The Role of Plasmacytoid Dendritic Cells and Natural Killer Cells in Systemic Lupus Erythematosus

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Plasmacytoid Dendritic Cells and Natural Killer Cells in Systemic Lupus Erythematosus Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 963 The Role of Plasmacytoid Dendritic Cells and Natural Killer Cells in Systemic Lupus Erythematosus NIKLAS HAGBERG ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-8837-6 UPPSALA urn:nbn:se:uu:diva-213674 2014 Dissertation presented at Uppsala University to be publicly examined in Rudbecksalen, Rudbecklaboratoriet, Dag Hammarskjölds väg 20, Uppsala, Friday, 21 February 2014 at 09:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor George Tsokos (Harvard Medical School, Beth Israel Deaconess Medical Center). Abstract Hagberg, N. 2014. The Role of Plasmacytoid Dendritic Cells and Natural Killer Cells in Systemic Lupus Erythematosus. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 963. 73 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-8837-6. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production, which can eventually lead to immune complex (IC)-mediated organ damage. Due to the stimulation of plasmacytoid dendritic cells (pDC) by nucleic acid-containing ICs (DNA- or RNA-IC), patients with SLE have an ongoing interferon (IFN)-α production. IFN-α induces a general activation of the immune system that may initiate or propagate an autoimmune process if not properly regulated. Previous studies have shown that natural killer (NK) cells potently enhance the IFN-α production by pDCs. In study I, the mechanisms behind the NK cell-mediated increased IFN-α production by RNA-IC-stimulated pDCs were investigated. ICs triggered CD56dim NK cells via FcγRIIIA to the secretion of cytokines (e.g. MIP-1β) that promoted IFN-α production. Additionally, an LFA-1-dependent cell-cell interaction between pDCs and NK cells strongly contributed to the increased production of IFN-α. In study II, the RNA-IC-induced regulation of surface molecules on pDCs and NK cells was investigated. The expression of CD319 and CD229, which are two SLAM family receptors genetically associated with SLE, was induced on pDCs and NK cells by RNA-IC. IFN-α-producing pDCs displayed an increased expression of CD319 and CD229, whereas pDCs from patients with SLE had a decreased expression of CD319. In study III, we serendipitously identified an SLE patient harboring autoantibodies to the NK cell receptor CD94/NKG2A. In study IV, sera from 203 patients with SLE were analyzed for autoantibodies to the CD94/NKG2A, CD94/NKG2C and NKG2D receptors. Seven patients harbored anti-CD94/ NKG2A autoantibodies, and two of these patient’s autoantibodies also reacted with CD94/ NKG2C. Anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies both interfered with the HLA-E-mediated regulation of NK cell cytotoxicity, and facilitated the elimination of target cells expressing these receptors. Furthermore, these autoantibodies were found in a group of severely diseased SLE patients and their titers closely followed disease activity. In conclusion, this thesis provides insights to molecular mechanisms whereby NK cells regulate the IFN-α production, it further links the SLAM receptors to SLE, and it describes novel autoantibodies to receptors regulating NK cell cytotoxicity. Together these findings strengthen the assumption that NK cells are involved in the pathogenesis of SLE. Keywords: Systemic lupus erythematosus, plasmacytoid dendritic cells, natural killer cells, type I interferon, immune complex, SLAM receptors, autoantibodies, CD94/NKG2A, CD94/ NKG2C Niklas Hagberg, Department of Medical Sciences, Rheumatology, Akademiska sjukhuset, Uppsala University, SE-75185 Uppsala, Sweden. © Niklas Hagberg 2014 ISSN 1651-6206 ISBN 978-91-554-8837-6 urn:nbn:se:uu:diva-213674 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-213674) List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Hagberg N, Berggren O, Leonard D, Weber G, Bryceson YT, Alm GV, Eloranta ML, Rönnblom L. (2011) IFN-α production by plasmacytoid dendritic cells stimulated with RNA- containing immune complexes is promoted by NK cells via MIP-1β and LFA-1. Journal of Immunology, 186(9):5085-94. II Hagberg N, Theorell J, Schlums H, Eloranta ML, Bryceson YT, Rönnblom L. (2013) Systemic lupus erythematosus im- mune complexes increase the expression of SLAM family members CD319 (CRACC) and CD229 (LY-9) on plasmacy- toid dendritic cells and CD319 on CD56dim NK cells. Journal of Immunology, 191(6):2989-98. III Hagberg N, Theorell J, Pascal V, Eloranta ML, Bryceson YT, Rönnblom L. (2013) Anti-NKG2A autoantibodies in a patient with systemic lupus erythematosus. Rheumatology (Oxford), 52(10):1818-1823. IV Hagberg N, Theorell J, Hjorton K, Eloranta ML, Bryceson YT, Rönnblom L. Autoantibodies to the CD94/NKG2A and CD94/NKG2C receptors in patients with systemic lupus ery- thematosus. Manuscript in preparation. Reprints were made with permission from the respective publishers. Related Papers Berggren O, Hagberg N, Weber G, Alm GV, Rönnblom L, Eloranta ML. (2012) B lymphocytes enhance interferon-α production by plasmacytoid dendritic cells. Arthritis and Rheumatism, 64(10):3409-3419. Wang C, Sandling JK, Hagberg N, Berggren O, Sigurdsson S, Karlberg O, Rönnblom L, Eloranta ML, Syvänen AC. (2013) Genome-wide profiling of target genes for the systemic lupus erythematosus-associated transcription factors IRF5 and STAT4. Annals of the Rheumatic Diseases, 72(1):96-103. Contents Introduction ..................................................................................................... 9 Systemic lupus erythematosus.................................................................... 9 Clinical presentation and epidemiology ................................................ 9 Etiology ............................................................................................... 11 Pathogenesis ........................................................................................ 14 The interferons ......................................................................................... 18 The type I interferon system ................................................................ 18 The type I interferon system in SLE .................................................... 22 Regulation of IFN-α production .......................................................... 24 Natural killer cells .................................................................................... 26 Natural killer cells in SLE ................................................................... 28 Present investigations .................................................................................... 29 Aims of the thesis ..................................................................................... 29 Materials and methods ............................................................................. 30 Results and discussion .............................................................................. 32 Study I .................................................................................................. 32 Study II ................................................................................................ 34 Study III ............................................................................................... 36 Study IV ............................................................................................... 37 Concluding remarks ................................................................................. 39 Sammanfattning på svenska .......................................................................... 42 Acknowledgements ....................................................................................... 45 References ..................................................................................................... 47 Abbreviations ACR American College of Rheumatology ADCC Antibody-dependent cellular cytotoxicity ANA Anti-nuclear antibody BAFF B cell activating factor BCR B cell receptor BDCA Blood dendritic cell antigen BTK Bruton’s tyrosine kinase CRACC CD2-like receptor activating cytotoxic cells DC Dendritic cell dsDNA Double-stranded DNA EAT-2 Ewing’s sarcoma-activated transcript 2 GAS Interferon gamma-activated site HSV Herpes simplex virus IC Immune complex IFN Interferon IFNAR Interferon alpha receptor IFNGR Interferon gamma receptor IFNLR Interferon lambda receptor Ig Immunoglobulin IL Interleukin ILT Immunoglobulin-like transcript IRAK Interleukin-1 receptor-associated kinase IRF Interferon regulatory factor ISGF Interferon-stimulated gene factor ISRE Interferon-stimulated response element ITAM Immunoreceptor tyrosine-based activation motif ITIM Immunoreceptor tyrosine-based inhibitory motif JAK Janus kinase KIR Killer cell immunoglobulin-like receptor LAIR Leukocyte-associated immunoglobulin-like receptor LAMP Lysosomal-associated membrane protein LFA Lymphocyte function-associated antigen MAPK Mitogen-activated protein kinase MHC Major histocompatibility complex MIP Macrophage inflammatory protein MS Multiple sclerosis MyD88 Myeloid differentiation factor 88 NET Neutrophil extracellular trap NFκB Nuclear factor-κB NIPC Natural interferon producing cell NK Natural killer NZBxW New Zealand Black/White ODN Oligodeoxynucleotide PAMP Pathogen-associated molecular pattern PBMC Peripheral blood mononuclear cell pDC Plasmacytoid dendritic cell pSS Primary Sjögren’s syndrome RA Rheumatoid
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • Mouse CD302/CLEC13A Antibody Antigen Affinity-Purified Polyclonal Sheep Igg Catalog Number: AF6424
    Mouse CD302/CLEC13A Antibody Antigen Affinity-purified Polyclonal Sheep IgG Catalog Number: AF6424 DESCRIPTION Species Reactivity Mouse Specificity Detects mouse CD302/CLEC13A in direct ELISAs and Western blots. In direct ELISAs, approximately 30% cross­reactivity with recombinant human CD302 is observed. Source Polyclonal Sheep IgG Purification Antigen Affinity­purified Immunogen Mouse myeloma cell line NS0­derived recombinant mouse CD302/CLEC13A Asp21­His165 Accession # Q9DCG2 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (­SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 1 µg/mL See Below DATA Western Blot Detection of Mouse CD302/CLEC13A by Western Blot. Western blot shows lysates of mouse spleen tissue. PVDF Membrane was probed with 1 µg/mL of Mouse CD302/CLEC13A Antigen Affinity­purified Polyclonal Antibody (Catalog # AF6424) followed by HRP­conjugated Anti­Sheep IgG Secondary Antibody (Catalog # HAF016). A specific band was detected for CD302/CLEC13A at approximately 32 kDa (as indicated). This experiment was conducted under reducing conditions and using Immunoblot Buffer Group 8. PREPARATION AND STORAGE Reconstitution Sterile PBS to a final concentration of 0.2 mg/mL. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. *Small pack size (­SP) is shipped with polar packs. Upon receipt, store it immediately at ­20 to ­70 °C Stability & Storage Use a manual defrost freezer and avoid repeated freeze­thaw cycles.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • Multiomics of Azacitidine-Treated AML Cells Reveals Variable And
    Multiomics of azacitidine-treated AML cells reveals variable and convergent targets that remodel the cell-surface proteome Kevin K. Leunga, Aaron Nguyenb, Tao Shic, Lin Tangc, Xiaochun Nid, Laure Escoubetc, Kyle J. MacBethb, Jorge DiMartinob, and James A. Wellsa,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; bEpigenetics Thematic Center of Excellence, Celgene Corporation, San Francisco, CA 94158; cDepartment of Informatics and Predictive Sciences, Celgene Corporation, San Diego, CA 92121; and dDepartment of Informatics and Predictive Sciences, Celgene Corporation, Cambridge, MA 02140 Contributed by James A. Wells, November 19, 2018 (sent for review August 23, 2018; reviewed by Rebekah Gundry, Neil L. Kelleher, and Bernd Wollscheid) Myelodysplastic syndromes (MDS) and acute myeloid leukemia of DNA methyltransferases, leading to loss of methylation in (AML) are diseases of abnormal hematopoietic differentiation newly synthesized DNA (10, 11). It was recently shown that AZA with aberrant epigenetic alterations. Azacitidine (AZA) is a DNA treatment of cervical (12, 13) and colorectal (14) cancer cells methyltransferase inhibitor widely used to treat MDS and AML, can induce interferon responses through reactivation of endoge- yet the impact of AZA on the cell-surface proteome has not been nous retroviruses. This phenomenon, termed viral mimicry, is defined. To identify potential therapeutic targets for use in com- thought to induce antitumor effects by activating and engaging bination with AZA in AML patients, we investigated the effects the immune system. of AZA treatment on four AML cell lines representing different Although AZA treatment has demonstrated clinical benefit in stages of differentiation. The effect of AZA treatment on these AML patients, additional therapeutic options are needed (8, 9).
    [Show full text]
  • CD24, CD27, CD36 and CD302 Gene Expression for Outcome Prediction in Patients with Multiple Myeloma
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 58), pp: 98931-98944 Research Paper CD24, CD27, CD36 and CD302 gene expression for outcome prediction in patients with multiple myeloma Elina Alaterre6,2, Sebastien Raimbault6, Hartmut Goldschmidt4,5, Salahedine Bouhya7, Guilhem Requirand1,2, Nicolas Robert1,2, Stéphanie Boireau1,2, Anja Seckinger4,5, Dirk Hose4,5, Bernard Klein1,2,3 and Jérôme Moreaux1,2,3 1Department of Biological Haematology, CHU Montpellier, Montpellier, France 2Institute of Human Genetics, CNRS-UM UMR9002, Montpellier, France 3University of Montpellier, UFR Medecine, Montpellier, France 4Medizinische Klinik und Poliklinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany 5Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany 6HORIBA Medical, Parc Euromédecine, Montpellier, France 7CHU Montpellier, Department of Clinical Hematology, Montpellier, France Correspondence to: Jérôme Moreaux, email: [email protected] Keywords: multiple myeloma; prognostic factor; gene expression profiling; cluster differentiation Received: February 10, 2017 Accepted: August 27, 2017 Published: October 30, 2017 Copyright: Alaterre et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Multiple myeloma (MM) is a B cell neoplasia characterized by clonal plasma cell (PC) proliferation. Minimal residual disease monitoring by multi-parameter flow cytometry is a powerful tool for predicting treatment efficacy and MM outcome. In this study, we compared CD antigens expression between normal and malignant plasma cells to identify new potential markers to discriminate normal from malignant plasma cells, new potential therapeutic targets for monoclonal-based treatments and new prognostic factors.
    [Show full text]
  • Human CD Marker Chart Reviewed by HLDA1 Bdbiosciences.Com/Cdmarkers
    BD Biosciences Human CD Marker Chart Reviewed by HLDA1 bdbiosciences.com/cdmarkers 23-12399-01 CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD1a R4, T6, Leu6, HTA1 b-2-Microglobulin, CD74 + + + – + – – – CD93 C1QR1,C1qRP, MXRA4, C1qR(P), Dj737e23.1, GR11 – – – – – + + – – + – CD220 Insulin receptor (INSR), IR Insulin, IGF-2 + + + + + + + + + Insulin-like growth factor 1 receptor (IGF1R), IGF-1R, type I IGF receptor (IGF-IR), CD1b R1, T6m Leu6 b-2-Microglobulin + + + – + – – – CD94 KLRD1, Kp43 HLA class I, NKG2-A, p39 + – + – – – – – – CD221 Insulin-like growth factor 1 (IGF-I), IGF-II, Insulin JTK13 + + + + + + + + + CD1c M241, R7, T6, Leu6, BDCA1 b-2-Microglobulin + + + – + – – – CD178, FASLG, APO-1, FAS, TNFRSF6, CD95L, APT1LG1, APT1, FAS1, FASTM, CD95 CD178 (Fas ligand) + + + + + – – IGF-II, TGF-b latency-associated peptide (LAP), Proliferin, Prorenin, Plasminogen, ALPS1A, TNFSF6, FASL Cation-independent mannose-6-phosphate receptor (M6P-R, CIM6PR, CIMPR, CI- CD1d R3G1, R3 b-2-Microglobulin, MHC II CD222 Leukemia
    [Show full text]
  • Engineered Type 1 Regulatory T Cells Designed for Clinical Use Kill Primary
    ARTICLE Acute Myeloid Leukemia Engineered type 1 regulatory T cells designed Ferrata Storti Foundation for clinical use kill primary pediatric acute myeloid leukemia cells Brandon Cieniewicz,1* Molly Javier Uyeda,1,2* Ping (Pauline) Chen,1 Ece Canan Sayitoglu,1 Jeffrey Mao-Hwa Liu,1 Grazia Andolfi,3 Katharine Greenthal,1 Alice Bertaina,1,4 Silvia Gregori,3 Rosa Bacchetta,1,4 Norman James Lacayo,1 Alma-Martina Cepika1,4# and Maria Grazia Roncarolo1,2,4# Haematologica 2021 Volume 106(10):2588-2597 1Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 2Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 3San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and 4Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, CA, USA *BC and MJU contributed equally as co-first authors #AMC and MGR contributed equally as co-senior authors ABSTRACT ype 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for Tchemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature.
    [Show full text]
  • Engagement of the Mannose Receptor by Tumoral Mucins Activates an Immune Suppressive Phenotype in Human Tumor-Associated Macrophages
    Hindawi Publishing Corporation Clinical and Developmental Immunology Volume 2010, Article ID 547179, 10 pages doi:10.1155/2010/547179 Research Article Engagement of the Mannose Receptor by Tumoral Mucins Activates an Immune Suppressive Phenotype in Human Tumor-Associated Macrophages P.Allavena,1 M. Chieppa,2, 3 G. Bianchi,4 G. Solinas,1, 5 M. Fabbri,6 G. Laskarin,7 and A. Mantovani1, 8 1 Deptartment Immunology & Inflammation, IRCCS Clinical Institute Humanitas, Rozzano, 20089 Milan, Italy 2 Department of Translational Medicine, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy 3 Advanced Research Centre for Health (ARCHES), Enviroment and Space, Castellana Grotte, 70013 Bari, Italy 4 Environmental Health Sciences Department, Mario Negri Institute, 20157 Milano, Italy 5 Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA 6 European Commission, Joint Research Centre Institute for Health and Consumer Protection Molecular Biology and Genomics, 21020 (VA) Ispra, Italy 7 Department of Physiology and Immunology, University of Rijeka, 51000 Rijeka, Croatia 8 Department of Translational Medicine, University of Milan, 20121 Milan, Italy Correspondence should be addressed to P. Allavena, [email protected] Received 2 August 2010; Revised 18 October 2010; Accepted 21 December 2010 Academic Editor: Nima Rezaei Copyright © 2010 P. Allavena et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Tumor-Associated Macrophages (TAMs) are abundantly present in the stroma of solid tumors and modulate several important biological processes, such as neoangiogenesis, cancer cell proliferation and invasion, and suppression of adaptive immune responses.
    [Show full text]
  • Effects of Dietary NEXT ENHANCE150.Pdf
    Accepted Manuscript Effects of dietary NEXT ENHANCE ®150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.) Jaume Pérez-Sánchez, Laura Benedito-Palos, Itziar Estensoro, Yiannis Petropoulos, Josep Alvar Calduch-Giner, Craig L. Browdy, Dr. Ariadna Sitjà-Bobadilla PII: S1050-4648(15)00057-1 DOI: 10.1016/j.fsi.2015.01.039 Reference: YFSIM 3318 To appear in: Fish and Shellfish Immunology Received Date: 31 October 2014 Revised Date: 30 January 2015 Accepted Date: 30 January 2015 Please cite this article as: Pérez-Sánchez J, Benedito-Palos L, Estensoro I, Petropoulos Y, Calduch- Giner JA, Browdy CL, Sitjà-Bobadilla A, Effects of dietary NEXT ENHANCE ®150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.), Fish and Shellfish Immunology (2015), doi: 10.1016/j.fsi.2015.01.039. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Effects of dietary NEXT ENHANCE ®150 on growth performance and expression of 2 immune and intestinal integrity related genes in gilthead sea bream ( Sparus aurata 3 L.). 4 5 Jaume Pérez-Sánchez 1, Laura Benedito-Palos 1, Itziar Estensoro 2, Yiannis Petropoulos 3, 6 Josep Alvar Calduch-Giner 1, Craig L.
    [Show full text]
  • Migration Suggesting a Role in Cell Adhesion and Macrophages Is
    The Novel Endocytic and Phagocytic C-Type Lectin Receptor DCL-1/CD302 on Macrophages Is Colocalized with F-Actin, Suggesting a Role in Cell Adhesion and This information is current as Migration of September 23, 2021. Masato Kato, Seema Khan, Elisabetta d'Aniello, Kylie J. McDonald and Derek N. J. Hart J Immunol 2007; 179:6052-6063; ; doi: 10.4049/jimmunol.179.9.6052 Downloaded from http://www.jimmunol.org/content/179/9/6052 References This article cites 51 articles, 21 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/179/9/6052.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 23, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Novel Endocytic and Phagocytic C-Type Lectin Receptor DCL-1/CD302 on Macrophages Is Colocalized with F-Actin, Suggesting a Role in Cell Adhesion and Migration1 Masato Kato,2* Seema Khan,* Elisabetta d’Aniello,* Kylie J.
    [Show full text]
  • Mouse CD Marker Chart Bdbiosciences.Com/Cdmarkers
    BD Mouse CD Marker Chart bdbiosciences.com/cdmarkers 23-12400-01 CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD1d CD1.1, CD1.2, Ly-38 Lipid, Glycolipid Ag + + + + + + + + CD104 Integrin b4 Laminin, Plectin + DNAX accessory molecule 1 (DNAM-1), Platelet and T cell CD226 activation antigen 1 (PTA-1), T lineage-specific activation antigen 1 CD112, CD155, LFA-1 + + + + + – + – – CD2 LFA-2, Ly-37, Ly37 CD48, CD58, CD59, CD15 + + + + + CD105 Endoglin TGF-b + + antigen (TLiSA1) Mucin 1 (MUC1, MUC-1), DF3 antigen, H23 antigen, PUM, PEM, CD227 CD54, CD169, Selectins; Grb2, β-Catenin, GSK-3β CD3g CD3g, CD3 g chain, T3g TCR complex + CD106 VCAM-1 VLA-4 + + EMA, Tumor-associated mucin, Episialin + + + + + + Melanotransferrin (MT, MTF1), p97 Melanoma antigen CD3d CD3d, CD3 d chain, T3d TCR complex + CD107a LAMP-1 Collagen, Laminin, Fibronectin + + + CD228 Iron, Plasminogen, pro-UPA (p97, MAP97), Mfi2, gp95 + + CD3e CD3e, CD3 e chain, CD3, T3e TCR complex + + CD107b LAMP-2, LGP-96, LAMP-B + + Lymphocyte antigen 9 (Ly9),
    [Show full text]