7,8-Dihydroxyflavone, a Small Molecular Trkb Agonist, Is Useful for Treating Various BDNF-Implicated Human Disorders Chaoyang Liu1, Chi Bun Chan2 and Keqiang Ye3*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 7,074,961 B2 Wang Et Al
US007074961B2 (12) United States Patent (10) Patent No.: US 7,074,961 B2 Wang et al. (45) Date of Patent: Jul. 11, 2006 (54) ANTIDEPRESSANTS AND THEIR 6.211,171 B1 4/2001 Sawynok et al. ANALOGUES AS LONG-ACTING LOCAL 6,545,057 B1 4/2003 Wang et al. ANESTHETCS AND ANALGESCS 2001/0036943 A1 11/2001 Coe et al. (75) Inventors: Ging Kuo Wang, Westwood, MA (US); FOREIGN PATENT DOCUMENTS Peter Gerner, Weston, MA (US); Donald K. Verrecchia, Winchester, MA CH 534124 A 2, 1973 (US) WO WO95/17903 A1 7, 1995 WO WO95/1818.6 A1 7, 1995 (73) Assignee: The Brigham and Women's Hospital, WO WO 99.59.598 A1 11, 1999 Inc., Boston, MA (US) WO WO O2/060870 A2 8, 2002 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 451 days. Luo et al., Xenobiotica, vol. 25, No. 3, pp. 291-301, 1995.* (21) Appl. No.: 10/117,708 Ehlert et al., The Interaction of Amitriptyline, Doxepin, Imipramine and Their N-Methyl Quaternary Ammonium (22) Filed: Apr. 4, 2002 Derivatives with Subtypes of Muscarinic Receptors in Brain (65) Prior Publication Data and Heart, The Journal of Pharmacology and Experimental Therapeutics, Apr. 1990, vol. 253, No. 1, pp. 13–19. US 2003/00968.05 A1 May 22, 2003 Gerner, P., et al., Anesthesiology (2002) 96:1435–42. Related U.S. Application Dat e pplication Uata Khan, M.A., et al., Anesthesiology (2002) 96:109–16. (63) stripps'965,138, filed on Sep. -
Curriculum Vitae: Daniel J
CURRICULUM VITAE: DANIEL J. WALLACE, M.D., F.A.C.P., M.A.C.R. Up to date as of January 1, 2019 Personal: Address: 8750 Wilshire Blvd, Suite 350 Beverly Hills, CA 90211 Phone: (310) 652-0010 FAX: (310) 360-6219 E mail: [email protected] Education: University of Southern California, 2/67-6/70, BA Medicine, 1971. University of Southern California, 9/70-6/74, M.D, 1974. Postgraduate Training: 7/74-6/75 Medical Intern, Rhode Island (Brown University) Hospital, Providence, RI. 7/75-6/77 Medical Resident, Cedars-Sinai Medical Center, Los Angeles, CA. 7/77-6/79 Rheumatology Fellow, UCLA School of Medicine, Los Angeles, CA. Medical Boards and Licensure: Diplomate, National Board of Medical Examiners, 1975. Board Certified, American Board of Internal Medicine, 1978. Board Certified, Rheumatology subspecialty, 1982. California License: #G-30533. Present Appointments: Medical Director, Wallace Rheumatic Study Center Attune Health Affiliate, Beverly Hills, CA 90211 Attending Physician, Cedars-Sinai Medical Center, Los Angeles, 1979- Clinical Professor of Medicine, David Geffen School of Medicine at UCLA, 1995- Professor of Medicine, Cedars-Sinai Medical Center, 2012- Expert Reviewer, Medical Board of California, 2007- Associate Director, Rheumatology Fellowship Program, Cedars-Sinai Medical Center, 2010- Board of Governors, Cedars-Sinai Medical Center, 2016- Member, Medical Policy Committee, United Rheumatology, 2017- Honorary Appointments: Fellow, American College of Physicians (FACP) Fellow, American College of Rheumatology (FACR) -
Testosterone, Myocardial Function, and Mortality
Heart Failure Reviews https://doi.org/10.1007/s10741-018-9721-0 Testosterone, myocardial function, and mortality Vittorio Emanuele Bianchi1 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract The cardiovascular system is particularly sensitive to androgens, but some controversies exist regarding the effect of testosterone on the heart. While among anabolic abusers, cases of sudden cardiac death have been described, recently it was reported that low serum level of testosterone was correlated with increased risk of cardiovascular diseases (CVD) and mortality rate. This review aims to evaluate the effect of testosterone on myocardial tissue function, coronary artery disease (CAD), and death. Low testosterone level is associated with increased incidence of CAD and mortality. Testosterone administration in hypogonadal elderly men and women has a positive effect on cardiovascular function and improved clinical outcomes and survival time. Although at supraphysiologic doses, androgen may have a toxic effect, and at physiological levels, testosterone is safe and exerts a beneficial effect on myocardial function including mechanisms at cellular and mitochondrial level. The interaction with free testosterone and estradiol should be considered. Further studies are necessary to better understand the interaction mechanisms for an optimal androgen therapy in CVD. Keywords Testosterone . Coronary artery disease . Heart failure . Cardiovascular disease . Cardiomyocytes . Cardiac mitochondria . Cardiovascular mortality Introduction essential role [20]. Asymptomatic hypogonadism is observed in men 30–79 years old with an incidence of about 5.6% [21] The effects of testosterone on myocardial function have gen- and is more relevant in aging subjects. In recent years, pre- erated a great deal of discussion in the literature but remain scriptions for testosterone replacement therapy have increased controversial. -
Gedunin-And Khivorin-Derivatives Are Small Molecule Partial Agonists For
Molecular Pharmacology Fast Forward. Published on February 23, 2018 as DOI: 10.1124/mol.117.111476 This article has not been copyedited and formatted. The final version may differ from this version. MOL #111476 Title Page: Gedunin- and Khivorin-Derivatives are Small Molecule Partial Agonists for Adhesion G protein Coupled Receptors GPR56 / ADGRG1 and GPR114 / ADGRG5. Hannah M. Stoveken, Scott D. Larsen, Alan V. Smrcka, and Gregory G. Tall Department of Pharmacology, University of Michigan (H.M.S., A.V.S., G.G.T.) Department of Medicinal Chemistry, University of Michigan (S.D.L.) Downloaded from molpharm.aspetjournals.org at ASPET Journals on September 25, 2021 1 Molecular Pharmacology Fast Forward. Published on February 23, 2018 as DOI: 10.1124/mol.117.111476 This article has not been copyedited and formatted. The final version may differ from this version. MOL #111476 Running Title: An adhesion GPCR natural product partial agonist. Corresponding Author: Gregory G. Tall Department of Pharmacology University of Michigan MSRBIII Room 1220A Ann Arbor, MI 48109-5632 (734)-764-8165 [email protected] Downloaded from Text Pages: 45 Tables: 0 Figures: 5 molpharm.aspetjournals.org References: 64 Abstract: 244 words Introduction: 989 words Discussion: 1466 words Nonstandard abbreviations: at ASPET Journals on September 25, 2021 3-a-DOG: 3-a-acetoxydihydrodeoxygedunin 7TM: Seven-Transmembrane Domain aGPCR: Adhesion G Protein Coupled Receptor CCh: Carbachol DHM: Dihydromunduletone ECD: Extracellular Domain ECM: Extracellular Matrix GAIN: GPCR Autoproteolysis-Inducing Domain GPCR: G Protein Coupled Receptor HTS: High Throughput Screening ISO: Isoproterenol 2 Molecular Pharmacology Fast Forward. Published on February 23, 2018 as DOI: 10.1124/mol.117.111476 This article has not been copyedited and formatted. -
Trkb Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders
Int. J. Mol. Sci. 2013, 14, 10122-10142; doi:10.3390/ijms140510122 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review TrkB Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders Vivek K. Gupta 1,*, Yuyi You 1, Veer Bala Gupta 2, Alexander Klistorner 1,3 and Stuart L. Graham 1,3 1 Australian School of Advanced Medicine, Macquarie University, F10A, 2 Technology Place, North Ryde, Sydney, NSW 2109, Australia; E-Mails: [email protected] (Y.Y.); [email protected] (A.K.); [email protected] (S.L.G.) 2 Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; E-Mail: [email protected] 3 Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-98-123-537; Fax: +61-2-98-123-600. Received: 27 March 2013; in revised form: 27 April 2013 / Accepted: 28 April 2013 / Published: 13 May 2013 Abstract: The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4 (NT4). TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions. -
BDNF Genotype Modulates Resting Functional Connectivity in Children
ORIGINAL RESEARCH ARTICLE published: 24 November 2009 HUMAN NEUROSCIENCE doi: 10.3389/neuro.09.055.2009 BDNF genotype modulates resting functional connectivity in children Moriah E. Thomason1*, Daniel J. Yoo1, Gary H. Glover 2 and Ian H. Gotlib1 1 Department of Psychology, Stanford University, Stanford, CA, USA 2 Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA Edited by: A specifi c polymorphism of the brain-derived neurotrophic factor (BDNF) gene is associated Elizabeth D. O’Hare, University of with alterations in brain anatomy and memory; its relevance to the functional connectivity of California at Berkeley, USA brain networks, however, is unclear. Given that altered hippocampal function and structure Reviewed by: Damien Fair, Oregon Health and has been found in adults who carry the methionine (met) allele of the BDNF gene and the Science University, USA molecular studies elucidating the role of BDNF in neurogenesis and synapse formation, we Naftali Raz, Wayne State University, examined the association between BDNF gene variants and neural resting connectivity in USA children and adolescents. We observed a reduction in hippocampal and parahippocampal to *Correspondence: cortical connectivity in met-allele carriers within both default-mode and executive networks. Moriah E. Thomason, Department of Psychology, Stanford University, Jordan In contrast, we observed increased connectivity to amygdala, insula and striatal regions in Hall, Bldg. 420, Stanford, met-carriers, within the paralimbic network. Because of the known association between the CA 94305-2130, USA. BDNF gene and neuropsychiatric disorder, this latter fi nding of greater connectivity in circuits e-mail: [email protected] important for emotion processing may indicate a new neural mechanism through which these gene-related psychiatric differences are manifest. -
US 2010/0056617 A1 Spect at Corports Coecio
US 2010.00566.17A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0056617 A1 Steiner et al. (43) Pub. Date: Mar. 4, 2010 (54) ROLE OF LIMONOID COMPOUNDS AS Related U.S. Application Data NEUROPROTECTIVE AGENTS (62) Division of application No. 1 1/893,100, filed on Aug. 13, 2007. (75) Inventors: Joseph(US): Avindra P. Steiner, Nath, Baltimore, Ellicott City, MD (60) Pygal application No. 60/837.365, filed on Aug. MD (US); Norman Haughey, s Baltimore, MD (US) Publication Classification (51) Int. Cl. Correspondence Address: A63L/35 (2006.01) EDWARDS ANGELL PALMER & DODGE LLP A6IP 25/18 (2006.01) P.O. BOX SS874 A6IP 25/28 (2006.01) BOSTON, MA 02205 (US) (52) U.S. Cl. ........................................................ S14/453 (57) ABSTRACT (73) Assignee: The Johns Hopkins University, Disclosed herein are neuroprotective compounds. Methods Baltimore, MD (US) for the preparation of Such compounds are disclosed. Also disclosed are pharmaceutical compositions that include the (21) Appl. No.: 12/590,270 compounds. Methods of using the compounds disclosed, alone or in combination with other therapeutic agents, for the (22) Filed: Nov. 5, 2009 treatment of neurodegenerative conditions are provided. spect at Corports Coecio: w 3.x toxicity Scree : {{8 x 8.8 Patent Application Publication Mar. 4, 2010 Sheet 1 of 9 US 2010/00566.17 A1 Spect in Copaic Coirection. 3. Nir toxicity Scree :::::: 88:38:8: Patent Application Publication Mar. 4, 2010 Sheet 2 of 9 US 2010/00566.17 A1 Fig. 2 KhivOrin Odoratone Angolensic Acid, methyl ester Limonin Patent Application Publication Mar. 4, 2010 Sheet 3 of 9 US 2010/00566.17 A1 xxx...a..., xxx x * , sea sa & & & & % Patent Application Publication Mar. -
Phase II Study of Dehydroepiandrosterone in Androgen Receptor-Positive Metastatic Breast Cancer
Published Ahead of Print on December 27, 2018 as 10.1634/theoncologist.2018-0243. Clinical Trial Results Phase II Study of Dehydroepiandrosterone in Androgen Receptor-Positive Metastatic Breast Cancer a b c c c b ELISABETTA PIETRI, ILARIA MASSA, SARA BRAVACCINI, SARA RAVAIOLI, MARIA MADDALENA TUMEDEI, ELISABETTA PETRACCI, d a e f g h i CATERINA DONATI, ALESSIO SCHIRONE, FEDERICO PIACENTINI, LORENZO GIANNI, MARIO NICOLINI, ENRICO CAMPADELLI, ALESSANDRA GENNARI, j j b b c a a ALESSANDRO SABA, BEATRICE CAMPI, LINDA VALMORRI, DANIELE ANDREIS, FRANCESCO FABBRI, DINO AMADORI, ANDREA ROCCA aDepartment of Medical Oncology, bUnit of Biostatistics and Clinical Trials, cBiosciences Laboratory, and dOncology Pharmacy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy; eDivision of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; fDepartment of Oncology, Infermi Hospital, Rimini, Italy; gOncology Day Hospital Unit, Cervesi Hospital, Cattolica, Italy; hOncology Unit, Faenza Hospital, Faenza, Italy; iMedical Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy; jDepartment of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy Downloaded from TRIAL INFORMATION http://theoncologist.alphamedpress.org/ • ClinicalTrials.gov Identifier: NCT02000375 • Principal Investigator: Elisabetta Pietri • Sponsor(s): None • IRB Approved: Yes LESSONS LEARNED • The androgen receptor (AR) is present in most breast cancers (BC), but its exploitation as a therapeutic target has been limited. • This study explored the activity of dehydroepiandrosterone (DHEA), a precursor being transformed into androgens within BC cells, in combination with an aromatase inhibitor (to block DHEA conversion into estrogens), in a two-stage phase II study in patients with AR-positive/estrogen receptor-positive/human epidermal growth receptor 2-negative metastatic BC. -
Trkb Agonist Antibody Delivery to the Brain Using a Tfr1 Specific BBB Shuttle Provides Neuroprotection in a Mouse Model of Parkinson’S Disease
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.987313; this version posted March 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. TrkB agonist antibody delivery to the brain using a TfR1 specific BBB shuttle provides neuroprotection in a mouse model of Parkinson’s Disease Emily Clarke1, Liz Sinclair2, Edward J R Fletcher1, Alicja Krawczun-Rygmaczewska1, Susan Duty1, Pawel Stocki2, J Lynn Rutowski2, Patrick Doherty1* and Frank S Walsh2 1 King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age- Related Disease, Guy’s Campus, London SE1 1UL, UK 2Ossianix, Inc., Gunnels Wood Rd, Stevenage, Herts, UK & Market St, Philadelphia, PA 19104, USA *Corresponding and joint senior author: Patrick Doherty Wolfson Centre for Age-Related Diseases Wolfson Wing, Hodgkin Building London SE1 1UL Email [email protected] Keywords: TrkB, AAb, variable new antigen receptor (VNAR), neuroprotection, transferrin receptor 1 (TfR1), blood-brain barrier (BBB), 6-OHDA, Parkinson’s disease Abstract: Single domain shark antibodies that bind to the transferrin receptor 1 (TfR1) on brain endothelial cells can be used to shuttle antibodies and other cargos across the blood brain barrier (BBB). We have fused one of these (TXB4) to differing regions of TrkB and TrkC neurotrophin receptor agonist antibodies (AAb) and determined the effect on agonist activity, brain accumulation and engagement with neurons in the mouse brain following systemic administration. The TXB4-TrkB and TXB4-TrkC fusion proteins retain agonist activity at their respective neurotrophin receptors and in contrast to their parental AAb they rapidly accumulate in the brain reaching nM levels following a single IV injection. -
The Role of the Small Gtpase Rap in Drosophila R7 Photoreceptor Specification
The role of the small GTPase Rap in Drosophila R7 photoreceptor specification Yannis Emmanuel Mavromatakis and Andrew Tomlinson1 Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032 Edited* by Richard Axel, Columbia University, New York, NY, and approved January 25, 2012 (received for review September 13, 2011) The Drosophila R7 photoreceptor provides an excellent model sys- and R7 precursors differ dramatically in their levels of RTK tem with which to study how cells receive and “decode” signals signaling: it is mild in the former and robust in the latter. that specify cell fate. R7 is specified by the combined actions of the RTK signaling typically activates the small GTPase Ras, which receptor tyrosine kinase (RTK) and Notch (N) signaling pathways. recruits Raf to the plasma membrane and initiates the phos- These pathways interact in a complex manner that includes antag- phorylation cascade that leads to the translocation of MAPK to onistic effects on photoreceptor specification: RTK promotes the the nucleus. Rap is another member of the Ras GTPase super- photoreceptor fate, whereas N inhibits. Although other photore- family; it was initially considered a Ras antagonist because it sup- ceptors are subject to only mild N activation, R7 experiences a high- pressed Ki-Ras oncogenesis (17) and inhibited Ras-dependent level N signal. To counter this effect and to ensure that the cell is activation of MAPK (18). Roughened is a dominant mutant of specified as a photoreceptor, a high RTK signal is transduced in the Drosophila rap in which R7 photoreceptors are frequently absent cell. -
N-Acetyl Serotonin Derivatives As Potent Neuroprotectants for Retinas
N-acetyl serotonin derivatives as potent neuroprotectants for retinas Jianying Shena, Kanika Ghaib, Pradoldej Sompola, Xia Liua, Xuebing Caob,1, P. Michael Iuvonec, and Keqiang Yea,1 Departments of aPathology and Laboratory Medicine and cOphthalmology and Pharmacology, Emory University School of Medicine; Atlanta, GA 30322; and bDepartment of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved January 24, 2012 (received for review November 22, 2011) N-acetylserotonin (NAS) is synthesized from serotonin by arylalkyl- (13, 14). Intraocular injection of NGF, BDNF, and NT-4/5 res- amine N-acetyltransferase (AANAT), which is predominantly ex- cues RGCs after axotomy (15–18). NT-4/5, in combination with pressed in the pineal gland and retina. NAS activates TrkB in a other trophic factors, is involved in the postnatal survival of circadian manner and exhibits antidepressant effects in a TrkB-de- retinal neurons during both development and degeneration (19). pendent manner. It also enhances neurogenesis in hippocampus in Despite the fact that BDNF is not required for RGC survival sleep-deprived mice. Here we report the identification of NAS deriv- during development (20), it promotes survival of RGCs in a va- atives that possess much more robust neurotrophic effects with riety of experimental lesion models both in vitro and in vivo (15, improved pharmacokinetic profiles. The compound N-[2-(5-hydroxy- 21–24). This is consistent with the findings that RGCs express 1H-indol-3-yl)ethyl]-2-oxopiperidine-3-carboxamide (HIOC) selectively the BDNF receptor TrkB (20, 25, 26). -
Trkb Agonists Prevent Postischemic Emergence of Refractory Neonatal Seizures in Mice
TrkB agonists prevent postischemic emergence of refractory neonatal seizures in mice Pavel A. Kipnis, … , Brandon M. Carter, Shilpa D. Kadam JCI Insight. 2020;5(12):e136007. https://doi.org/10.1172/jci.insight.136007. Research Article Development Neuroscience Graphical abstract Find the latest version: https://jci.me/136007/pdf RESEARCH ARTICLE TrkB agonists prevent postischemic emergence of refractory neonatal seizures in mice Pavel A. Kipnis,1 Brennan J. Sullivan,1 Brandon M. Carter,1 and Shilpa D. Kadam1,2 1Neuroscience Laboratory, Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA. 2Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. Refractory neonatal seizures do not respond to first-line antiseizure medications like phenobarbital (PB), a positive allosteric modulator for GABAA receptors. GABAA receptor–mediated inhibition is dependent upon electroneutral cation-chloride transporter KCC2, which mediates neuronal chloride extrusion and its age-dependent increase and postnatally shifts GABAergic signaling from depolarizing to hyperpolarizing. Brain-derived neurotropic factor–tyrosine receptor kinase B activation (BDNF–TrkB activation) after excitotoxic injury recruits downstream targets like PLCγ1, leading to KCC2 hypofunction. Here, the antiseizure efficacy of TrkB agonists LM22A-4, HIOC, and deoxygedunin (DG) on PB-refractory seizures and postischemic TrkB pathway activation was investigated in a mouse model (CD-1, P7) of refractory neonatal seizures. LM, a BDNF loop II mimetic, rescued PB-refractory seizures in a sexually dimorphic manner. Efficacy was associated with a substantial reduction in the postischemic phosphorylation of TrkB at Y816, a site known to mediate postischemic KCC2 hypofunction via PLCγ1 activation. LM rescued ischemia-induced phospho–KCC2-S940 dephosphorylation, preserving its membrane stability.