Sedimentary Characteristics Based on Sub-Bottom Profiling and the Implications for Mineralization of Cobalt-Rich Ferromanganese

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentary Characteristics Based on Sub-Bottom Profiling and the Implications for Mineralization of Cobalt-Rich Ferromanganese Deep–Sea Research I 158 (2020) 103223 Contents lists available at ScienceDirect Deep-Sea Research Part I journal homepage: http://www.elsevier.com/locate/dsri Sedimentary characteristics based on sub-bottom profiling and the implications for mineralization of cobalt-rich ferromanganese crusts at Weijia Guyot, Western Pacific Ocean Bin Zhao a,b,c,**, Yong Yang a,b,*, Xiangyu Zhang a, Gaowen He a,b, Wenchao Lü a,b, Yuping Liu a, Zhenquan Wei a,b, Yinan Deng a,b, Ning Huang a a Guangzhou Marine Geological Survey of China Geological Survey, Guangzhou, 510760, China b Ministry of Natural Resources Key Laboratory of Marine Mineral Resources, Guangzhou, 510075, China c Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China ARTICLE INFO ABSTRACT Keywords: Cobalt-rich ferromanganese crusts on seamounts have attracted much attention due to high economic potential Western Pacific ocean of various metals. Studies showed that seamounts in the Western Pacific Ocean are rich in cobalt-rich crusts, and Weijia Guyot Weijia Guyot (Ita Mai Tai) is one of the most promising one. Cobalt-rich crusts were drilled from this seamount in Sub-bottom profiling our previous investigation. This study evaluates promising areas of cobalt-rich crusts on the whole guyot. Sedimentary characteristics Combined the sub-bottom profiles, topography, scientific ocean drilling data with related studies, this paper Cobalt-rich ferromanganese crusts Metallogenic promising areas studied sedimentary characteristic and their implications for cobalt-rich crusts mineralization prospective areas on the summit of Weijia Guyot. Three types of stratum reflection characteristics were identified: pelagic deposits, oolitic limestone, and lagoonal mud. Reflection sequences in Chirp sub-bottom profiler records are well matched to stratigraphy obtained at Deep-Sea Drilling Project Sites 200 and 202. Cobalt-rich crusts promising minerali- zation areas were delineated based on the water depth, slope gradient and pelagic pinch-out line, with the area approximately 576.4 km2. This estimated number is 10% higher than the results from previous studies (approximately 436.6 km2). It provides great implication for exploration and mining-lease-block selection in the future. 1. Introduction zones of the highest abundance of cobalt-rich crusts in surveyed regions. The mineralization and distribution of crusts are influenced by As cobalt-rich ferromanganese crusts (short for cobalt-rich crusts) multiple ore-controlling parameters. Several evidence show a relation- constitute important submarine solid mineral, a series of investigations ship between the coverage of cobalt-rich crusts/nodules and slope gra- and studies have been carried out since the 1980s (Craig et al., 1982; dients of seamounts in the Pacific Ocean (Yamazaki and Sharma, 1998). Halbach and Manheim, 1984; Halbach et al., 1987; Glasby et al., 1987; Cobalt-rich crusts are enriched in areas where the slope gradients are � Yamazaki, 1993; Yamazaki et al., 1996; Yamazaki and Sharma, 1998; greater than 15 , and coexist with sediments when the gradients are � � Verlaan et al., 2004; Hein et al., 2009; Asavin et al., 2010; He et al., between 4 and 15 , according to photo and video evidence. Ma et al. � 2011; Du et al., 2017; Zhao et al., 2019a). Previous studies have indi- (2014) indicated that low slope gradients (3–7 ) contribute to the cated that cobalt-rich crusts occur on sediment-free surfaces of mineralization of crusts: as the slope increases, the thickness of crusts seamount slopes and summits. Crusts generate growing economic in- gradually decreases, according to submarine dredging, photos, videos, terest owing to potential of metal production, including manganese, and gradient data from central Pacific Ocean seamounts. Kim et al. cobalt, nickel, rare earth elements (REE), tellurium and platinum group (2013) and Yang et al. (2016a) analyzed the correlation between photos, elements (PGE)(Hein et al., 2000; Hein, 2000; Verlaan et al., 2004). To videos and geological sampling data with acoustic backscatter data, and identify promising areas of mining exploration, it is vital to delineate concluded that acoustic backscatter results can be used to determine the * Corresponding author. Guangzhou Marine Geological Survey of China Geological Survey, Guangzhou, 510760, China. ** Corresponding author. Guangzhou Marine Geological Survey of China Geological Survey, Guangzhou, 510760, China. E-mail addresses: [email protected] (B. Zhao), [email protected] (Y. Yang). https://doi.org/10.1016/j.dsr.2020.103223 Received 3 September 2019; Received in revised form 10 December 2019; Accepted 11 January 2020 Available online 18 January 2020 0967-0637/© 2020 Elsevier Ltd. All rights reserved. B. Zhao et al. Deep-Sea Research Part I 158 (2020) 103223 regional spatial distribution of cobalt-rich crusts. However, similar et al., 2017; Hein et al., 2009; Zhao et al., 2019a). backscatter intensity characteristics may implicate different surficial The Weijia Guyot was drilled, dated, and surveyed with gravity, deposits. Geological prospecting investigations carried out by Russian seismics, sub-bottom profiling, and magnetic methods (Heezen et al., scientists in the eastern segment of the Magellan Seamounts during the 1973; Heezen and MacGregor, 1973; Koppers et al., 1998; Asavin et al., cruise of the R/V Gelendzhik in 2003–2010 (Mel’nikov et al., 2010, 2010; Lee et al., 2003, 2005). Geochemical composition of cobalt-rich 2012), Asavin et al. (2010) and Novikov et al. (2014) attempted to ferromanganese crusts from Weijia Guyot contains mainly oxides of delineate the most promising seamount areas for future mining by use of Mn (up to 22.9 wt%), Fe (up to 21.4 wt%), S (up to 0.42 wt%), Co (up to geo-acoustic studies, shallow drillings, and sampling of cobalt-rich 8960 ppm), Ni, Cu, Zn, REE, Mo, Pt, and other trace and rare elements crusts. (Asavin et al., 2010; Wang et al., 2017). In addition, REE and PGE are He et al. (2005a) and Zhao et al.(2019a) explained interconnections found rich on the southern and southwestern slopes (Wang et al., 2017). between sub-bottom profiling and deep-sea video recordings in Geological sampling and geophysical surveys undertaken by China Western Pacific seamounts. They found the crust distribution can be Ocean Mineral Resource R&D Association has revealed the central revealed by synchronous application of sub-bottom profiling and video summit of the Weijia Guyot is constituted of covered by calcareous recordings. The lower boundary of the sediments corresponds with the pelagic oozes, while carbonate sediments cover the edges (Yang et al., upper boundary of crusts. Summarizing, the slope gradients, water 2016b; Wei et al., 2017; Wang et al., 2017). depths, seafloor topography, sediments distribution and other As any of previous research identified the cobalt-rich crusts from parameters are main factors which control the distribution of mineral Weijia Guyot as a metallogenically prospective, we analyzed high pre- resources on seamounts. Several detailed research attempt to find the cision topographic data, sub-bottom profiles and archival materials and best method to delineate areas prospective with cobalt-rich crusts on publications, for purpose of detailed sedimentary characteristics of seamounts. guyot summits. The paper focus on architecture of sediments and deals Different studies shown the spire seamounts indicate higher crust with implications for exploration and mining-lease-block selection at abundances and coverage, than guyots (Chu et al., 2006). However, Weijia Guyot. restricted by the limitations of current mining technology, mining op- erations focus on the summit region of guyots, ridges, and plateaus on 2. Geological setting flat or shallowly inclined surfaces, such as summit terraces, platforms, and saddles, which show relatively smooth small scale changes with The Weijia Guyot is located at the southern end of the Magellan topography (Hein et al., 2000; Hein, 2000). Seamounts, in the Western Pacific Ocean (Fig. 1a). The Magellan Sea- The cobalt-rich crusts which are widely developed on the surface mounts are adjacent to the Mariana Trench and East Mariana Basin of guyots in the Pacific Ocean have been studied for more than half (EMB) to the west and southwest, respectively. The Malkuswick Islands a century (Asavin et al., 2010). The investigation of cobalt-rich crusts are located north and Marshall Islands southeast to the guyot (Fig. 1a). in China started around 1997 and has been carried out by more An L-shaped flank ridge extends west and south. The area of Weijia than twenty expeditions in the Central Pacific and Western Pacific Guyot summit is approximately 1459.7 km2. Plateau elevations are sea-mounts. The Weijia Guyot (Ita Mai Tai) studied in this paper is one generally situated at depths ranging from 1400 m to 2200 m. The most of these seamounts (He et al., 2001, 2005a; 2005b; Yang et al., 2016b; Wei Fig. 1. (a) Location map of study area; (b) Bathymetric map of Weijia Guyot, PB-Pigafetta basin, OFZ-Ogasawara fault zone, the gray solid lines are depth contours (meters); KFZ-Kashima fault zone, EMB-East Mariana Basin; the black dash survey lines modified from Lee et al. (2009); the solid black lines are the sub-bottom profiles used in this study; the bathymetry map came from the latest data measured by “Haiyangliuhao” of Guangzhou Marine Geological Survey (GMGS). 2 B. Zhao et al. Deep-Sea Research Part I 158 (2020) 103223 shallow part of the summit (about 1300 m) is located central eastern mainly composed of reef limestones (organic-clastic and oolitic lime­ � part of guyot. The slope gradients of the summit plateau vary from 0 to stones), planktonic limestones and micritic limestones, indicating ages � � 2 in central areas and increases up to 4 towards the edge (Lee et al., of Aptian/Turonian to Eocene (Mel’nikov et al., 2012). 2005; Mel’nikov et al., 2012; Wang et al., 2017). The Magellan Seamounts are located on Jurassic seabed of Pacific 3. Data and methods Plate and consist of several seamounts formed by volcanic activity during Cretaceous (Lee et al., 2003).
Recommended publications
  • Volume 144 Index
    Index to Volume 144 INDEX TO VOLUME 144 This index provides coverage for both the Initial Reports and Scientific Results portions of Volume 144 of the Proceedings of the Ocean Drilling Program. Refer- ences to page numbers in the Initial Reports are preceded by “A” with a colon (A:), and to those in the Scientific Results (this book), by “B” with a colon (B:). In addi- tion, reference to material on CD-ROM is shown as “bp:CD-ROM.” The index was prepared by Earth Systems, under subcontract to the Ocean Drill- ing Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry fol- lowed by a page reference. The index is presented in two parts: (1) a Subject Index and (2) a Taxonomic Index. Both parts cover text, figures, and tables but not core-description forms (“barrel sheets”), core photographs, smear-slide data, or thin-section descriptions; these are given in the Initial Reports. Also excluded from the index are biblio- graphic references, names of individuals, and routine front and back matter. The Subject Index follows a standard format. Geographic, geologic, and other terms are referenced only if they are subjects of discussion. This index also includes broad fossil groups such as nannofossils and radiolarians. A site chapter in the Ini- tial Reports is considered the principal reference for that site and is indicated on the first line of the site’s listing in the index.
    [Show full text]
  • Modern and Ancient Hiatuses in the Pelagic Caps of Pacific Guyots and Seamounts and Internal Tides GEOSPHERE; V
    Research Paper GEOSPHERE Modern and ancient hiatuses in the pelagic caps of Pacific guyots and seamounts and internal tides GEOSPHERE; v. 11, no. 5 Neil C. Mitchell1, Harper L. Simmons2, and Caroline H. Lear3 1School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK doi:10.1130/GES00999.1 2School of Fisheries and Ocean Sciences, University of Alaska-Fairbanks, 905 N. Koyukuk Drive, 129 O’Neill Building, Fairbanks, Alaska 99775, USA 3School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK 10 figures CORRESPONDENCE: neil .mitchell@ manchester ABSTRACT landmasses were different. Furthermore, the maximum current is commonly .ac .uk more important locally than the mean current for resuspension and transport Incidences of nondeposition or erosion at the modern seabed and hiatuses of particles and thus for influencing the sedimentary record. The amplitudes CITATION: Mitchell, N.C., Simmons, H.L., and Lear, C.H., 2015, Modern and ancient hiatuses in the within the pelagic caps of guyots and seamounts are evaluated along with of current oscillations should therefore be of interest to paleoceanography, al- pelagic caps of Pacific guyots and seamounts and paleotemperature and physiographic information to speculate on the charac- though they are not well known for the geological past. internal tides: Geosphere, v. 11, no. 5, p. 1590–1606, ter of late Cenozoic internal tidal waves in the upper Pacific Ocean. Drill-core Hiatuses in pelagic sediments of the deep abyssal ocean floor have been doi:10.1130/GES00999.1. and seismic reflection data are used to classify sediment at the drill sites as interpreted from sediment cores (Barron and Keller, 1982; Keller and Barron, having been accumulating or eroding or not being deposited in the recent 1983; Moore et al., 1978).
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 20
    31. BIOSTRATIGRAPHIC SYNTHESIS, LEG 20, DSDP Helen P. Foreman, Department of Geology, Oberlin College, Oberlin, Ohio Heinz Hekel, Geological Survey of Queensland, Brisbane, Australia Robert H. Hoskins, New Zealand Geological Survey, Lower Hutt, New Zealand and Valeri A. Krasheninnikov, Geological Institute of the Academy of Sciences of the USSR, Moscow, USSR INTRODUCTION Abundance and Preservation of Fossil Groups Figures 2 and 3 have been included to aid the reader in Setting selecting samples for further study. They indicate the Leg 20, which cruised.from Yokohama, Japan, to Suva, abundance and preservation of various fossil groups encoun- Fiji Islands, drilled 12 holes at eight sites as follows: tered. In requesting samples it should be kept in mind that Site 194: 33°58.66'N; 148°48.64'E Radiolaria in Cores 194-3, 1944, 194-5, 195-3, and 1954 Site 195: 32°46.5'N; 146°59.0'E were recovered only from cherts in the core catcher, in Site 196: 30°06.97'N; 148°34.49'E Core 195-5 from the center bit, and Core 195A-l from the Site 197: 30°17.44'N; 147°40.46'E bit; nannofossils in Cores 1954, 195-5, and 195A-1 were Site 198: 25°49.54'N; 154°35.05'E recovered only from the center bit. Site 199: 13°30.78'N; 156°10.34'E Site 200: 12°50.20'N; 156°46.96'E Site 201: 12°49.89'N; 156°44.59'E COMPARISON OF AGE AND ZONAL ASSIGNMENTS Site 202: 12°48.90'N; 156°57.15'E For Holes 194, 195, 195B, 196, and 198 it is not The location of Leg 20 sites in relation to bathymetry is possible to compare zones for the various faunal groups shown in Figure 1.
    [Show full text]
  • Article (PDF, 2454
    J.micropaZaeontol., 5 (1): 91-108, April 1986 A comparative study of collections from the S.W. Pacific (Saipan to Tonga), with the descriptions of GambieZZa caudata (Brady, 1890) and a new species of Pterobairdia (Ostracoda) K. G. McKENZlE Riverina-Murray Institute of Higher Education, Wagga Wagga, N.S.W., 2650, Australia ABSTRACT4ambielln caudata (Brady, 1890) and Pterobairdia briggsae sp. nov. are described from collections made in the S.W. Pacific (Saipan, Onotoa, Ontong-Java/Kula Gulf, Nournea, Cook Islands, Fiji, Samoa, Tonga); and the lectotypes of several species described in a major early paper by Brady (1890) are illustrated. The carbonate compensation depth in this region lies at around 4500m. Comparison of the Ontong-Java in Kula Gulf samples reinforces consideration of depth as a factor of ecological importance. A similarity matrix for the several faunas shows factors in common at species level ranging from 22% (0notoa:Noumea) to nearly 60% (Samoa/Onotoa); while endemism ranges from 8.5% (Samoa) to nearly 33% (Tonga). "ost endemic species belong in a limited number of podocopid families, in par- ticular Bairdiidae, Trachyleberididae, Paradoxostomatidae and Leptocytheridae. These results appear consistent with an hypothesis that continued tectonics-driven changes in the regional marine topography and sedimentation, i.e. niche development, could have triggered speciation along the regional plate margins. INTRODUCTION 1890 remains the major taxonomic reference) although A study of Ostracoda and other microfauna from the recently this undesirable situation has begun to improve S. W. Pacific commenced in 1980. It is based on material (Whatley, 1983). sampled during a number of cruises coordinated by CCOP/SOPAC (Committee for Coordination of Joint SAMPLE DESCRIPTIONS Prospecting for Mineral Resources in South Pacific Off- Preliminary sample descriptions of washings provided shore Areas).
    [Show full text]
  • 4. Upper Oligocene to Pleistocene Ostracoda from Guyots in the Western Pacific: Holes 871A, 872C, and 873B1
    Haggerty, J.A., Premoli Silva, I., Rack, F., and McNutt, M.K. (Eds.), 1995 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 144 4. UPPER OLIGOCENE TO PLEISTOCENE OSTRACODA FROM GUYOTS IN THE WESTERN PACIFIC: HOLES 871A, 872C, AND 873B1 Robin Whatley2 and Ian Boomer2 ABSTRACT Assemblages of upper Oligocene to Pleistocene Ostracoda are described from pelagic sediments capping three guyots in the western Pacific Ocean. Recent studies have shown that a high percentage of seamount Ostracoda are restricted (i.e., endemic) to these bathymetrically isolated sites. In the following we detail changes in the Ostracoda (diversity, abundance, dominance, endemism, faunal turnover) from upper Oligocene to Pleistocene sediments encountered during Ocean Drilling Program Leg 144. Our results support previous observations on guyots and indicate that their high levels of endemism do not simply reflect a poor knowledge of the fauna in that region but truly reflect their bathymetrical isolation. Furthermore, whatever global event or events affected the deep-sea Ostracoda during the Miocene, the guyot faunas were not isolated from these changes. INTRODUCTION for the Pliocene-Pleistocene interval of a number of non-guyot, Pa- cific deep-sea sites range from 5% to 25%, compared with a range As our knowledge of deep-sea Ostracoda has advanced, it has from 50% to 60% for the Horizon (DSDP Sites 200/202) and Ita Mai become apparent that there exists in modern to Tertiary oceans both a Tai (DSDP Sites 44 and 171) guyots during the same interval. widespread pandemic element and regional, more endemic taxa The bathymetric isolation of the guyot summits has resulted in (Whatley and Ayress, 1988; Coles et al., 1990).
    [Show full text]
  • Short-Lived and Discontinuous Intraplate Volcanism in the South Pacific: Hot Spots Or Extensional Volcanism?
    Review Geochemistry 3 Volume 4, Number 10 Geophysics 28 October 2003 GeosystemsG 1089, doi:10.1029/2003GC000533 G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Anthony A. P. Koppers and Hubert Staudigel Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0225, USA ([email protected]; [email protected]) Malcolm S. Pringle Argon Isotope Facility, Scottish Universities Environmental Research Center, Rankine Avenue, East Kilbride G75 0QF, UK ([email protected]) Jan R. Wijbrans Laboratory of Isotope Geology, Vrije Universiteit Amsterdam, De Boelelaan 1085 1081 HV Amsterdam, Netherlands ([email protected]) [1] South Pacific intraplate volcanoes have been active since the Early Cretaceous. Their HIMU-EMI- EMII mantle sources can be traced back into the West Pacific Seamount Province (WPSP) using plate tectonic reconstructions, implying that these distinctive components are enduring features within the Earth’s mantle for, at least, the last 120 Myr. These correlations are eminent on the scale of the WPSP and the South Pacific Thermal and Isotopic Anomaly (SOPITA), but the evolution of single hot spots emerges notably more complicated. Hot spots in the WPSP and SOPITA mantle regions typically display intermittent volcanic activity, longevities shorter than 40 Myr, superposition of hot spot volcanism, and motion relative to other hot spots. In this review, we use 40Ar/39Ar seamount ages and Sr-Nd-Pb isotopic signatures to map out Cretaceous volcanism in the WPSP and to characterize its evolution with respect to the currently active hot spots in the SOPITA region.
    [Show full text]
  • Geographic/Site Index
    OCEAN DRILLING PROGRAM CUMULATIVE INDEX GEOGRAPHIC AND SITE INDEX AABW • Africa SW 1 A Aeolian Islands morphology, 107A2:9 AABW. See Antarctic Bottom Water obsidian, 152B7:85–91 AAIW. See Antarctic Intermediate Water Afanasiy-Nikitin Seamount (Indian Ocean equatorial) Abaco event, geology, 101B27:428–430; 29:467 comparison to Ninetyeast and Chagos-Laccadive Abakaliki uplift ridges, 116B23:28 sedimentary instability, 159B10:95 deformation effects, 116B22:272 thermal history, 159B10:97–99 emplacement, 116B23:281, 283 ABC system. See Angola-Benguela Current system gravity anomalies, 116B23:281–283, 286–288 Abrakurrie limestone (Great Australian Bight) load models, 116B23:283–289 biostratigraphy, 182B3:17 location, 116A7:197–198 equivalents, 182A2:8; 182B1:6; 4:11 sediment source, 116B17:208 Absecon Inlet Formation (New Jersey coastal plain) seismic reflection profiling, 116B23:282–283 biostratigraphy, 150X_B10:118–120, 122; Afar hotspot, Red Sea, 123B42:797 174AX_A1:38; 174AXS_A2:38, 40 Afar Triangle-Bay of Aden rift system, volcanism, clay mineralogy, 150X_B5:60–63 123B10:210 lithostratigraphy, 150X_B2:19–20; 174AX_A1:22, 24; Afghanistan. See Zhob Valley 174AXS_A2:29–31, 53 Africa stratigraphy, 150X_B1:8–10; 18:243–266; aridification, 108B1:3 174AXS_A2:3 biostratigraphy, 120B(2)62:1083 Abu Madi sands (Egypt), sediments, 160B38:496 clast lithology, 160B45:585–586 Acadian orogeny climate cycles, 108B14:221 muscovite, 210B4:4 geodynamics, 159B5:46–47 tectonics, 103B1:10 glacial boundary changes, 108B14:222; 117B19:339 ACC. See Antarctic Circumpolar Current mass accumulation rates, 159B43:600 ACGS unit (New Jersey coastal plain), lithology, paleoclimatology, 160B19:327–328 150X_A1:23–24 paleopoles, 159B20:203 ACGS#4 borehole sandstone, 160B45:584 biofacies, 150X_B16:207–228 seafloor spreading, 120B(2)50:920 Oligocene, 150X_B8:81–86 See also Kalahari region (Africa); North Africa paleoenvironment, 150X_B17:239 Africa E, active rifting, 121A1:8 ACZ.
    [Show full text]
  • Wedgeworth BS 1985 Thesis.Pdf
    Ita Mai Tai Guyot: a comparative geophys 5 15539 • 3 AC . H no . U11111111111111111111111111111111 Wedgworth, Bruce S. SOEST Library • • ITA KAI TAI GUYO'l': A cml'ARATIVB GEOPHYSICAL S'l'ODY 0. WBS!'ERH PACllIC SUMOURl'S • A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT • OF THE REQUIREMENTS FOR THE DEGREE OF MASI'ER OF SCIENCE IN GEOLOGY AND GEOPHYSICS • DECEMBER 1985 • By Bruce Steven Wedgeworth • Thesis Committee: James N. Kellogg. Chairman Loren W. Kroenke • Eduard Berg RETURN TO HAWAI I INSTITUTE OF GEOPHYSICS • LIBRARY ROOM • • ii • • • We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and quality as a thesis for the degree of • Master of Science in Geology and Geophysics • • THESIS COMMITTEE / • • I \ : \ 1 . ~ i..:.' '.'-I I • v • • • iii • I would like to give special thanks to Dr. James Kellogg who was inspirational in getting this study off the ground and who provided • leadership combined with immeasurable patience along the way. Dr. Kroenke and Dr. Berg both gave umch appreciated criticism and insight over the course of the project • • There never would have been a study without the data provided by the crews and scientific staff of the following cruises: DSDP Legs 20 and 89, and KK810626 Leg 2. Three people working in the Penthouse were • especially helpful in the acquisition and management of geophysical data: Terri Duennebier, Elaine Demian, and Sharon Warlop. Steve Dang and Charlie Myers provided valuable information on illustration drafting • and photography. I am deeply indebted to John Tuttle, Bob Cessaro, John Williams, and Doug Myhre for their assistance in the world of computers, especially the inner workings of the Harris.
    [Show full text]
  • A 3-D Gravity Tectonic Study of Ita Mai Tai Guyot: an Uncompensated Seamount in the East Mariana Basin Bruce S
    University of South Carolina Scholar Commons Faculty Publications Earth, Ocean and Environment, School of the 1987 A 3-D Gravity Tectonic Study of Ita Mai Tai Guyot: An Uncompensated Seamount in the East Mariana Basin Bruce S. Wedgeworth James N. Kellogg University of South Carolina - Columbia, [email protected] Follow this and additional works at: https://scholarcommons.sc.edu/geol_facpub Part of the Earth Sciences Commons Publication Info Published in Geophysical Monograph Series, ed. B. H. Keating, P. Fryer, R. Batiza, G. W. Boehlert, Volume 43, 1987, pages 73-84. Wedgeworth, B. S. & Kellogg, J. N. (1987). A 3-D gravity tectonic study of Ita Mai Tai Guyot: an uncompensated seamount in the East Mariana Basin, in Seamounts, Islands, and Atolls. Geophysical Monograph Series, 43, 73-84. ©Geophysical Monograph Series 1987, American Geophysical Union This Article is brought to you by the Earth, Ocean and Environment, School of the at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A 3-D GRAVITY-TECTONIC STUDY OF ITA MAl TAl GUYOT: AN UNCOMPENSATED SEAMOUNT IN THE EAST MARIANA BASIN Bruce Wedgeworth l and James Kellogg2 Hawaii Institute of Geophysics, Honolulu, Hawaii 96822 Abstract. Ita Mai Tai is a large, locally uncompensated seamount Keoki surveyed Ita Mai Tai (Fig. 2) and other charted and uncharted on the eastern edge of the East Mariana Basin. A large positive grav­ seamounts in the central and western Pacific collecting bathymetric, ity anomaly of 254 mgal characterizes the summit and a low of -69 gravimetric, magnetic, petrologic and seismic reflection profiling data.
    [Show full text]
  • 22Th SCUFN Meeting
    IOC-IHO/GEBCO SCUFN22 English Only INTERGOVERNMENTAL INTERNATIONAL OCEANOGRAPHIC HYDROGRAPHIC COMMISSION (of UNESCO) ORGANIZATION Brest, France 22-26 September 2009 REPORT IOC-IHO/GEBCO SCUFN22 Page 2 Page intentionally left blank IOC-IHO/GEBCO SCUFN22 Page 3 Notes: 1) Paragraph numbering is the same as in the agenda (Annex C) 2) All documents referred to in these minutes are available from the SCUFN page of the IHO website (http://www.iho-ohi.net/mtg_docs/com_wg/SCUFN/SCUFN22/SCUFN22Docs.htm) Annexes: A List of Documents B List of Participants C Agenda D List of Actions arising from SCUFN22 E Transfer of Bathymetric Data to the IHO DCDB – Summary of Discussions F SCUFN Generic Terms: List of Allowed Geometries G List of Acronyms used in this Report H Alphabetic Index of Undersea Feature Names considered at SCUFN-22 1. OPENING AND ADMINISTRATIVE ARRANGEMENTS Docs: SCUFN22-01A List of Documents (also Annex A) SCUFN22-01B List of Participants (also Annex B) SCUFN22-01C SCUFN Membership and Observers List The twenty second meeting of the GEBCO Sub-Committee on Undersea Feature Names (SCUFN) met in the Gaillard Meeting Room at the headquarters of the Service Hydrographique and Océanographique de la Marine (SHOM) in Brest, France under the chairmanship of Dr. Hans Werner SCHENKE, AWI, Germany. Ing. en Chef Henri DOLOU, of SHOM, opened the meeting. He welcomed all participants on behalf of Ing. General Gilles BESSERO, Director of SHOM, who was unable to be there as he was attending a meeting of the IHO Mediterranean and Black Sea Hydrographic Commission. He wished the sub-committee a successful and productive meeting.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 20
    8. TERTIARY PELAGIC OOZE ON ITA MAITAI GUYOT, EQUATORIAL PACIFIC: DSDP SITES 200 AND 201 The Shipboard Scientific Party1 SITE DATA-SITE 200 the guyots might be combined with the incomplete Hole 199 to construct a history of the area. If the Paleocene Occupied: 27 Oct 1971 limestones of Site 199 represent relatively deep water Position: Summit of Ita Mai Tai Guyot carbonates deposited as the Equator passed the site, then lat 12°50.2'N there might be a similar sequence of beds on the guyot long 156°47.θ'E which might serve as a further guide to the paleotectonic Water Depth: 1469 meters history of the area. It was with such questions in mind that the drilling of the guyots seemed to offer an attractive Number of Cores: 10 although enforced alternative to deep-sea drilling. Total Penetration: 132 meters The location and bathymetry of Sites 200-201 are Deepest Unit Recovered: Early Eocene globigerina sand- shown in Figures 1 and 2, respectively, and a seismic profile stone near base of upper transparent layer. across Site 200 is given in Figure 3. Main Results: The acoustically transparent layer which caps Ita Mai Tai Guyot consists of early Eocene to OPERATIONS Quaternary winnowed foraminiferal ooze. Basalt frag- ments in the ooze suggests that the volcanic foundations Site 200 outcrop in the vicinity. Ita Mai Tai Guyot was approached from the northwest. Leaving the Caroline Abyssal Plain, the bottom rose SITE DATA-SITE 201 steadily until at a depth of 1479 meters the shoulder of the Occupied: 28 Oct 1971 table mount was reached.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Geobios 45 (2012) 145–156 Available online at www.sciencedirect.com Original article Cephalopod and brachiopod fossils from the Pacific: Evidence from the Upper § Cretaceous of the Magellan Seamounts a, b a c Yuri D. Zakharov *, Mikhael E. Melnikov , Alexander M. Popov , Sergej P. Pletnev , a a Vladimir D. Khudik , Tatiana A. Punina a Far Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch), Prospect Stoletiya 159, Vladivostok 690022, Russia b Research Institute of Ocean Geophysics, Federal Scientific Center ‘‘Yuzhmorgeologiya’’, Gelendzhik, Krasnodar region, Russia c Pacific Institute of Oceanology, Russian Academy of Sciences (Far Eastern Branch), Radio Street 7, Vladivostok 690032, Russia A R T I C L E I N F O A B S T R A C T Article history: Maastrichtian cephalopods and a brachiopod were dredged from the Butakov, Fedorov, Kotsebu, Il’ichev, Received 11 October 2010 Govorov, Gelendzhik, and Ita-Mai-Tai guyots in the Magellan Seamounts.
    [Show full text]