martina Strittmatter2 Culture Collection of Algae and Protozoa (CCAP), The Scottish Association for Marine Science Dunstaffnage Marine Laboratory, Oban, Argyll, Scotland PA37 1QA, UK Willem F. Prud’Homme van Reine Netherlands Centre for Biodiversity Naturalis, Leiden University (section NHN), P.O. Box 9514, RA Leiden 2300, The Netherlands and Frithjof C. Kupper€ 3 Culture Collection of Algae and Protozoa (CCAP), The Scottish Association for Marine Science Dunstaffnage Marine Laboratory, Oban, Argyll, Scotland PA37 1QA, UK Oceanlab, University of Aberdeen, Main Street, Newburgh, Scotland AB41 6AA, UK The phylogeny of ligulate and sulfuric-acid taxa to four different species.
    [Show full text]
  • Estudo Químico Bioguiado Da Macroalga Marinha Da Antártica Desmarestia Menziesii (Phaeophyceae) Para Isolamento De Substâncias
    ISAC JOSÉ DA SILVA FILHO Estudo químico bioguiado da macroalga marinha da Antártica Desmarestia menziesii (Phaeophyceae) para isolamento de substâncias com atividades biológicas Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de MESTRE em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Avasculares e Fungos em Análises Ambientais. SÃO PAULO 2018 II ISAC JOSÉ DA SILVA FILHO Estudo químico bioguiado da macroalga marinha da Antártica Desmarestia menziesii (Phaeophyceae) para isolamento de substâncias com atividades biológicas Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de MESTRE em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Avasculares e Fungos em Análises Ambientais. ORIENTADORA: DRA. LUCIANA RETZ DE CARVALHO III Ficha Catalográfica elaborada pelo NÚCLEO DE BIBLIOTECA E MEMÓRIA Silva Filho, Isac José da S586e Estudo químico bioguiado da macroalga marinha da Antártica Desmarestia Menziesii (Phaeophyceae) para isolamento de substâncias com atividades biológicas. / Isac José da Silva Filho -- São Paulo, 2018. 106p. ; il. Dissertação (Mestrado) -- Instituto de Botânica da Secretaria de Estado do Meio Ambiente, 2018. Bibliografia. 1. Algas extremófilas. 2. Manitol. 3. Anticongelante. I. Título. CDU: 582.26 IV É necessário sempre acreditar que o sonho é possível Que o céu é o limite e você, truta, é imbatível Que o tempo ruim vai passar, é só uma fase E o sofrimento alimenta mais a sua coragem (Racionais MC's) V Dedico ao meu filho Nicolas Davi e a minha mãe Maria José que são a minha base e também a toda a minha família com muito amor e carinho.
    [Show full text]
  • Caractérisation Et Sources De Variation Du Métabolome: Le Cas De L'algue Brune Lobophora Des Écosystèmes Coralliens De N
    Caractérisation et sources de variation du métabolome : le cas de l’algue brune Lobophora des écosystèmes coralliens de Nouvelle-Calédonie Julie Gaubert To cite this version: Julie Gaubert. Caractérisation et sources de variation du métabolome : le cas de l’algue brune Lobophora des écosystèmes coralliens de Nouvelle-Calédonie. Biodiversité et Ecologie. Sorbonne Université, 2018. Français. NNT : 2018SORUS530. tel-02926162 HAL Id: tel-02926162 https://tel.archives-ouvertes.fr/tel-02926162 Submitted on 31 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale des Sciences de l’Environnement (ED 129) IRD Nouméa / UMR Entropie NUI Galway/ Marine Biodiscovery Laboratory Caractérisation et sources de variation du métabolome : le cas de l’algue brune Lobophora des écosystèmes coralliens de Nouvelle-Calédonie Par Julie GAUBERT Thèse de doctorat de Biologie Marine – Ecologie Chimique Dirigée par Claude PAYRI et co-dirigée par Olivier THOMAS Présentée et soutenue publiquement le 12 Octobre 2018 Devant un jury composé de
    [Show full text]
  • Consistent Richness-Biomass Relationship Across Environmental Gradients in a Marine Macroalgal-Dominated Subtidal Community on the Western Antarctic Peninsula
    RESEARCH ARTICLE Consistent Richness-Biomass Relationship across Environmental Gradients in a Marine Macroalgal-Dominated Subtidal Community on the Western Antarctic Peninsula Nelson Valdivia*, María José Díaz, Ignacio Garrido, Iván Gómez Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile * [email protected] Abstract OPEN ACCESS Biodiversity loss has spurred the biodiversity-ecosystem functioning research over a range of ecosystems. In Antarctica, however, the relationship of taxonomic and functional diversity Citation: Valdivia N, Díaz MJ, Garrido I, Gómez I (2015) Consistent Richness-Biomass Relationship with ecosystem properties (e.g., community biomass) has received less attention, despite across Environmental Gradients in a Marine the presence of sharp and dynamic environmental stress gradients that might modulate Macroalgal-Dominated Subtidal Community on the these properties. Here, we investigated whether the richness-biomass relationship in Western Antarctic Peninsula. PLoS ONE 10(9): macrobenthic subtidal communities is still apparent after accounting for environmental e0138582. doi:10.1371/journal.pone.0138582 stress gradients in Fildes Bay, King George Island, Antarctica. Measurements of biomass Editor: Andrew R. Mahon, Central Michigan of mobile and sessile macrobenthic taxa were conducted in the austral summer 2013/4 University, UNITED STATES across two environmental stress gradients: distance from nearest glaciers and subtidal Received: June 20, 2015 depth (from 5 to 30 m). In general, community biomass increased with distance from gla- Accepted: September 1, 2015 ciers and water depth. However, generalised additive models showed that distance from Published: September 18, 2015 glaciers and depth accounted for negligible proportions of variation in the number of func- Copyright: © 2015 Valdivia et al.
    [Show full text]
  • Stress Tolerance of the Endemic Antarctic Brown Alga Desmarestia Anceps to UV Radiation and Temperature Is Mediated by High Concentrations of Phlorotannins
    Photochemistry and Photobiology, 2016, 92: 455–466 Stress Tolerance of the Endemic Antarctic Brown Alga Desmarestia anceps to UV Radiation and Temperature is Mediated by High Concentrations of Phlorotannins Marıa Rosa Flores-Molina1,2*, Ralf Rautenberger2, Pamela Munoz~ 2, Pirjo Huovinen2,3 and Ivan Gomez 2,3 1Doctorado en Biologıa Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile 2Instituto de Ciencias Marinas y Limnologicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile 3Centro Fondap de Investigacion de Altas Latitudes (IDEAL), Valdivia, Chile Received 24 September 2015, accepted 19 January 2016, DOI: 10.1111/php.12580 ABSTRACT 400–700 nnm) that may impose severe limitations for photosyn- thesis. Thus, Antarctic macroalgae, are not only able to respond The endemic Antarctic brown macroalga Desmarestia anceps with the extreme seasonality in day lengths, but also exhibit a is strongly shade-adapted, but shows also a high capacity to remarkable capacity to photosynthesize efficiently at low PAR cope with different environmental stressors, e.g. UV radiation irradiances under constant low temperatures ranging between and temperature. Therefore, this species colonizes wide depth À1.8 and +2°C (reviewed in 2). gradients, which are characterized by changing environmen- Although subtidal macroalgae are usually exposed to very low tal conditions. In this study, we examine whether the differ- irradiances of solar radiation due to snow-covered sea-ice in win- ent physiological abilities allowing D. anceps to grow across a ter, many Antarctic coastal waters are highly transparent to both wide depth range is determined by high levels of phlorotan- PAR after the break-up of sea ice in spring and early summer fl nins.
    [Show full text]
  • Phaeophyceae) in the Sub-Antarctic Ecoregion of Magallanes, Chile
    Journal of Applied Phycology (2019) 31:905–913 https://doi.org/10.1007/s10811-018-1675-z VI REDEALGAS WORKSHOP (RIO DE JANEIRO, BRAZIL) Variation of the photosynthetic activity and pigment composition in two morphotypes of Durvillaea antarctica (Phaeophyceae) in the sub-Antarctic ecoregion of Magallanes, Chile F. Méndez1,2,3 & J. Marambio1 & J. Ojeda1 & S. Rosenfeld1 & J. P. Rodríguez1,2,3 & F. Tala4,5 & A. Mansilla1,2 Received: 26 March 2018 /Revised and accepted: 19 October 2018 /Published online: 9 November 2018 # Springer Nature B.V. 2018 Abstract The environment of the sub-Antarctic ecoregion of Magallanes is highly heterogenous due to the influence of three oceans (Pacific, Atlantic, and Southern) and the effects of postglacial events such as the Last Glacial Maximum. In the sub-Antarctic ecoregion of Magallanes, the presence of two morphotypes of Durvillaea antarctica has recently been recorded that are related to the specific hydrodynamic configuration of the sites in the region. This study investigates the photosynthetic activity and pigment composition during two periods of the year in these two morphotypes of D. antarctica. One of them has broad and laminar fronds and occurs in wave-protected environments, while the other morphotype is characterized by cylindrical and elongated fronds and inhabits wave-exposed environments. The adult specimens of the Belongated-cylindrical^ morphotype were collected in Seno Otway (53.1° S, 71.5° W) and the specimens of the Blaminar^ morphotype in Bahía el Águila, San Isidro (53.7° S, 70.9° W). ETRmax, α,andEk as parameters of the ETR-E curves were higher for the Blaminar^ than the Belongated-cylindrical^ morphotype, resulting in significant values.
    [Show full text]
  • Seaweeds and Their Communities in Polar Regions
    Chapter 13 Seaweeds and Their Communities in Polar Regions Christian Wiencke and Charles D. Amsler 13.1 Introduction The natural environment of polar seaweeds is characterized by strong seasonal light conditions and constant low temperatures (Zacher et al. 2011). At the northern and southern distribution limits of seaweeds in the Arctic (80N) and Antarctic (77S), the polar night lasts for about 4 months. At lower latitudes, e.g., the northern border of the Antarctic region, at King George Island (South Shetland Islands; 62S) daylength varies between 20 h in summer and 5 h in winter. Sea-ice cover extends the period of hibernal darkness. If the ice is covered by snow under-ice irradiance can be reduced to <2% of the surface value. Extremely low irradiances 6.5 mmol photons mÀ2 sÀ1 have been measured even in midsummer (June) below a sea-ice cover and a snow layer of 30 cm in June on Arctic Spitsbergen (Hanelt et al. 2001). So, seaweeds can be exposed for long periods to darkness and very low light conditions. However, when the sea-ice breaks up solar radiation can penetrate deeply into the relatively clear water. In October/November 1993, average midday irradiances as high as 70 mmol photons mÀ2 sÀ1 were measured in 30 m water depth at King George Island (Go´mez et al. 1997). At Signy Island (South Orkney Islands), the mean 1% depth of surface photosynthetically active radiation (PAR) is at about 29 m (Brouwer 1996a). Ultraviolet (UV) radiation as well can go down to consid- erable depths. In coastal areas, the 10% level for UV-A/UV-B radiation can be as deep as 7.1/4.3 m water depth, respectively, in summer (Richter et al.
    [Show full text]