NACHHALTIGES BAUEN DURCH DIGITALE UND PARAMETRISCHE FERTIGUNG Projektbericht - Anhang

Total Page:16

File Type:pdf, Size:1020Kb

NACHHALTIGES BAUEN DURCH DIGITALE UND PARAMETRISCHE FERTIGUNG Projektbericht - Anhang FRAUNHOFER-INSTITUT FÜR ARBEITSWIRTSCHAFT UND ORGANISATION IAO FUCON 4.0 - NACHHALTIGES BAUEN DURCH DIGITALE UND PARAMETRISCHE FERTIGUNG Projektbericht - Anhang Diese Studie wurde gefördert durch das Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) und das Bundesministerium für Verkehr, Bau und Stadtentwicklung (BMVBS) im Rahmen der Forschungsinitiative »Zukunft Bau«. FUCON 4.0 - NACHHALTIGES BAUEN DURCH DIGITALE UND PARAMETRISCHE FERTIGUNG Projektbericht - Anhang Steffen Braun Dr. Alexander Rieck Sebastian Bullinger Dr. Carmen Köhler-Hammer Arnold Walz (designtoproduction) Prof.Dr. Wilhelm Bauer Fraunhofer-Institut für Arbeitswirtschaft und Organisation, IAO in Stuttgart Projektnummer: 167061 Aktenzeichen: SWD-10.08.18.7-13.32 Projektpartner: Institut für Arbeitswissenschaft und Technologiemanagement IAT – Universität Stuttgart designtoproduction Der Forschungsbericht wurde mit Mitteln der Forschungsinitiative Zukunft Bau des Bundesinstitutes für Bau-, Stadt- und Raumforschung gefördert. (Aktenzeichen: II 3-F20-10-1-028 / SWD - 10.08.18.7-13.32 ) Die Verantwortung für den Inhalt des Berichtes liegt beim Autor Das Projekt » FUCON 4.0 – NACHHALTIGES BAUEN DURCH DIGITALE UND PARAMETRISCHE FERTIGUNG« wurde durch folgende Partner unterstützt öffentliche Projektförderer: Forschungspartner: Industriepartner: Fraunhofer IAO FUCON 4.0 - Abschlussdokumentation 4 | 409 IAT Universität Stuttgart designtoproduction Inhalt AP 1.1 FUCON 4.0 – Potenziale parametrischer Planung und digitaler Fertigung – Klassifikation und Auswertung von 100 Praxisbeispielen ........................... 7 AP 1.2 Ergebnisse der Experteninterviews ........................................................... 168 AP 1.3 Ergebnisse der BIM-Studie für Planer und Ausführende - »Digitale Planungs- und Fertigungsmethoden ...........................................185 AP 1.3 BIM-Umfrage-Fragenkatalog .....................................................................218 AP 2.1 Prozessanalyse – Performance von Prozessen Entwicklung SOLL-Bauprozesse ....................................................................................236 AP 2.2 Entwicklung und Konzeption eines ganzheitlichen Soll-Prozesses .............346 AP 3 / 5 Konzeption und Entwicklung prototypischer Bauentstehungsprozesse auf Basis parametrischer Planungs- und digitaler Fertigungsmethoden und Demonstration der Umsetzbarkeit anhand ausgewählter Katalysatorprojekte - designtoproduction ..................................................375 Fraunhofer IAO FUCON 4.0 - Abschlussdokumentation 5 | 409 IAT Universität Stuttgart designtoproduction Anhang Fraunhofer IAO FUCON 4.0 - Abschlussdokumentation 6 | 409 IAT Universität Stuttgart designtoproduction FRAUNHOFER-INSTITUT FÜR ARBEITSWIRTSCHAFT UND ORGANISATION IAO Steffen Braun, Dr. Alexander Rieck, Sebastian Bullinger FUCON 4.0 - POTENZIALE PARAMETRISCHER PLANUNG UND DIGITALER FERTIGUNG Klassifikation und Auswertung von 100 Praxisbeispielen GEFÖRDERT DURCH FUCON 4.0: POTENZIALE PARAMETRISCHER PLANUNG UND DIGITALER FERTIGUNG Klassifikation und Auswertung von 100 Praxisbeispielen Steffen Braun Dr. Alexander Rieck Sebastian Bullinger Fraunhofer-Institut für Arbeitswirtschaft und Organisation, IAO in Stuttgart Projektnummer: 167061 Aktenzeichen: SWD-10.08.18.7-13.32 Gefördert durch Dieser Bericht wurde gefördert und unterstützt durch die folgenden Partner des Forschungsprojektes FUCON 4.0 - Future Construction öffentliche Projektförderer: Forschungspartner: Industriepartner: Fraunhofer IAO FUCON 4.0 - Potenzialanalyse 4 | 161 IAT Universität Stuttgart designtoproduction Inhalt Management Summary ............................................................................................6 1 Quo vadis? - Die Baubranche im Jahr 2015 ........................................................... 8 1.1 Situtation der Baubranche in Deutschland .................................................... 8 1.2 Handlungserfordernisse für die Baubranche ............................................... 10 1.3 Problembeschreibung .................................................................................14 2 Forschungsansatz ................................................................................................... 16 2.1 Parametrische Planung .............................................................................. 16 2.2 Digitale Fertigung ...................................................................................... 24 2.3 Anforderungen an zukünftige Bauprozesse .................................................28 3 Zielsetzung und Konzeption der Studie ................................................................29 3.1 Zielsetzung der Studie .................................................................................29 3.2 Konzeption und Methodik der Studie ..........................................................29 4 Best-Practice: 100 Projekte ................................................................................... 31 4.1 Fertigungsmethoden/-Verfahren ................................................................ 31 4.2 Installationen und Mock-ups ...................................................................... 51 4.3 Pavillons ..................................................................................................... 73 4.4 Gebäude .................................................................................................. 101 5 Auswertung und Bewertung .............................................................................. 139 5.1 Systemanalyse und Auswertung .............................................................. 140 5.2 Ableitung von Material-Fertigungs-Systeme ............................................. 144 6 Resultate ...............................................................................................................155 6.1 Studienergebnisse im Überblick ............................................................... 155 6.2 FUCON 4.0 - weiteres Vorgehen ...............................................................157 7 Literatur ............................................................................................................... 160 Fraunhofer IAO FUCON 4.0 - Potenzialanalyse 5 | 161 IAT Universität Stuttgart designtoproduction Management Summary Management Summary In sämtlichen Branchen der Industrie ist seit Jahren der Prozess der Digitalisierung zu verzeichnen. In der Industrie wird bereits von der vierten Industriellen Revolution gesprochen. Das Bauwesen jedoch hinkt diesen Entwicklungen hinterher und hat in den letzten Jahren in Deutschland insbesondere durch Fehlentwicklungen und -Planun- gen bei Großprojekten in der öffentlichen Wahrnehmung ein schlechtes Bild hinterlas- sen. Dabei könnten viele bereits abgeschlossene und zukünftige Entwicklungen insbesondere im Bereich der Digitalisierung aus anderen Industrien auf die Baubranche transferiert werden. Das Fraunhofer IAO beschäftigt sich mit der Frage: »Wie sieht der Bauprozess der Zukunft aus?« Die Studie »FUCON 4.0 – Potenzialanalyse zu parametrischer Planung und digitaler Fertigung« richtet sich an Leser aus dem Bereich der Baubranche. Im Besonderen sind Architekten, Planer, Berater, aber auch Bauproduktehersteller und Forscher sowie alle Personen, die an einem zukünftigen Bauprozess in Deutschland interessiert sind, oder diesen aktiv mitgestalten wollen, angesprochen. Zielsetzung Diese Studie schafft eine Arbeitsgrundlage für die aktive Gestaltung eines zukünftigen digitalen Bauprozesses in Deutschland. Dazu wurden die unterschiedlichen Bausteine, die für einen solchen zukünftigen Bauprozess notwendig sind, anhand von in der Forschung befindlichen bzw. bereits realisierten Projekten, ermittelt. Im Verbundprojekt »Future Construction« (FUCON 4.0) erforscht das Fraunhofer IAO gemeinsam mit seinen Partnern zukünftige Technologien und Prozesse der Baubranche. Die Studie dient als Überblick und Arbeitsgrundlage, sowohl über neue digitale Ferti- gungsmethoden, als auch über parametrische Planung und Planungsansätze. Beide Bereiche sind elementare Komponenten zur Realisierung einer durchgängigen digitalen Prozesskette. Vorgehen Die Studie besteht aus den einführenden Bereichen der Grundlagen und Einflüsse auf das Bauwesen in Deutschland sowie der Beschreibung von parametrischer Planung und digtaler Fertigung im Bauen. Der Hauptteil der Studie besteht aus 100 beispielhaften nationalen, als auch internationalen Projekten, die zur Identifizierung der Bausteine einer durchgängigen digitalen Prozesskette notwendig sind. Die Auswahl der 100 Projekte fand durch Recherche und Sichtung von Fachliteratur und Fachportalen im Bereich der digitalen/parametrischen Planung und digitalen Fertigung statt. Die 100 Projekte wurden aus einem größeren Pool aus recherchierten Projekten ausgewählt. Im anschließenden Teil wurden diese 100 Projekte ausgewertet. Ergebnisse Im Bereich der parametrischen Planung und Fertigung gibt es eine Vielzahl an Ferti- gungsmethoden, die im Modell- und Prototypenbau genutzt werden. Bei den meisten Projekten kommen trennende bzw. subtraktive Verfahren zum Einsatz. Additive Verfah- ren aus dem Bereich des 3D-Drucks oder umformende Verfahren werden zunehmend erprobt und entwickelt. Hauptsächlich werden Metalle und Hölzer in unterschiedlichen Handelsformen, meist jedoch in Plattenform, verwendet, da sich diese besonders einfach spanend/trennend bearbeiten lassen. Die Anzahl der realisierten Projekte nimmt stetig zu, ebenso die Digitalisierung in den Prozessen, von einzelnen Bauteilen bis
Recommended publications
  • Linking Revit Facility Life-Cycle Data to ARCHIBUS – a Case Study of an Academic Institution
    Available online at 2019.creative-construction-conference.com/proceedings/ CCC 2019 Proceedings of the Creative Construction Conference (2019) 118 Edited by: Miroslaw J. Skibniewski & Miklos Hajdu https://doi.org/10.3311/CCC2019-118 Creative Construction Conference 2019, CCC 2019, 29 June - 2 July 2019, Budapest, Hungary Linking Revit Facility Life-Cycle Data to ARCHIBUS – A Case Study of an Academic Institution Walid Thabeta,*, Dan Millerb aVirginia Tech, Blacksburg, VA 24061, USA bInfrastructure Management Solutions, Vienna, VA 22182, USA Abstract Building owners and facility managers are beginning to leverage spatial information and asset data in BIMs for efficient and sustainable building operations and maintenance. Extracting information from BIMs for import into FM platforms still poses an implementation challenge to many owners. Methods for bi-directional synchronization of data between a BIM and FM software for real-time access to lifecycle model data can be more advantageous over one-way data export approaches so the owner can take advantage of an as-built BIM that can have data updated in real-time with continuous asset data updates. This paper uses a case study of a renovation project on a university campus to illustrate the use of the ARCHIBUS Smart Client for bidirectional real-time data exchange with Revit. The Archibus workflows were compared to other methods for data exchange as to how they support the needs of the owner. Lessons learned and challenges related to this workflow are discussed. © 2019 The Authors. Published by Budapest University of Technology and Economics & Diamond Congress Ltd. Peer-review under responsibility of the scientific committee of the Creative Construction Conference 2019.
    [Show full text]
  • Use of Building Information Modeling Technology in the Integration of the Handover Process and Facilities Management
    USE OF BUILDING INFORMATION MODELING TECHNOLOGY IN THE INTEGRATION OF THE HANDOVER PROCESS AND FACILITIES MANAGEMENT by Sergio O. Alvarez-Romero A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Civil Engineering August, 2014 APPROVED: Guillermo Salazar, PhD, Major Advisor Leonard Albano, PhD, Committee Member Alfredo Di Mauro, AIA, Committee Member Laura Handler, LEED AP, Tocci Building Companies, Committee Member Fredrick Hart, PhD, Committee Member William Spratt, MSc FM, Committee Member John Tocci, CEO Tocci Building Companies, Tahar El-Korchi, PhD, Department Head Committee Member Abstract The operation and maintenance of a constructed facility takes place after the construction is finished. It is usually the longest phase in the lifecycle of the facility and the one that substantially contributes to its lifecycle cost. To efficiently manage the operation and maintenance of a facility, the staff in charge needs reliable and timely information to support decision making throughout the facility’s lifecycle. The use of Building Information Modeling (BIM) is gradually but steadily changing the way constructed facilities are designed and built. As a result of its use a significant amount of coordinated information is generated during this process and stored in the digital model. However, once the project is completed the owner does not necessarily receive full benefits from the model for future operation and maintenance of the facility. This research explores the information that in the context of educational facilities has value to the owner/operator and that can be delivered at the end of the construction stage through a BIM-enabled digital handover process.
    [Show full text]
  • The Building Information Model in Facilities
    THE BUILDING INFORMATION MODEL IN FACILITIES MANAGEMENT by Ronald O. Méndez A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Master of Science in Civil Engineering May 2006 APPROVED: _____________________________________________ Prof. Guillermo Salazar, Thesis Advisor _____________________________________________ Prof. Fabio Carrera, Committee Member _____________________________________________ Mr. John Miller, Committee Member Abstract The construction industry’s traditional resistance to incorporate change has prevented benefits from technological advancements to accrue. One area in which technology shows potential to benefit the industry is in addressing the existing communication gaps between the designer, builder, and owner. This gap is more evident in the operation and maintenance of a building. At project completion, an owner also receives information of the building. This information is comprised of as-built drawings, operation and maintenance manuals, warranties, and other documents. However, there is additional and valuable information for the owner generated throughout the design and construction process that goes unrecorded or is not passed unto the owner at project completion. The Building Information Model (BIM) is a digital collection of well coordinated information about the design and construction of a building in the form of an integrated database, where information is generated as the digital model is produced. The intent of the research
    [Show full text]
  • Reference Study of IFC Software Support: the Geobim Benchmark 2019 — Part I
    Reference study of IFC software support: the GeoBIM benchmark 2019 — Part I Francesca Noardo1, Thomas Krijnen1, Ken Arroyo Ohori1, Filip Biljecki2,3, Claire Ellul4, Lars Harrie5, Helen Eriksson5, Lorenzo Polia6, Nebras Salheb1, Helga Tauscher7, Jordi van Liempt1, Hendrik Goerne8, Dean Hintz9, Tim Kaiser7, Cristina Leoni10, Artur Warchoł11 and Jantien Stoter1 13D Geoinformation, Delft University of Technology, Delft, The Netherlands — [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] 2Department of Architecture, National University of Singapore, Singapore — fi[email protected] 3Department of Real Estate, National University of Singapore, Singapore 4Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK — [email protected] 5Department of Physical Geography and Ecosystem Science, Lund University, Sweden — (lars.harrie, helen.eriksson)@nateko.lu.se 6Architect — [email protected] 7Faculty of Spatial Information, Dresden University of Applied Sciences, Dresden, Germany — (helga.tauscher, tim.kaiser)@htw-dresden.de 8GMX, Germany — [email protected] 9Safe Software, Surrey, Canada — [email protected] 10Department of Civil, Constructional and Environmental Engineering, Sapienza Univerisity of Rome, Rome — [email protected] 11Institute of Technical Engineering, PWSTE Bronisław Markiewicz State University of Technology and Economics in Jarosław, Poland / ProGea 4D sp. z o.o. — [email protected] January 8, 2021 arXiv:2007.10951v2 [cs.DB] 7 Jan 2021 This is the author’s version of the work. It is posted here only for personal use, not for redistribution and not for commercial use. The definitive version is published in the journal Transactions in GIS.
    [Show full text]
  • Based Building Energy Simulation
    PAVING THE WAY FOR EXHAUSTIVE AND SEAMLESS BIM- BASED BUILDING ENERGY SIMULATION Sylvain Robert, senior researcher, [email protected] CEA LIST, Information, signal and sensors departement, Gif-sur-Yvette, France Bruno Hilaire, senior researcher, [email protected] Paul Sette, senior researcher, [email protected] Souheil Soubra, head of division, [email protected] Centre Scientifique et Technique du Bâtiment (CSTB), Mod-Eve division, Sophia-Antipolis, France ABSTRACT This paper presents an on-going work, which aims at improving the support for BIM-based energy simulation. The contribution is twofold. Firstly, a discussion about BIM-based energy simulation is provided, with an in-depth review of the state-of-the-art and a synthetic highlighting of the main related research issues, i.e. provision of an extensive IFC toolkit to perform the various translations and to make the link with BIM-based collaborative work support; validation of IFC models (completeness and correctness) and translation into the data formats used by the simulation tools; enrichment of IFC to enable exhaustive description of building elements and HVAC systems; user interfaces and usability. Then, the paper focuses on the issue of HVAC systems BIM descriptions and gives the result of a study performed on the capabilities of the IFC in this matter. This study entailed reviewing the properties and parameters needed to describe HVAC systems in a representative selection of simulation environments, and proposing ways to describe accordingly the systems in IFC (relying on proper enrichment of native IFC constructs). From these two contributions, the paper draws conclusions about the limitations of current support, and about the directions to take to fully enable BIM-based energy simulations.
    [Show full text]
  • An Ontology of the Uses of Building Information Modeling
    The Pennsylvania State University The Graduate School The College of Engineering AN ONTOLOGY OF THE USES OF BUILDING INFORMATION MODELING A Dissertation in Architectural Engineering By Ralph G. Kreider © 2013 Ralph G. Kreider Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2013 The dissertation of Ralph G. Kreider was reviewed and approved* by the following: John I. Messner Professor of Architectural Engineering Dissertation Adviser Co-Chair of Committee Chimay J. Anumba Department Head of Architectural Engineering Professor of Architectural Engineering Co-Chair of Committee Robert M. Leicht Assistant Professor of Architectural Engineering Ute Poerschke Associate Professor of Architecture *Signatures are on file in the Graduate School. ii ABSTRACT Building Information Modeling (BIM) does not change the purpose for performing a task related to delivering a facility – only the means by which the purpose is achieved. Currently, no common language exists for the purposes of implementing BIM. This lack of a common language makes it challenging to precisely communicate with others the purposes for implementing BIM. The goal of this research is to create that common language by developing a BIM Use Ontology. A BIM Use (Use) is defined as a method of applying Building Information Modeling during a facility’s life-cycle to achieve one or more specific objectives. The BIM Use Ontology (the Ontology) provides a shared vocabulary that is applied to model (or express) the BIM Uses, including the type of objects (or terms), and concepts, properties, and relationships that exist. The methods performed to develop the BIM Use Ontology included: 1) defining domain and scope, 2) acquiring domain knowledge, 3) documenting domain terms, 4) integrating domain terms, 5) evaluating (refining and validating) the BIM Use Ontology, and 6) documenting the BIM Use Ontology.
    [Show full text]
  • 3D Model-Based Collaboration During Design Development And
    3D MODEL-BASED COLLABORATION IN DESIGN DEVELOPMENT AND CONSTRUCTION OF COMPLEX SHAPED BUILDINGS SUBMITTED: September 2007 REVISED: March 2008 PUBLISHED: June 2008 EDITORS: T. Olofsson, G. Lee & C. Eastman Kihong Ku, Assistant Professor, Myers-Lawson School of Construction, College of Architecture and Urban Studies, Virginia Tech, Blacksburg, VA, USA; [email protected]; www.bc.vt.edu/faculty/kku Spiro N. Pollalis, Professor of Design, Technology and Management, Graduate School of Design, Harvard University, Cambridge, MA, USA; [email protected]; www.gsd.harvard.edu/~pollalis Martin A. Fischer, Professor of Civil and Environmental Engineering, Director, Center for Integrated Facility Engineering, Stanford University, Stanford, CA, USA; [email protected]; www.stanford.edu/~fischer Dennis R. Shelden, Ph.D., Chief Technology Officer, Gehry Technologies, Los Angeles, CA, USA; [email protected]; http://www.gehrytechnologies.com SUMMARY: The successful implementation of complex-shaped buildings within feasible time and budget limits, has brought attention to the potential of computer-aided design and manufacturing technologies (CAD/CAM), Building Information Modeling (BIM), and the need for integrated practice. At the core of an integrated practice vision lies the intimate collaboration between the design team and construction team and a digital three-dimensional model, often with parametric and intelligent characteristics. With the shift from two-dimensional (2D) paper-based representations to three- dimensional (3D) geometric representations in building information models (BIM), architects and engineers have streamlined ‘inner’ design team communication and collaboration. However, practice conventions have posed significant challenges when attempting to collaborate on the designer’s 3D model with the ‘external’ design team – involving the architect (or engineer)-of-record, and contractor, construction manager or fabricator, etc.
    [Show full text]
  • 9783030335694.Pdf
    Research for Development Bruno Daniotti Marco Gianinetto Stefano Della Torre Editors Digital Transformation of the Design, Construction and Management Processes of the Built Environment Research for Development Series Editors Emilio Bartezzaghi, Milan, Italy Giampio Bracchi, Milan, Italy Adalberto Del Bo, Politecnico di Milano, Milan, Italy Ferran Sagarra Trias, Department of Urbanism and Regional Planning, Universitat Politècnica de Catalunya, Barcelona, Barcelona, Spain Francesco Stellacci, Supramolecular NanoMaterials and Interfaces Laboratory (SuNMiL), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland Enrico Zio, Politecnico di Milano, Milan, Italy; Ecole Centrale Paris, Paris, France The series Research for Development serves as a vehicle for the presentation and dissemination of complex research and multidisciplinary projects. The published work is dedicated to fostering a high degree of innovation and to the sophisticated demonstration of new techniques or methods. The aim of the Research for Development series is to promote well-balanced sustainable growth. This might take the form of measurable social and economic outcomes, in addition to environmental benefits, or improved efficiency in the use of resources; it might also involve an original mix of intervention schemes. Research for Development focuses on the following topics and disciplines: Urban regeneration and infrastructure, Info-mobility, transport, and logistics, Environment and the land, Cultural heritage and landscape, Energy, Innovation in processes and technologies, Applications of chemistry, materials, and nanotech- nologies, Material science and biotechnology solutions, Physics results and related applications and aerospace, Ongoing training and continuing education. Fondazione Politecnico di Milano collaborates as a special co-partner in this series by suggesting themes and evaluating proposals for new volumes.
    [Show full text]
  • (BIM) Adoption and Implementation in Ghana
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA COLLEGE OF ART AND BUILT ENVIRONMENT DEPARTMENT OF CONSTRUCTION TECHNOLOGY AND MANAGEMENT Building Information Modeling (BIM) Adoption and Implementation in Ghana by Emmanuel Osei Bonsu BSc. (Hons.) Civil Engineering (PG9188217) A Thesis Submitted to the Department of Construction Technology and Management, College of Art and Built Environment in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in CONSTRUCTION MANAGEMENT. September 2018 DECLARATION I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma at Kwame Nkrumah University of Science and Technology, Kumasi or any other educational institution, except where due acknowledgment is made in the thesis. Emmanuel Osei Bonsu …………………………… … ………………..………… (PG 9188217) Signature Date (Name and PG) Certified by: Dr. Alex Acheampong …………………………… … ………………..………… (Supervisor) Signature Date Certified by: Prof. Bernard K. Baiden …………………………… … ………………..………… (Head of Department) Signature Date i ABSTRACT Building Information Modeling (BIM) has been in the Architectural Engineering and Construction (AEC) industry over the world for the past decade and has gain roots in the developed countries. Countries who have advanced in the use of BIM have already benefited from its advantages which include productivity, reduction of errors and value for money. In developing countries and for that matter Ghana, the awareness and use of BIM is very low, therefore having a negative effect on the AEC industry. There is therefore the need to promote BIM awareness in the country.
    [Show full text]
  • 2002-060-B Paramtric Report
    QUT Digital Repository: http://eprints.qut.edu.au/26912 CRC for Construction Innovation (2005) Parametric building development during early design stage. CRC for Construction Innovation, Brisbane. The Participants of the CRC for Construction Innovation have delegated authority to the CEO of the CRC to give Participants permission to publish material created by the CRC for Construction Innovation. This delegation is contained in Clause 30 of the Agreement for the Establishment and Operation of the Cooperative Research Centre for Construction Innovation. The CEO of the CRC for Construction Innovation gives permission to the Queensland University of Technology to publish the papers/publications provided in the collection in QUT ePrints provided that the publications are published in full. Icon.Net Pty Ltd retains copyright to the publications. Any other usage is prohibited without the express permission of the CEO of the CRC. The CRC warrants that Icon.Net Pty Ltd holds copyright to all papers/reports/publications produced by the CRC for Construction Innovation. Parametric Building Development during Early Design Stage Research Report 2002-060-B The research described in this report was carried out by : Project Leader Mr John Crawford Team Members Mr David Marchant Mr Fergus Hohnen Mr Peter Bowtell Mr John Legge-Wilkinson Researchers Ms Fanny Boulaire Prof. Mark Burry Mr Julian Canterbury Mr John Crawford Mr Robin Drogemuller Dr Alison Fairley Ms Loretta Kivlighon Mr John Mashford Ms Cheryl McNamara Dr Gerardo Trinidad Project Affiliate Mr John Haymaker (CIFE, Stanford) Research Program B :Sustainable Built Assets Project 2002-060-B Parametric Building Development during Early Design Stage March 2005 Disclaimer The Client makes use of this Report or any information provided by the Cooperative Research Centre for Construction Innovation in relation to the Consultancy Services at its own risk.
    [Show full text]
  • BIM Tiefbau Bauwerksmodell Aus Der Grundlage Der Strasse
    Realisation/Baustelle - open BIM-Werkzeuge BIM Tiefbau Bauwerksmodell aus der Grundlage der Strasse Modul 2dr Modul lexocad cadwork informatik AG / Aeschenvorstadt 21 / CH-4051 Basel / Tel. (+41)61/278 90 10 / [email protected] / www.cadwork.ch / © 2019 Helder Esteves Mein Werdegang 1998 - 2002 Bauzeichnerlehre bei Gruner AG Basel (begleitende Berufsmaturität) 2002 - 2010 CAD-Supporter bei cadwork Informatik AG 2010 - 2015 Projektleiter bei cadwork Informatik AG 2015 bis dato Abteilungsleiter bei cadwork Informatik AG Jahrelange Kundenbetreuung im Hoch- / Tiefbau: Ingenieure: Bauausführung: Gruner AG / Jauslin Stebler AG / EWP AG / wlw / SJB / … Marti AG / Frutiger AG /… Abteilung Ingenieur (Schweiz): 600 Kunden, 3’000 Lizenzen cadwork informatik AG / Aeschenvorstadt 21 / CH-4051 Basel / Tel. (+41)61/278 90 10 / [email protected] / www.cadwork.ch / © 2019 Inhaltsverzeichnis Von der Trassierung bis hin zum Bauwerksmodell 1. Situation, Längenprofil und Querprofile der Strasse als Grundlage für das Bauwerksmodell 2. Strassenbau Elemente im Querprofil und Situation vorbereiten für das Bauwerksmodell 3. Bauwerksmodell generieren aus Situation, Längenprofil und Querprofile 4. Import IFC: Modelle hinzufügen / Export IFC: Modelle weitergeben 5. Bauwerksmodell nutzen für Visualisierung, 3D Ausmass, 4D Etappierung, 5D Kostenermittlung nach eBKP-T Projekte Aesch / Merced open BIM cadwork informatik AG / Aeschenvorstadt 21 / CH-4051 Basel / Tel. (+41)61/278 90 10 / [email protected] / www.cadwork.ch / © 2019 Grundlage Situation, Längenprofil und Querprofil
    [Show full text]
  • Managing Expectations of BIM Product Quality: a 'Lemon Market'
    Building Information Modelling (BIM) in Design, Construction and Operations 253 Managing expectations of BIM product quality: a ‘lemon market’ theory view C. Merschbrock & C. Nordahl-Rolfsen D epartment of Civil Engineering and Energy Technology, Oslo and Akershus University College, Norway Abstract There is an increasing uptake of Building Information Modelling (BIM) in the architecture, engineering, and construction industry. At the same time, it is evident that many firms struggle to work based on the new technology and that only few highly IT-literate firms succeed in reaping BIM’s benefits. Thus, for many firms, BIM systems adoption ends in disillusion as to what can be achieved by using the technology. What complicates matters is that BIM’s are only found dysfunctional after having been in organizational use. Thus, BIM’s value for an organization is hard to distinguish before purchase. This article proposes, based on Akerlof’s (1970) theory of the “lemon market”, a conceptual model explicating factors affecting buyers’ initial quality expectations in BIM software purchase. Our findings are derived from data on a construction project executed by a Norwegian timber-frame construction company having heavily invested in computer numerical controlled (CNC) production machinery and BIM systems. This work is important to manage organizational expectations related to the initial adoption of BIM. Moreover, it highlights that construction firms’ trust in vendors claimed product quality, IT-literacy, and experience matter when purchasing BIM software. Taken together, our results suggest that quality uncertainty related to BIM purchase can lead companies into financial turmoil. Especially small and medium sized contractors appear to be exposed to information asymmetry when purchasing BIM software.
    [Show full text]