Glossary-Index
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unit Name: Powers and Multiples of 10
Dear Parents, We will begin our next unit of study in math soon. The information below will serve as an overview of the unit as you work to support your child at home. If you have any questions, please feel free to contact me. I appreciate your on-going support. Sincerely, Your Child’s Teacher Unit Name: Powers and Multiples of 10 Common Core State Standards: 5.NBT.1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left. 5.NBT.2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. Essential Vocabulary: place value decimal number powers of 10 expanded form Unit Overview: Students extend their understanding of the base-ten system by looking at the relationship among place values. Students are required to reason about the magnitude of numbers. Students should realize that the tens place is ten times as much as the ones place, and the ones place is 1/10th the size of the tens place. New at Grade 5 is the use of whole number exponents to represent powers of 10. Students should understand why multiplying by a power of 10 shifts the digits of a whole number that many places to the left. -
A Family of Sequences Generating Smith Numbers
1 2 Journal of Integer Sequences, Vol. 16 (2013), 3 Article 13.4.6 47 6 23 11 A Family of Sequences Generating Smith Numbers Amin Witno Department of Basic Sciences Philadelphia University 19392 Jordan [email protected] Abstract Infinitely many Smith numbers can be constructed using sequences which involve repunits. We provide an alternate method of construction by introducing a generaliza- tion of repunits, resulting in new Smith numbers whose decimal digits are composed of zeros and nines. 1 Introduction We work with natural numbers in their decimal representation. Let S(N) denote the “digital sum” (the sum of the base-10 digits) of the number N and let Sp(N) denote the sum of all the digital sums of the prime factors of N, counting multiplicity. For instance, S(2013) = 2+0+1+3 = 6 and, since 2013 = 3 × 11 × 61, we have Sp(2013) = 3+1+1+6+1 = 12. The quantity Sp(N) does not seem to have a name in the literature, so let us just call Sp(N) the p-digit sum of N. The natural number N is called a Smith number when N is composite and S(N)= Sp(N). For example, since 22 = 2 × 11, we have both S(22) = 4 and Sp(22) = 4. Hence, 22 is a Smith number—thus named by Wilansky [4] in 1982. Several different ways of constructing Smith numbers are already known. (See our 2010 article [5], for instance, which contains a brief historical account on the subject as well as a list of references. -
Basic Math Quick Reference Ebook
This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference eBOOK Click on The math facts listed in this eBook are explained with Contents or Examples, Notes, Tips, & Illustrations Index in the in the left Basic Math Quick Reference Handbook. panel ISBN: 978-0-615-27390-7 to locate a topic. Peter J. Mitas Quick Reference Handbooks Facts from the Basic Math Quick Reference Handbook Contents Click a CHAPTER TITLE to jump to a page in the Contents: Whole Numbers Probability and Statistics Fractions Geometry and Measurement Decimal Numbers Positive and Negative Numbers Universal Number Concepts Algebra Ratios, Proportions, and Percents … then click a LINE IN THE CONTENTS to jump to a topic. Whole Numbers 7 Natural Numbers and Whole Numbers ............................ 7 Digits and Numerals ........................................................ 7 Place Value Notation ....................................................... 7 Rounding a Whole Number ............................................. 8 Operations and Operators ............................................... 8 Adding Whole Numbers................................................... 9 Subtracting Whole Numbers .......................................... 10 Multiplying Whole Numbers ........................................... 11 Dividing Whole Numbers ............................................... 12 Divisibility Rules ............................................................ 13 Multiples of a Whole Number ....................................... -
1 General Questions 15 • Fibonacci Rule: Each Proceeding [Next] Term Is the Sum of the Previous Two Terms So That
General 1 Questions 1. WHY DO I HAVE TO LEARN MATHEMATICS? The “why” question is perhaps the one encountered most frequently. It is not a matter of if but when this question comes up. And after high school, it will come up again in different formulations. (Why should I become a mathemat- ics major? Why should the public fund research in mathematics? Why did I ever need to study mathematics?) Thus, it is important to be prepared for this question. Giving a good answer is certainly difficult, as much depends on individual circumstances. First, you should try to find an answer for yourself. What was it that convinced you to study and teach mathematics? Why do you think that mathematics is useful and important? Have you been fascinated by the elegance of mathematical reasoning and the beauty of mathematical results? Tell your students. A heartfelt answer would be most credible. Try to avoid easy answers like “Because there is a test next week” or “Because I say so,” even if you think that the question arises from a general unwill- ingness to learn. It is certainly true that everybody needs to know a certain amount of elementary mathematics to master his or her life. You could point out that there are many everyday situations where mathematics plays a role. Certainly one needs mathematics whenever one deals with money—for example, when one goes shopping, manages a savings account, or makes a monthly budget. Nevertheless, we encounter the “why” question more frequently in situ- ations where the everyday context is less apparent. -
Math 3345-Real Analysis — Lecture 02 9/2/05 1. Are There Really
Math 3345-Real Analysis — Lecture 02 9/2/05 1. Are there really irrational numbers? We got an indication last time that repeating decimals must be rational. I’ll look at another example, and then we’ll expand that into a quick proof. Consider the number x = 845.7256. The first four digits don’t repeat, but after that the sequence of three digits 256 repeats. If we multiply x by 103 = 1000, we get (1) 1000x = 845,725.6256 That’s part of the trick. Now we subtract (2) 1000x − x = 999x = 845,725.6256 − 845.7256 = 844,879.9000 Therefore, we can write x as 844,879.9 8,448,799 (3) x = = , 999 9990 which is a fraction of integers. The repeating decimal x must be a rational number. Theorem 1. A repeating decimal must be rational. (1) Let x be a repeating decimal. (We want to show that x being rational follows from this assumption.) (2) After some point, we must have n digits repeating forever. (This is what it means to be repeating.) (3) y =10nx − x is a terminating decimal. (When you subtract, the repeating decimals cancel out.) y (4) x = 10n−1 is a fraction of a terminating decimal and an integer. (Basic computation.) (5) x must be a fraction of integers. (You can make any terminating decimal into an integer by multi- plying by a power of 10.) (6) x is rational. (Rationals are fractions of integers.) 1.1. So are all integer fractions repeating decimals? As an example, divide 11 into 235 using long division. -
Modern Computer Arithmetic (Version 0.5. 1)
Modern Computer Arithmetic Richard P. Brent and Paul Zimmermann Version 0.5.1 arXiv:1004.4710v1 [cs.DS] 27 Apr 2010 Copyright c 2003-2010 Richard P. Brent and Paul Zimmermann This electronic version is distributed under the terms and conditions of the Creative Commons license “Attribution-Noncommercial-No Derivative Works 3.0”. You are free to copy, distribute and transmit this book under the following conditions: Attribution. You must attribute the work in the manner specified • by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial. You may not use this work for commercial purposes. • No Derivative Works. You may not alter, transform, or build upon • this work. For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to the web page below. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. For more information about the license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Contents Contents iii Preface ix Acknowledgements xi Notation xiii 1 Integer Arithmetic 1 1.1 RepresentationandNotations . 1 1.2 AdditionandSubtraction . .. 2 1.3 Multiplication . 3 1.3.1 Naive Multiplication . 4 1.3.2 Karatsuba’s Algorithm . 5 1.3.3 Toom-Cook Multiplication . 7 1.3.4 UseoftheFastFourierTransform(FFT) . 8 1.3.5 Unbalanced Multiplication . 9 1.3.6 Squaring.......................... 12 1.3.7 Multiplication by a Constant . -
Unit 2: Exponents and Equations
Georgia Standards of Excellence Curriculum Frameworks Mathematics 8th Grade Unit 2: Exponents and Equations Georgia Department of Education Georgia Standards of Excellence Framework GSE Grade 8 • Exponents and Equations Unit 2 Exponents and Equations TABLE OF CONTENTS OVERVIEW ........................................................................................................................3 STANDARDS ADDRESSED IN THIS UNIT ...................................................................4 STANDARDS FOR MATHEMATICAL PRACTICE .......................................................4 STANDARDS FOR MATHEMATICAL CONTENT ........................................................4 BIG IDEAS ..........................................................................................................................5 ESSENTIAL QUESTIONS .................................................................................................6 FLUENCY ...........................................................................................................................6 SELECTED TERMS AND SYMBOLS ..............................................................................7 EVIDENCE OF LEARNING ..............................................................................................8 FORMATIVE ASSESSMENT LESSONS (FAL) ..............................................................9 SPOTLIGHT TASKS ..........................................................................................................9 3-ACT TASKS.................................................................................................................. -
Number Theory Theory and Questions for Topic Based Enrichment Activities/Teaching
Number Theory Theory and questions for topic based enrichment activities/teaching Contents Prerequisites ................................................................................................................................................................................................................ 1 Questions ..................................................................................................................................................................................................................... 2 Investigative ............................................................................................................................................................................................................. 2 General Questions ................................................................................................................................................................................................... 2 Senior Maths Challenge Questions .......................................................................................................................................................................... 3 British Maths Olympiad Questions .......................................................................................................................................................................... 8 Key Theory .................................................................................................................................................................................................................. -
The Power of 10
DIVISION OF AGRICULTURE RESEARCH & EXTENSION University of Arkansas System Strategy 16 United States Department of Agriculture, University of Arkansas, and County Governments Cooperating Live “The Power of 10” We must not, in trying to think about how much we can make a big difference, ignore the small daily differences which we can make which, over time, add up to big differences that we often cannot forsee.” – Marion Wright Edelman The number “10” is powerful and fits a “small steps approach” to behavior change. It is easy to multiply, divide and remember; small enough not to discourage people from taking action; and large enough to make an impact over time. “10” also shows up repeatedly in expert recommendations to improve health and increase wealth. Whether it’s shedding 10 pounds, exercising in 10-minute increments, saving 10 percent of gross income or reducing debt by $10 a day, “10” and derivatives of 10 (e.g., 1 and 100) are strong motivators if the magnitude of their impact is fully appreciated. Sondra Anice Barnes once made the following comment about taking action to change: “It’s so hard when I have to, and so easy when I want to.” Use “The Power of 10” to increase your “want to factor” (e.g., desire to make a change). The more you know about weight loss and financial planning, the more motivated you will be to make health and wealth changes because you’ll better appreciate the difference that small steps can make. Below are some health-related examples of “The Power of 10”: The Power of 10 – Health Examples Power of 10 Health Improvement Practice Examples and Description Set an initial weight loss goal of 10 percent of As an example, an appropriate initial weight loss goal body weight, to be achieved over a six‐month would be 18 pounds for someone who currently weighs period (i.e., gradual weight loss of 1 to 180 pounds and is overweight or obese. -
Golden Ratio, Golden Section, Golden Mean, Golden Spiral, Phi, Geometrical Validation of Phi, Fibonacci Number, Phi in Nature, Equation of Phi
International Journal of Arts 2011; 1(1): 1-22 DOI: 10.5923/j.arts.20110101.01 Geometrical Substantiation of Phi, the Golden Ratio and the Baroque of Nature, Architecture, Design and Engineering Md. Akhtaruzzaman*, Amir A. Shafie Department of Mechatronics Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur, 53100, Malaysia Abstract Golden Proportion or Golden Ratio is usually denoted by the Greek letter Phi (φ), in lower case, which repre- sents an irrational number, 1.6180339887 approximately. Because of its unique and mystifying properties, many researchers and mathematicians have been studied about the Golden Ratio which is also known as Golden Section. Renaissance architects, artists and designers also studied on this interesting topic, documented and employed the Golden section proportions in eminent works of artifacts, sculptures, paintings and architectures. The Golden Proportion is considered as the most pleasing to human visual sensation and not limited to aesthetic beauty but also be found its existence in natural world through the body proportions of living beings, the growth patterns of many plants, insects and also in the model of enigmatic universe. The properties of Golden Section can be instituted in the pattern of mathematical series and geometrical patterns. This paper seeks to represent a panoptic view of the miraculous Golden Proportion and its relation with the nature, globe, universe, arts, design, mathematics and science. Geometrical substantiation of the equation of Phi, based on the classical geometric relations, is also explicated in this study. Golden Ratio and its chronicle, concept of Golden Mean and its relations with the geometry, various dynamic rectangles and their intimacy with Phi, Golden Ratio in the beauty of nature, Phi ratio in the design, architecture and engineering are also presented in this study in a panoptical manner. -
Studying Fine-Art Compositions by Means of Dynamic Geometry Constructions
STUDYING FINE-ART COMPOSITIONS BY MEANS OF DYNAMIC GEOMETRY CONSTRUCTIONS Evgenia Sendova, Toni Chehlarova Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia 1113, Acad. G. Bonchev Str., Block 8, Bulgaria [email protected] [email protected] Abstract The paper deals with integrating the study of art and mathematics by exploring the balance and the logical emphasis of paintings by means of dynamic geometry constructions developed in mathematics classes. A dynamic scenario developed and experimented in the context of the DynaMAT Comenius project is discussed as an illustration of how students could be encouraged to apply their mathematical knowledge for gaining a deeper insight in art compositions. Several methods suggested by art specialists are considered (e.g. rabatment, the rule of thirds, the golden section) together with appropriate dynamic geometry implementations. Ideas for further activities with students formulated in terms of long-term projects are offered. Although the considered scenario is still in its early phase of experimentation (mainly at teacher training courses) the first impressions are shared as being promising – the teachers become aware that they could attract more students to mathematics when showing its applicatio n in various contexts. The experience gained by the authors on a broader scale ─ in the context of visual modeling, is reported to have contributed to building new strategies in teacher education, which could prepare teachers for their changing role of partners in a creative process. Keywords dynamic geometry software, art, rabatment INTRODUCTION Seeing is not as simple as it looks Ad Reinhardt Many artists claim that they could explain nothing about their works, that their paintings came upon them by inspiration. -
Pelham Math Vocabulary 3-5
Pelham Math Vocabulary 3-5 Acute angle Composite number Equation Acute triangle Compose Equilateral triangle Add (adding, addition) Composite figure Equivalent decimals Addend Cone Equivalent fractions algebra Congruent Estimate Analyze Congruent angles Evaluate Angle Congruent figures Even number Area Congruent sides Expanded forms/expanded Array Convert notation Associative property of Coordinate Exponent addition Coordinate graph or grid Expression Associative property of Coordinate plane Face multiplication Cube Fact family Attribute Cubed Factor Average Cubic unit Factor pair Axis Cup Fahrenheit (F) Bar diagram Customary system Fair share Bar graph Cylinder Favorable outcomes Base - in a power, the Data Fluid ounce number used as a factor Decagon Foot (ft) Base - any side of a Decimal Formula parallelogram Decimal point Fraction Base - one of the two Decimal equivalent Frequency parallel congruent faces in a Decompose Frequency table prism Degree Function Benchmark Degrees celsius Gallon Calendar Degrees fahrenheit Gram Capacity Denominator Graph Centimeter (cm) Difference Greatest common factor Circle Digit Half hour Circle graph Distributive property of Half inch Clock multiplication Height Combination Divide Hexagon Common denominator Dividend Hour Common factor Divisible Horizontal axis Common multiple Division sentence Hundreds Commutative property of Divisor Hundredth addition Edge Identity Property of Commutative property of Elapsed time Addition multiplication Endpoint Identity Property of Compare Equal groups Multiplication