Persistence and Biodegradation of Herbicides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MN2000 FSAC 006 Revised1978.Pdf
-i .., ,,, (I-,~-- -' d ~-- C:::- ,, AG RIC UL TURAL EXTENSION SERVICE Afr{ ,<"·<,'>· , -> ',' "\, '. '' ~'¥) AGRICULTURAL CHEMICALS FACT SHEET No. 6-1978 Chemicals for'Weed Cop: GERALD R. MILLER . \~:::sr" This fact sheet is intended only as a summary of suggested Herbicide names and formulations alternative chemicals for weed control in corn. Label informa Common Trade Concentration and tion should be read and followed exactly. For further informa name name commercial formulation 1 tion, see Extension Bulletin 400, Cultural and Chemical Weed Control in Field Crops. Alachlor Lasso 4 lb/gal L Lasso 11 15% G Selection of an effective chemical or combination of chemicals Atrazine AAtrex, 80% WP, 4 lb/gal L should be based on consideration of the following factors: others 80%WP -Clearance status of the chemical Atrazine and propachlor AAtram 20% G -Use of the crop Bentazon Basagran 4 lb/gal L -Potential for soil residues that may affect following crops Butylate and protectant Sutan+ 6.7 lb/gal L -Kinds of weeds Cyanazine Bladex 80% WP, 15% G, 4 lb/gal L -Soil texture Dicamba Banvel 4 lb/gal L -pH of soil Dicamba and 2,4-D Banvel-K 1.25 lb/gal dicamba -Amount of organic matter in the soil 2.50 lb/gal 2,4-D -Formulation of the chemical EPTC and protectant Eradicane 6.7 lb/gal L -Application equipment available Linuron Lorox 50%WP -Potential for drift problems Metolachlor Dual 6 lb/gal L Propachlor Bexton, 65% WP, 20% G, 4 lb/gal L Ramrod 2,4-D Several Various 1 G = granular, L = liquid, WP= wettable powder Effectiveness of herbicides on -
2,4-Dichlorophenoxyacetic Acid
2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators. -
USDA, Forest Service Forest Health Protection GSA Contract No
SERA TR 02-43-13-03b Triclopyr - Revised Human Health and Ecological Risk Assessments Final Report Prepared for: USDA, Forest Service Forest Health Protection GSA Contract No. GS-10F-0082F USDA Forest Service BPA: WO-01-3187-0150 USDA Purchase Order No.: 43-1387-2-0245 Task No. 13 Submitted to: Dave Thomas, COTR Forest Health Protection Staff USDA Forest Service Rosslyn Plaza Building C, Room 7129C 1601 North Kent Street Arlington, VA 22209 Submitted by: Patrick R. Durkin Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Telephone: (315) 637-9560 Fax: (315) 637-0445 E-Mail: [email protected] Home Page: www.sera-inc.com March 15, 2003 TABLE OF CONTENTS LIST OF APPENDICES ...................................................... iv LIST OF WORKSHEETS ...................................................... v LIST OF ATTACHMENTS .................................................... v LIST OF TABLES ............................................................ v LIST OF FIGURES ......................................................... viii ACRONYMS, ABBREVIATIONS, AND SYMBOLS .............................. ix COMMON UNIT CONVERSIONS AND ABBREVIATIONS ......................... xi CONVERSION OF SCIENTIFIC NOTATION .................................... xii EXECUTIVE SUMMARY ................................................... xiii 1. INTRODUCTION ........................................................ 1-1 2. PROGRAM DESCRIPTION ................................................ 2-1 2.1. OVERVIEW -
Common and Chemical Names of Herbicides Approved by the WSSA
Weed Science 2010 58:511–518 Common and Chemical Names of Herbicides Approved by the Weed Science Society of America Below is the complete list of all common and chemical of herbicides as approved by the International Organization names of herbicides approved by the Weed Science Society of for Standardization (ISO). A sponsor may submit a proposal America (WSSA) and updated as of September 1, 2010. for a common name directly to the WSSA Terminology Beginning in 1996, it has been published yearly in the last Committee. issue of Weed Science with Directions for Contributors to A herbicide common name is not synonymous with Weed Science. This list is published in lieu of the selections a commercial formulation of the same herbicide, and in printed previously on the back cover of Weed Science. Only many instances, is not synonymous with the active ingredient common and chemical names included in this complete of a commercial formulation as identified on the product list should be used in WSSA publications. In the absence of label. If the herbicide is a salt or simple ester of a parent a WSSA-approved common name, the industry code number compound, the WSSA common name applies to the parent as compiled by the Chemical Abstracts Service (CAS) with compound only. CAS systematic chemical name or the systematic chemical The chemical name used in this list is that preferred by the name alone may be used. The current approved list is also Chemical Abstracts Service (CAS) according to their system of available at our web site (www.wssa.net). -
Response of Multiple Herbicide Resistant Strain of Diazotrophic Cyanobacterium, Anabaena Variabilis , Exposed to Atrazine and DCMU
Indian Journal of Experimental Biology Vol. 49, April 2011, pp.298-303 Response of multiple herbicide resistant strain of diazotrophic cyanobacterium, Anabaena variabilis , exposed to atrazine and DCMU Surendra Singh, Pallavi Datta * & Archna Tirkey Algal Biotechnology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur 482 001, India Received 1 June 2010; revised 24 January 2011 Effect of two photosynthetic inhibitor herbicides, atrazine (both purified and formulated) and [3-(3,4-dichlorophenyl)- 1,1-dimethyl urea] (DCMU), on the growth, macromolecular contents, heterocyst frequency, photosynthetic O 2 evolution and dark O 2 uptake of wild type and multiple herbicide resistant (MHR) strain of diazotrophic cyanobacterium A. variabilis was studied. Cyanobacterial strains showed gradual inhibition in growth with increasing dosage of herbicides. Both wild type and MHR strain tolerated < 6.0 mg L -1 of atrazine (purified), < 2.0 mg L -1 of atrazine (formulated) and < 0.4 mg L -1 of DCMU indicating similar level of herbicide tolerance. Atrazine (pure) (8.0 mg L -1) and 4.0 mg L -1 of atrazine (formulated) were growth inhibitory concentrations (lethal) for both wild type and MHR strain indicating formulated atrazine was more toxic than the purified form. Comparatively lower concentrations of DCMU were found to be lethal for wild type and MHR strain, respectively. Thus, between the two herbicides tested DCMU was more growth toxic than atrazine. At sublethal dosages of herbicides, photosynthetic O 2 evolution showed highest inhibition followed by chlorophyll a, phycobhiliproteins and heterocyst differentiation as compared to carotenoid, protein and respiratory O 2 uptake. Keyword s: Atrazine, Cyanobacteria, DCMU, Herbicides, Mutants, Photosynthesis In modern agriculture weed control by herbicides is a tolerate or resist toxic actions of various rice field common practice to increase in crop productivity 1. -
Atrazine Active Ingredient Data Package April 1, 2015
Active Ingredient Data Package ATRAZINE Version #5 (May 14, 2015) Long Island Pesticide Pollution Prevention Strategy Active Ingredient Assessment Bureau of Pest Management Pesticide Product Registration Section Contents 1.0 Active Ingredient General Information – Atrazine .................................................................... 3 1.1 Pesticide Type ........................................................................................................................... 3 1.2 Primary Pesticide Uses .............................................................................................................. 3 1.3 Registration History .................................................................................................................. 3 1.4 Environmental Fate Properties ................................................................................................. 3 1.5 Standards, Criteria, and Guidance ............................................................................................ 4 2.0 Active Ingredient Usage Information ........................................................................................ 5 2.1 Reported Use of Atrazine in New York State ............................................................................ 5 2.2 Overall Number and Type of Products Containing the Active Ingredient ................................ 7 2.3 Critical Need of Active Ingredient to Meet the Pest Management Need of Agriculture, Industry, Residents, Agencies, and Institutions ...................................................................... -
Herbicide Mode of Action Table High Resistance Risk
Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®), -
Nomenclature of Commonly Available Herbicides in India
NOMENCLATURE OF COMMONLY AVAILABLE HERBICIDES IN INDIA Prior to the widespread use of chemical herbicides, mechanical control and cultural controls, such as altering soil pH, salinity, or fertility levels were used to control weeds. The first widely used herbicide was 2,4-dichlorophenoxyacetic acid, often abbreviated 2,4-D which kills many broadleaf plants while leaving grasses largely unaffected (high doses of 2,4-D at crucial growth periods can harm grass crops such as maize or cereals). The low cost of 2,4-D has led to continued usage today and it remains one of the most commonly used herbicides in the world. In 1950s triazine family of herbicides, which includes atrazine was introduced. Atrazine does not break down readily (within a few weeks) after being applied to soils of above neutral pH. Atrazine is said to have carryover, a generally undesirable property for herbicides. Glyphosate, frequently sold under the brand name Roundup, was introduced in 1974 for non- selective weed control. It is now a major herbicide in selective weed control in growing crop plants due to the development of crop plants that are resistant to it. Many modern chemical herbicides for agriculture are specifically formulated to decompose within a short period after application. This is desirable as it allows crops which may be affected by the herbicide to be grown on the land in future seasons. However, herbicides with low residual activity (i.e., that decompose quickly) often do not provide season-long weed control. List of herbicides with their common name -
Ecological Risk Assessment for Saflufenacil
TEXT SEARCHABLE DCOUMENT 2011 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CEMICAL SAFETY AND POLLUTION PREVENTION PC Code: 118203 DP Barcode: 380638 and 381293 Thursday, April 07, 2011 MEMORANDUM SUBJECT: Ecological Risk Assessment for Saflufenacil Section 3 New Chemical Uses as a harvest aid on dry edible beans, dry peas, soybean, oilseeds "sunflower subgroup 20B", oilseeds "cotton subgroup 20C", and oilseeds canola "subgroup 20A". TO: Kathryn Montague, M.S., Product Manager 23 Herbicide Branch Registration Division (RD) (7505P) FROM: ~ Mohammed Ruhman, Ph.D., Agronomist 2 :4- . ""=- ........ 04!tJt! (I neith Sappington, Senior Biologist/Science Adviso~.... Vd- Environmental Risk Branch V O'f/ .../ II Environmental Fate and Effects Division (7507P) THROUGH: Mah Shamim, Ph.D., Branch Chief Environmental Risk Branch VI Environmental Fate and Effects Division (7507P) This ecological risk assessment for saflufenacil new uses is relying on the attached previous assessment (Attachment 1). As shown in the usage summary (Table 1), the single and seasonal rate, for all the crops range from 0.045 to 0.089 lbs a.i/A are within the range application rates used in exposure modeling for the 2009 Section 3 New Chemical Environmental Fate and Ecological Risk Assessment (DP Barcode 349855). Therefore, risk findings determined for the 2009 assessment may be used in the assessment for this submittal. Specifically, the 2009 assessment found no chronic risks to avian and mammalian species at an agricultural use rate 0 0.134 lb a.i.lA. Acute risks were not determined for birds and mammals since saflufenacil was not acutely toxic at the highest doses tested. -
Agricultural Biotechnology: Benefits of Transgenic Soybeans
AGRICULTURAL BIOTECHNOLOGY: BENEFITS OF TRANSGENIC SOYBEANS Leonard P. Gianessi Janet E. Carpenter April 2000 National Center for Food and Agricultural Policy 1616 P Street, NW, First Floor Washington, DC 20036 Tel: 202-328-5048 Fax: 202-328-5133 [email protected] Preparation of this report was supported financially with a grant from the Rockefeller Foundation TABLE OF CONTENTS 1. Introduction 2. U.S. Soybean Production 3. Soybean Products 4. Soybean Physiology 5. Soybeans – Agronomic Factors 6. Soybean Genetic Improvements A. Introduction B. Reproductive Process C. Artificial Cross Breeding D. Mutation Breeding E. Transgenic Plants 7. Weed Competition – Soybeans 8. Weed Control in Soybeans: 1940’s – 1950’s 9. Herbicides – An Overview 10. Herbicide Use in Soybeans: 1960’s – 1995 A. Introduction B. Historical Overview 1. The Early 1960’s 2. Soil Applied Herbicides 3. Postemergence Herbicides 4. Sulfonylurea/Imidazolinone Herbicides 5. Burndown Herbicides C. Summary of Usage: 1995 11. Transgenic Herbicide Tolerant Soybeans A. Glyphosate – An Overview B. Performance of Roundup Ready Soybeans C. Herbicide Ratings D. Adoption Impacts: 1995 – 1998 1. Herbicide Costs 2. Soybean Yields 3. Returns 4. Other Aggregate Studies 5. Herbicide Treatments 6. Herbicide Use Amounts 7. Other Impacts 12. Summary and Conclusions 13. References Appendix 1: Soybean Processing – A Description 1. Introduction Soybeans and other crops have been improved genetically for many decades through traditional crop breeding – a technique that requires that species be sexually compatible. With the development of biotechnology methods, scientists have the ability to transfer single genes from one living organism into another, regardless of species or sexual compatibility. Varieties that are developed through the transfer of genes between species that are not sexually compatible are referred to as “transgenic.” Transgenic soybean plants have been developed with a gene from a soil bacteria that allows the use of an herbicide that would normally kill soybeans. -
U.S. Geological Survey National Water-Quality Assessment Program
U.S. Geological Survey National Water-Quality Assessment Program Stream water-quality analytes Major ions and trace elementsschedule 998 (20 constituents) Pesticides schedule 2437 (229 compounds) Alkalinity 1H1,2,4Triazole Arsenic 2,3,3Trichloro2propene1sulfonic acid (TCPSA) Boron 2,4D Calcium 2(1Hydroxyethyl)6methylaniline Chloride 2[(2Ethyl6methylphenyl)amino]1propanol Fluoride 2AminoNisopropylbenzamide Iron 2Aminobenzimidazole Lithium 2Chloro2',6'diethylacetanilide 2Chloro4,6diaminostriazine {CAAT} Magnesium (Didealkylatrazine) pH 2Chloro4isopropylamino6aminostriazine Potassium 2Chloro6ethylamino4aminostriazine {CEAT} Total dissolved solids 2ChloroN(2ethyl6methylphenyl)acetamide Selenium 2Hydroxy4isopropylamino6aminostriazine 2Hydroxy4isopropylamino6ethylaminostriazin Silica e {OIET} Sodium 2Hydroxy6ethylamino4aminostriazine Specific conductance 2Isopropyl6methyl4pyrimidinol Strontium 3,4Dichlorophenylurea Sulfate 3Hydroxycarbofuran Turbidity 3Phenoxybenzoic acid Vanadium 4(Hydroxymethyl)pendimethalin 4Chlorobenzylmethyl sulfoxide Suspended sediment 4Hydroxy molinate 4Hydroxychlorothalonil Nutrientsschedule 2430 (18 constituents) 4Hydroxyhexazinone A Inorganic carbon, suspended Acephate Dissolved inorganic carbon Acetochlor ammonia + organic nitrogen (unfilteredKjeldahl) Acetochlor oxanilic acid ammonia + organic nitrogen (filteredKjeldahl) Acetochlor sulfonic acid Ammonia as N, filtered Acetochlor sulfynilacetic acid nitrite, filtered Alachlor -
Special Report 354 April 1972 Agricultural Experiment Station
ORTMAL DO ;10T REMOVE 7.9 m FILE Special Report 354 April 1972 Agricultural Experiment Station Oregon State University, Corvallis I FIELD APPLICATION OF HERBICIDES--AVOIDING DANGER TO FISH Erland T. Juntunen Department of Fisheries and Wildlife Oregon State University Corvallis, Oregon and Logan A. Norris Pacific Northwest Forestry Sciences Laboratory and Range Experiment Station Forest Service, U. S. Department of Agriculture Corvallis, Oregon April, 1972 Trade names are used in this publication solely to provide specific information. No endorsement of products is intended nor is criticism implieLl to products mentioned or omitted. Recommendations are not made concerning safe use of products nor is any guarantee or warranty of results or effects of the products intended or implied. ii Chemical weed and brush control with herbicides is an important land management practice in modern agriculture and forestry. In some cases, herbicides are applied directly to bodies of water for aquatic weed control. More commonly, herbicides are applied to lands adjacent to waterways for general weed and brush control. The responsible applicator will avoid damage to fishery resources by being fully aware of a particular herbicides potential hazard to fish. Herbicide applications should be considered hazardous to fish when there is the probability fish will be exposed to herbicide concen- trations which are harmful. This bulletin offers information that will aid in selecting the particular herbicides and formulations of least hazard to fish considering the toxicity of the herbicide and the poten- tial for its entry into streams, lakes, or ponds. Entry of Herbicides into the Aquatic Environment In aquatic weed control, the effective concentration of herbicide in the water depends on the rate of application, the rate of the spread of the chemical, the size and chemical composition of the body of water, the rate of degradation or adsorption of the chemical on sediments, and the rate of mixing of treated water with untreated water.