Math 3345-Real Analysis — Lecture 02 9/2/05 1. Are There Really

Total Page:16

File Type:pdf, Size:1020Kb

Math 3345-Real Analysis — Lecture 02 9/2/05 1. Are There Really Math 3345-Real Analysis — Lecture 02 9/2/05 1. Are there really irrational numbers? We got an indication last time that repeating decimals must be rational. I’ll look at another example, and then we’ll expand that into a quick proof. Consider the number x = 845.7256. The first four digits don’t repeat, but after that the sequence of three digits 256 repeats. If we multiply x by 103 = 1000, we get (1) 1000x = 845,725.6256 That’s part of the trick. Now we subtract (2) 1000x − x = 999x = 845,725.6256 − 845.7256 = 844,879.9000 Therefore, we can write x as 844,879.9 8,448,799 (3) x = = , 999 9990 which is a fraction of integers. The repeating decimal x must be a rational number. Theorem 1. A repeating decimal must be rational. (1) Let x be a repeating decimal. (We want to show that x being rational follows from this assumption.) (2) After some point, we must have n digits repeating forever. (This is what it means to be repeating.) (3) y =10nx − x is a terminating decimal. (When you subtract, the repeating decimals cancel out.) y (4) x = 10n−1 is a fraction of a terminating decimal and an integer. (Basic computation.) (5) x must be a fraction of integers. (You can make any terminating decimal into an integer by multi- plying by a power of 10.) (6) x is rational. (Rationals are fractions of integers.) 1.1. So are all integer fractions repeating decimals? As an example, divide 11 into 235 using long division. In your third step, you divide 11 into 40. In your fifth step, you again find yourself dividing 11 into 40. Not surprisingly, you’ll be dividing 11 into 40 in your seventh step. The digits 36 must keep repeating. Theorem 2. Integer fractions are always repeating decimals a Story proof Let’s say we have the integer fraction b . If we do a long division of b into a to convert the fraction to a decimal, we’ll eventually find that our “remainders” are smaller than b. And then we add a zero and divide b into the remainder times 10. The remainder is always smaller than b, so there are only b possible remainders. There must, therefore, be a remainder that occurs more than once. The long division proceeds the same way each time this remainder is encountered, so we will continue to cycle through a fixed sequence of remainders. The result is a repeating decimal (it may be that we repeat only the digit 0). 2. Prime factorizations Every natural number can be factored uniquely into primes. For example, (4) 300 = 2 · 150 = 2 · 2 · 75 = 2 · 2 · 3 · 25 = 2 · 2 · 3 · 5 · 5=223152 =22315270110130 ··· By unique, we mean that the exponent on each particular prime can be only one thing (usually zero). Theorem 3. The prime factorizations of perfect squares have all even exponents (0 is even). All exponents are multiples of 3 for perfect cubes (0 is a multiple of 3), etc. We won’t prove this, but if you look at a few examples, you can see why this is true. 1 2 √ Theorem 4. The number 2 is not rational. √ (1) Suppose 2 is rational. (We’re starting an indirect proof, and hopefully we will arrive at a contra- √diction.) a ∈ 6 (2) 2= b , where a, b Z and b = 0. (Rational numbers can be expressed as fractions.) a2 (3) 2 = b2 . (Basic algebra.) (4) 2b2 = a2. (Basic algebra.) (5) 2b2 and a2 are both integers. (Basic algebra.) (6) 2b2 and a2 have the same unique prime factorization. (Basic fact of life.) (7) For a2 =2α · 3β · 5γ ···, all the exponents must be even. (Since a2 is a perfect square.) (8) For 2b2 =2α · 3β · 5γ ···, α must be odd. (Since b2 is a square and we’re throwing in one more 2.) (9) α must be both odd and even. →← (Repeating the conclusions of the previous two steps.) √ The assumption that 2 is rational√ leads to the contradictory statement that α must be both even and odd. Therefore, it must not be true that 2 is rational. Note that this proof will work for the square root of any prime number. With a little more work, you can show that the square root of any natural number is either going to be a natural number or an irrational number. √ 1. Can 2 be a repeating decimal? Prove it. 3. Homework 02 Before starting problems 1-4, find the prime factorization of 60. 1. What is the exponent on 2? 2. What is the exponent on 3? 3. What is the exponent on 5? 4. What is the exponent on 7? 5. Is 216,000 a perfect cube? For problems 6-8, first find the prime factorization of 216,000. 6. What is the exponent on 2? 7. What is the exponent on 3? 8. For the prime factorization of a perfect cube, the exponents are all multiples of . √ Let’s prove that the cube root of 4 must be irrational. The standard proof idea is to assume that 3 4is rational and show that that leads to contradictory statements. √ Step 1: Suppose that 3 4 is rational. √ 3 a Step 2: Then there are integers a and b such that 4= b . (Definition of rational numbers.) Step 3: b3 · 4=a3. (Basic algebra.) Step 4: 4b3 and a3 must have the same prime factorization. (Fact of life and step 3) Step 5: In this prime factorization, let’s say that α is the exponent on 2. (Notational definition.) Now you finish. 3 9. Since α comes from the prime factorization of a3, it must be a multiple of 10. The exponent on 2 of the prime factorization of b3 must be a multiple of 11. Therefore, α must be a multiple of 3 plus 12. According to problem 11, can α be a multiple of 3? 13. If our original assumption is true, then the conclusions of problems 9 and 12 must also both be true. Are 9 and 12 consistent? √ 14. So is 3 4 rational? My Quiz answer. √ Show 2 is not a repeating decimal. √ (1) Suppose√ 2 is a repeating decimal. (2) Then√ 2 is rational. (By Theorem 1.) (3) But 2 is not√ rational. (By Theorem 4.) (4) Therefore, 2 is both rational and not rational. →←.
Recommended publications
  • Exploring Unit Fractions
    Page 36 Exploring Unit Fractions Alan Christison [email protected] INTRODUCTION In their article “The Beauty of Cyclic Numbers”, Duncan Samson and Peter Breetzke (2014) explored, among other things, unit fractions and their decimal expansions6. They showed that for a unit fraction to terminate, its denominator must be expressible in the form 2푛. 5푚 where 푛 and 푚 are non-negative integers, both not simultaneously equal to zero. In this article I take the above observation as a starting point and explore it further. FURTHER OBSERVATIONS 1 For any unit fraction of the form where 푛 and 푚 are non-negative integers, both not 2푛.5푚 simultaneously equal to zero, the number of digits in the terminating decimal will be equal to the larger 1 1 of 푛 or 푚. By way of example, has 4 terminating decimals (0,0625), has 5 terminating decimals 24 55 1 (0,00032), and has 6 terminating decimals (0,000125). The reason for this can readily be explained by 26.53 1 converting the denominators into a power of 10. Consider for example which has six terminating 26.53 decimals. In order to convert the denominator into a power of 10 we need to multiply both numerator and denominator by 53. Thus: 1 1 53 53 53 125 = × = = = = 0,000125 26. 53 26. 53 53 26. 56 106 1000000 1 More generally, consider a unit fraction of the form where 푛 > 푚. Multiplying both the numerator 2푛.5푚 and denominator by 5푛−푚 gives: 1 1 5푛−푚 5푛−푚 5푛−푚 = × = = 2푛. 5푚 2푛.
    [Show full text]
  • 0.999… = 1 an Infinitesimal Explanation Bryan Dawson
    0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder .
    [Show full text]
  • A Theorem on Repeating Decimals
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications, Department of Mathematics Mathematics, Department of 6-1967 A THEOREM ON REPEATING DECIMALS William G. Leavitt University of Nebraska - Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub Part of the Mathematics Commons Leavitt, William G., "A THEOREM ON REPEATING DECIMALS" (1967). Faculty Publications, Department of Mathematics. 48. https://digitalcommons.unl.edu/mathfacpub/48 This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The American Mathematical Monthly, Vol. 74, No. 6 (Jun. - Jul., 1967), pp. 669-673. Copyright 1967 Mathematical Association of America 19671 A THEOREM ON REPEATING DECIMALS A THEOREM ON REPEATING DECIMALS W. G. LEAVITT, University of Nebraska It is well known that a real number is rational if and only if its decimal ex- pansion is a repeating decimal. For example, 2/7 =.285714285714 . Many students also know that if n/m is a rational number reduced to lowest terms (that is, n and m relatively prime), then the number of repeated digits (we call this the length of period) depends only on m. Thus all fractions with denominator 7 have length of period 6. A sharp-eyed student may also notice that when the period (that is, the repeating digits) for 2/7 is split into its two half-periods 285 and 714, then the sum 285+714=999 is a string of nines.
    [Show full text]
  • Repeating Decimals Warm up Problems. A. Find the Decimal Expressions for the Fractions 1 7 , 2 7 , 3 7 , 4 7 , 5 7 , 6 7 . What
    Repeating Decimals Warm up problems. a. Find the decimal expressions for the fractions 1 2 3 4 5 6 ; ; ; ; ; : 7 7 7 7 7 7 What interesting things do you notice? b. Repeat the problem for the fractions 1 2 12 ; ;:::; : 13 13 13 What is interesting about these answers? Every fraction has a decimal representation. These representations either terminate (e.g. 3 8 = 0:375) or or they do not terminate but are repeating (e.g. 3 = 0:428571428571 ::: = 0:428571; ) 7 where the bar over the six block set of digits indicates that that block repeats indefinitely. 1 1. Perform the by hand, long divisions to calculate the decimal representations for 13 2 and 13 . Use these examples to help explain why these fractions have repeating decimals. 2. With these examples can you predict the \interesting things" that you observed in 1 warm up problem b.? Look at the long division for 7 . Does this example confirm your reasoning? 1 3. It turns out that 41 = 0:02439: Write out the long division that shows this and then find (without dividing) the four other fractions whose repeating part has these five digits in the same cyclic order. 4. As it turns out, if you divide 197 by 26, you get a quotient of 7 and a remainder of 15. How can you use this information to find the result when 2 · 197 = 394 is divided by 26? When 5 · 197 = 985 is divided by 26? 5. Suppose that when you divide N by D, the quotient is Q and the remainder is R.
    [Show full text]
  • Irrational Numbers and Rounding Off*
    OpenStax-CNX module: m31341 1 Irrational Numbers and Rounding Off* Rory Adams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Introduction You have seen that repeating decimals may take a lot of paper and ink to write out. Not only is that impossible, but writing numbers out to many decimal places or a high accuracy is very inconvenient and rarely gives practical answers. For this reason we often estimate the number to a certain number of decimal places or to a given number of signicant gures, which is even better. 2 Irrational Numbers Irrational numbers are numbers that cannot be written as a fraction with the numerator and denominator as integers. This means that any number that is not a terminating decimal number or a repeating decimal number is irrational. Examples of irrational numbers are: p p p 2; 3; 3 4; π; p (1) 1+ 5 2 ≈ 1; 618 033 989 tip: When irrational numbers are written in decimal form, they go on forever and there is no repeated pattern of digits. If you are asked to identify whether a number is rational or irrational, rst write the number in decimal form. If the number is terminated then it is rational. If it goes on forever, then look for a repeated pattern of digits. If there is no repeated pattern, then the number is irrational. When you write irrational numbers in decimal form, you may (if you have a lot of time and paper!) continue writing them for many, many decimal places.
    [Show full text]
  • Unit Name: Powers and Multiples of 10
    Dear Parents, We will begin our next unit of study in math soon. The information below will serve as an overview of the unit as you work to support your child at home. If you have any questions, please feel free to contact me. I appreciate your on-going support. Sincerely, Your Child’s Teacher Unit Name: Powers and Multiples of 10 Common Core State Standards: 5.NBT.1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left. 5.NBT.2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. Essential Vocabulary: place value decimal number powers of 10 expanded form Unit Overview: Students extend their understanding of the base-ten system by looking at the relationship among place values. Students are required to reason about the magnitude of numbers. Students should realize that the tens place is ten times as much as the ones place, and the ones place is 1/10th the size of the tens place. New at Grade 5 is the use of whole number exponents to represent powers of 10. Students should understand why multiplying by a power of 10 shifts the digits of a whole number that many places to the left.
    [Show full text]
  • A Family of Sequences Generating Smith Numbers
    1 2 Journal of Integer Sequences, Vol. 16 (2013), 3 Article 13.4.6 47 6 23 11 A Family of Sequences Generating Smith Numbers Amin Witno Department of Basic Sciences Philadelphia University 19392 Jordan [email protected] Abstract Infinitely many Smith numbers can be constructed using sequences which involve repunits. We provide an alternate method of construction by introducing a generaliza- tion of repunits, resulting in new Smith numbers whose decimal digits are composed of zeros and nines. 1 Introduction We work with natural numbers in their decimal representation. Let S(N) denote the “digital sum” (the sum of the base-10 digits) of the number N and let Sp(N) denote the sum of all the digital sums of the prime factors of N, counting multiplicity. For instance, S(2013) = 2+0+1+3 = 6 and, since 2013 = 3 × 11 × 61, we have Sp(2013) = 3+1+1+6+1 = 12. The quantity Sp(N) does not seem to have a name in the literature, so let us just call Sp(N) the p-digit sum of N. The natural number N is called a Smith number when N is composite and S(N)= Sp(N). For example, since 22 = 2 × 11, we have both S(22) = 4 and Sp(22) = 4. Hence, 22 is a Smith number—thus named by Wilansky [4] in 1982. Several different ways of constructing Smith numbers are already known. (See our 2010 article [5], for instance, which contains a brief historical account on the subject as well as a list of references.
    [Show full text]
  • 142857, and More Numbers Like It
    142857, and more numbers like it John Kerl January 4, 2012 Abstract These are brief jottings to myself on vacation-spare-time observations about trans- posable numbers. Namely, 1/7 in base 10 is 0.142857, 2/7 is 0.285714, 3/7 is 0.428571, and so on. That’s neat — can we find more such? What happens when we use denom- inators other than 7, or bases other than 10? The results presented here are generally ancient and not essentially original in their particulars. The current exposition takes a particular narrative and data-driven approach; also, elementary group-theoretic proofs preferred when possible. As much I’d like to keep the presentation here as elementary as possible, it makes the presentation far shorter to assume some first-few-weeks-of-the-semester group theory Since my purpose here is to quickly jot down some observations, I won’t develop those concepts in this note. This saves many pages, at the cost of some accessibility, and with accompanying unevenness of tone. Contents 1 The number 142857, and some notation 3 2 Questions 4 2.1 Are certain constructions possible? . .. 4 2.2 Whatperiodscanexist? ............................. 5 2.3 Whencanfullperiodsexist?........................... 5 2.4 Howdodigitsetscorrespondtonumerators? . .... 5 2.5 What’s the relationship between add order and shift order? . ...... 5 2.6 Why are half-period shifts special? . 6 1 3 Findings 6 3.1 Relationship between expansions and integers . ... 6 3.2 Periodisindependentofnumerator . 6 3.3 Are certain constructions possible? . .. 7 3.4 Whatperiodscanexist? ............................. 7 3.5 Whencanfullperiodsexist?........................... 8 3.6 Howdodigitsetscorrespondtonumerators? . .... 8 3.7 What’s the relationship between add order and shift order? .
    [Show full text]
  • Renormalization Group Calculation of Dynamic Exponent in the Models E and F with Hydrodynamic Fluctuations M
    Vol. 131 (2017) ACTA PHYSICA POLONICA A No. 4 Proceedings of the 16th Czech and Slovak Conference on Magnetism, Košice, Slovakia, June 13–17, 2016 Renormalization Group Calculation of Dynamic Exponent in the Models E and F with Hydrodynamic Fluctuations M. Dančoa;b;∗, M. Hnatiča;c;d, M.V. Komarovae, T. Lučivjanskýc;d and M.Yu. Nalimove aInstitute of Experimental Physics SAS, Watsonova 47, 040 01 Košice, Slovakia bBLTP, Joint Institute for Nuclear Research, Dubna, Russia cInstitute of Physics, Faculty of Sciences, P.J. Safarik University, Park Angelinum 9, 041 54 Košice, Slovakia d‘Peoples’ Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation eDepartment of Theoretical Physics, St. Petersburg University, Ulyanovskaya 1, St. Petersburg, Petrodvorets, 198504 Russia The renormalization group method is applied in order to analyze models E and F of critical dynamics in the presence of velocity fluctuations generated by the stochastic Navier–Stokes equation. Results are given to the one-loop approximation for the anomalous dimension γλ and fixed-points’ structure. The dynamic exponent z is calculated in the turbulent regime and stability of the fixed points for the standard model E is discussed. DOI: 10.12693/APhysPolA.131.651 PACS/topics: 64.60.ae, 64.60.Ht, 67.25.dg, 47.27.Jv 1. Introduction measurable index α [4]. The index α has been also de- The liquid-vapor critical point, λ transition in three- termined in the framework of the renormalization group dimensional superfluid helium 4He belong to famous ex- (RG) approach using a resummation procedure [5] up to amples of continuous phase transitions.
    [Show full text]
  • Basic Math Quick Reference Ebook
    This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference eBOOK Click on The math facts listed in this eBook are explained with Contents or Examples, Notes, Tips, & Illustrations Index in the in the left Basic Math Quick Reference Handbook. panel ISBN: 978-0-615-27390-7 to locate a topic. Peter J. Mitas Quick Reference Handbooks Facts from the Basic Math Quick Reference Handbook Contents Click a CHAPTER TITLE to jump to a page in the Contents: Whole Numbers Probability and Statistics Fractions Geometry and Measurement Decimal Numbers Positive and Negative Numbers Universal Number Concepts Algebra Ratios, Proportions, and Percents … then click a LINE IN THE CONTENTS to jump to a topic. Whole Numbers 7 Natural Numbers and Whole Numbers ............................ 7 Digits and Numerals ........................................................ 7 Place Value Notation ....................................................... 7 Rounding a Whole Number ............................................. 8 Operations and Operators ............................................... 8 Adding Whole Numbers................................................... 9 Subtracting Whole Numbers .......................................... 10 Multiplying Whole Numbers ........................................... 11 Dividing Whole Numbers ............................................... 12 Divisibility Rules ............................................................ 13 Multiples of a Whole Number .......................................
    [Show full text]
  • 1 General Questions 15 • Fibonacci Rule: Each Proceeding [Next] Term Is the Sum of the Previous Two Terms So That
    General 1 Questions 1. WHY DO I HAVE TO LEARN MATHEMATICS? The “why” question is perhaps the one encountered most frequently. It is not a matter of if but when this question comes up. And after high school, it will come up again in different formulations. (Why should I become a mathemat- ics major? Why should the public fund research in mathematics? Why did I ever need to study mathematics?) Thus, it is important to be prepared for this question. Giving a good answer is certainly difficult, as much depends on individual circumstances. First, you should try to find an answer for yourself. What was it that convinced you to study and teach mathematics? Why do you think that mathematics is useful and important? Have you been fascinated by the elegance of mathematical reasoning and the beauty of mathematical results? Tell your students. A heartfelt answer would be most credible. Try to avoid easy answers like “Because there is a test next week” or “Because I say so,” even if you think that the question arises from a general unwill- ingness to learn. It is certainly true that everybody needs to know a certain amount of elementary mathematics to master his or her life. You could point out that there are many everyday situations where mathematics plays a role. Certainly one needs mathematics whenever one deals with money—for example, when one goes shopping, manages a savings account, or makes a monthly budget. Nevertheless, we encounter the “why” question more frequently in situ- ations where the everyday context is less apparent.
    [Show full text]
  • Situations Conference 2009 Author: Jeanne Shimizu Draft of Situation II (Derived from Personal Experience and Some Input from Glen Blume)
    Situations Conference 2009 Author: Jeanne Shimizu Draft of Situation I: Prompt In a general math class, having just discussed how to convert fractions to their decimal equivalents, students were asked to work on a few practice problems. The following conversation took place. Student A: My group has question. … How do you go backwards? Teacher: What do you mean by “go backwards?” 4 Student A: We know how to take 5 , do 4 divided by 5 and get 0.8. How do you 4 start with 0.8 and get 5 ? Student B: Yeah, and what about 0.333 = 0.3? How do you start with 1 0.333 and get 3 ? What fraction goes with 0.555? Commentary The questions posed by this group of students address the equivalence of a fraction and its decimal counterpart. In other words, for fraction X to be equivalent to decimal number Y, fraction X implies decimal number Y, AND decimal number Y implies fraction X. The mathematical foci use place value, partitions of numbers, and properties of infinite geometric series to illustrate how one might address the latter of these two conditions. Mathematical Foci Mathematical Focus 1: To convert a terminating decimal number to one of its fraction equivalents, we make use of place value. Given A, a rational number where A is expressed in the form, 0.a1a2a3 an , where ai ∈{0,1,2,3,4,5,6,7,8,9}and n is a positive integer. n The place value of the right-most digit of A, an , is 10 ths and serves as the denominator of a fraction equivalent of A.
    [Show full text]