Carbonyl Condensation Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Carbonyl Condensation Reactions Carbonyl Condensation Reactions These are combination reactions: carbonyl -substitutions + carbonyl nucleophilic additions or substitutions. Usually, a carbonyl molecule is converted to an enolate anion (nucleophile) which attacks a second carbonyl molecule in an addition or substitution reaction. The archetype reaction is the aldol reaction. H O O C + C C C H nucleophilic -substitution addition here here 1 Aldol Condensation — General for aldehydes and ketones with an -hydrogen. This is an equilibrium reaction: product is favored for acetaldehyde and monosubstituted acetaldehyde (R-CH2-CHO) but reactants are favored for disubstituted acetaldehyde (RR'CH-CHO) and most ketones. H O O NaOH C H + C H2O H C H H C H H nucleophilic H -substitution addition equilibrium favorable here here for product: aldol Mechanism — O O C H + NaOH H H O C + H2O H C H 2 H C H H H O O H2O O + OH H + C C C H H C H C C H H H H H 2 Other Examples — H O O NaOH C H + C H CH H2O H C H 10% 90% O O + NaOH 78% H2O H 22% H O O NaOH C H + C H3C C H H2O H3C C H 95% 5% H H The yield of the product in this case, diacetone alcohol, is quite poor owing to the unfavorable equilibrium constant (Keq = 0.05). Improving the situation by distilling off the product (to sidestep around the unfavorable equilibrium constant problem) is not an option here because the boiling point of the product is much higher than that of acetone (it is twice the molecular weight of acetone and, with its -OH group, can hydrogen bond as donor and acceptor). 3 On the other hand, if somehow the diacetone alcohol, but not the acetone, could be kept away from the base that catalyzes the reaction, the reverse reaction would become very slow. This would lead to a satisfactory yield. So, the idea is to separate some acetone from the diacetone alcohol, expose it to base for a while, then return the acetone - diacetone alcohol mixture to the bulk mixture which is not exposed to base. And do this over and over again until the conversion is complete, or nearly so. But, how? Enter the Soxhlet extractor. It was designed to be used for extracting natural products from their botanical sources. In this reaction, acetone is placed in the round-bottom flask. The filter-paper thimble is charged with barium hydroxide, a base that is not soluble in the compounds involved in the reaction. When the acetone boils its vapors pass up the large exterior tube of the extractor to the condenser, where they are condensed. Warm liquid acetone drips into the chamber that contains barium hydroxide in the paper thimble. A small amount of diacetone alcohol forms. When the chamber fills to the top of the small exterior tube the liquid in the chamber siphons to the round-bottom flask through this tube. Boiling continues, the chamber fills with more acetone (the acetone is more volatile than the diacetone alcohol), some of this is converted to diacetone alcohol, and the chamber empties into the round-bottom flask. Over and over Soxhlet Extractor again — this is an automated process sans computer or moving parts. Meanwhile, in the round-bottom flask very little reaction takes place because there is no catalyst there. Eventually, the acetone is converted to diacetone alcohol in very good yield. 4 If the carbonyl compound does not have an -hydrogen it cannot form an enolate anion and cannot undergo the aldol reaction. However, aldehydes, w/o an -hydrogen can undergo the Cannizzaro reaction in concentrated aqueous base. How about competition between a simple substitution and a condensation? For example, suppose I want to make 2-methyl-3-phenylpropanal by alkylation of propanal with benzyl bromide — base Ph-CH2Br + CH3CH2CHO > Ph-CH2-CH2(CH3)CHO Will the propanal undergo an aldol reaction instead? Well.... This will probably depend on the conditions of the reaction. If the propanal is reacted with LDA and quickly converted (almost) completely to enolate anion, it will not be able to undergo an aldol reaction. The enolate can then be added to benzyl bromide to form 2-methyl-3-phenylpropanal. On the other hand, if a small amount of KOH is added to a mixture of propanal and benzyl bromide, a small equilibrium concentration of propanal enolate would be formed, which could react with either propanal or benzyl bromide, giving both products. [To complicate this situation even further, the OH- could react with the benzyl bromide giving benzyl alcohol.] 5 Dehydration of Aldols — Aldols are alcohols and alcohols can undergo dehydration under acidic conditions, eg warming t-butyl alcohol, (CH3)3COH, with acid gives isobutylene, CH2=C(CH3)2. Aldols are enolized in acid and easily dehydrate to give the conjugated enone — H H H O + O + H3O H3O C C H C H C H H H H H H H H O O + C C H H C H C H H 6 Ordinary alcohols are not dehydrated under basic conditions (E2) owing to OH- being a poor leaving group. However, aldols do undergo dehydration under basic conditions via an enolate anion — H H H O O O OH- + C C C H H C C H C H H H H Consequently an aldol may spontaneously dehydrate to a conjugated enone as it is formed, especially if reaction conditions are pushed, eg high temperature. Mixed or "crossed" Aldol Reactions — If two different carbonyl compounds are allowed to react in an aldol reaction four products usually result; each carbonyl compound forms an enolate and each enolate forms two aldols, one with the carbonyl compound from which it was formed and one with the other carbonyl compound. 7 However — if one component does not have any -hydrogens (eg formaldehyde, benzaldehyde), and has an electrophilic carbonyl group, a good yield of one cross-product may be obtained. The carbonyl compound having the hydrogen(s) is slowly added to a basic solution of the one which does not. O O OOH H H3C H3C H NaOEt H H + EtOH When the aldol product can form an enone in which the C-C double O bond is further conjugated, dehydration H3C is usually spontaneous. NaOEt + NaOH EtOH Chem 221 Experiment, Preparation of Dibenzalacetone— O O NaOH C + + C H2O H H OH OH C C C C H H H H 8 if one component is especially acidic it will "completely" convert to enolate and this enolate will make a nucleophilic attack on the other compontent. OO OO NaOEt EtO C CH2 COEt EtO C CH C OEt EtOH Na OO OO O EtO C C C OEt EtO C CH C OEt + NaOEt EtOH Na Unsaturated aldehydes and ketones can be reduced to give saturated aldehydes and ketones with Pt/H2. They can also be reduced to saturated alcohols with LAH or unsaturated alcohols with NaBH4. 9 Reactions Related to the Aldol Condensation These two examples are mixed or crossed reactions of the aldol type in which one component does not have α- hydrogens. Perkin Condensation — RCH2CO Na O Ar C O + (RCH2C)2O H O RCH2CO Na O Ar CH CH C OCCH2R Ar CH C C OCCH2R OH R O O R O O H2O Ar CH C C OCCH2R Ar CH C C OH + HO C CH2R R O O R O O Knoevenagel Reaction — This is a reaction between aldehydes or ketones not containing an a-hydrogen and a compound of the type Z-CH2-Z’ or Z-CHR-Z’, where Z and Z’ are electron withdrawing. 2o amine Ar C O + H2C(COOC2H5)2 Ar C C(COOC2H5)2 H H 10 :B RCL+ RCH2 Z RCCHZ + :L + HB O O R Z = C CN NO2 CF3 O Claisen Condensation: synthesis of -ketoesters — Na EtOH 2RCH2 COEt + NaOEt RCH2 C CCOEt+ 2 C2H5OH O O R O 11 Mechanism — Na EtOH RCH2 COEt+ NaOEt CH C OEt + HOEt O R O Na O Na EtOH RCH2 COEt+ CH C OEt RCH2 C CH C OEt O R O OEt R O EtOH EtOH RCH2 C CH C OEt + NaOEt O R O Na It is only in this last step --- RCH2 C CCOEt+ C2H5OH the formation of the -ketoester O R O salt --- that the equilibrium is favorable. This step pulls the overall reaction. Consequently esters which do not have 2 protons do not undergo this reaction. Dieckmann Condensation — This is just an intramolecular Claisen condensation. O O + NaOEt H3O COEt EtO C( CH2)4 C OEt O O This reaction is good for making compounds of 5, 6, or 7 membered rings and rings of more than 12 carbons. 12 Mixed or Crossed Claisen Condensations — Generally useful only when one of the reactants has no hydrogens (cf. mixed aldol condensations). O O NaOEt CH COEt EtO C OEt + 2 O O EtO C CH C OEt This is phenylmalonic ester. It cannot be made by reacting sodiomalonic ester with an aryl halide + HOEt 13 The Michael Addition Reaction — nucleophilic addition of (typically stable) enolate anions to -unsaturated carbonyl compounds. NaOEt CH CH C OEt + EtOH O CH CH C OEt + O CH CH C OEt CH CH C OEt O O + EtOH CH CH2 C OEt + EtO O Another example — H HCH3 CH3 CC H CCH H COOEt NaOEt COOEt + EtOH 14.
Recommended publications
  • Diversity-Oriented Combinatorial Biosynthesis of Benzenediol Lactone Scaffolds by Subunit Shuffling of Fungal Polyketide Synthases
    Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases Yuquan Xua,b,1, Tong Zhouc,1, Shuwei Zhangc, Patricia Espinosa-Artilesb, Luoyi Wangc, Wei Zhanga, Min Lina, A. A. Leslie Gunatilakab,d, Jixun Zhanc,2, and István Molnárb,d,2 aBiotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China; bNatural Products Center, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85706; cDepartment of Biological Engineering, Utah State University, Logan, UT 84322; and dBio5 Institute, University of Arizona, Tucson, AZ 85721 Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved June 23, 2014 (received for review April 16, 2014) Combinatorial biosynthesis aspires to exploit the promiscuity of biosynthesis inhibitory activities in animals. 10,11-dehydrocurvularin microbial anabolic pathways to engineer the synthesis of new (7;Fig.1)isaDALwitha12-memberedring(DAL12)that chemical entities. Fungal benzenediol lactone (BDL) polyketides modulates the heat shock response and the immune system (8, 9). are important pharmacophores with wide-ranging bioactivities, BDL scaffolds are biosynthesized by pairs of collaborating, including heat shock response and immune system modulatory sequentially acting iterative polyketide synthases (iPKSs) (3) – effects. Their biosynthesis on a pair of sequentially acting iterative forming quasi-modular BDL synthases (BDLSs) (Fig. 1) (11 14). polyketide synthases (iPKSs) offers a test case for the modulariza- Each of the BDLS subunits catalyze recursive, decarboxylative tion of secondary metabolic pathways into “build–couple–pair” Claisen condensations of malonyl-CoA using a single core set of ketoacyl synthase (KS), acyl transferase (AT), and acyl carrier combinatorial synthetic schemes.
    [Show full text]
  • Experiment 19 — Aldol Condensation
    Chem 22 Spring 2010 Experiment 19 — Aldol Condensation _____________________________________________________________________________ Pre-lab preparation. (1) Write the mechanism of the base-catalyzed aldol condensation of acetone and a generalized aromatic aldehyde, Ar–CH=O to give the α,β-unsaturated product (i.e. the reaction at the top of the next page, but with a 1:1 ratio of ketone and aldehyde). Remember that dehydration in this case occurs under basic conditions, so it can't start with protonation of the hydroxyl group. Nor can it go via an E2 pathway. (2) Draw the structures of all the possible aldehyde and ketone reactants (not the 25 possible condensation products!). (3) The new CC double bonds of the condensation products are E rather than Z, as shown in the acetone example. Why? (4) What's the purpose of rinsing the crude product with dilute acetic acid, followed by ethanol? (5) What is the procedure for carrying out a single-solvent recrystallization? Write this out in detail. The aldol condensation has historically been one of the favorite tools in the synthetic organic chemist's repertoire because of its versatility in forming new CC bonds. Since its discovery in the 1870s the aldol condensation has been use extensively in the synthesis of natural products and other complex molecules. In a typical base-catalyzed aldol condensation an enolate ion attacks the carbonyl group of an aldehyde or ketone. This carbonyl addition produces a β-hydroxy carbonyl compound. In many cases the initially formed condensation product undergoes an "E1cB" dehydration to produce an α,β-unsaturated carbonyl compound as the final product.
    [Show full text]
  • Aldol Condensation- Aldehyde (Or Ketone) Enolate Condenses with Aldehyde (Or Ketone)
    Chem 232 Summary of Alpha Substitutions page 1 Aldol Condensation- aldehyde (or ketone) enolate condenses with aldehyde (or ketone): O CH O O H 3 H CH 3 CH3 C C C C CH C C CH2 CH2 H -H O H H O OH 2 H nucleophile electrophile -hydroxy aldehyde -unsaturated aldehyde The nucleophile can be a ketone enolate or aldehyde enolate and the electrophile (shaded) can be an aldehyde or ketone. Crossed Aldol- Condensation between two different carbonyls. The component without hydrogens is the electrophile: O O O OH O C CH C C CH CH3 C H CH -H2O CH 2 CH3 H 3 ketone enolate no -hydrogens -unsaturated ketone Aldol Cyclizations- A dicarbonyl produces an enolate and carbonyl in the same molecule: enolate from a O OH 1,5-diketone CH OH 3 CH3 O O -H2O O CH2 CH3 CH3 CH2 O Claisen Condensation- Similar to Aldol condensation except the nucleophile is an ester enolate; O O O O O O + EtO C CH C OEt EtO C CH2 C EtO C CH2 CH3 C OEt 2 ketoester CH3 CH3 Dieckmann Cyclization- Internal Claisen condensation similar to Aldol cyclization. A 1,6 diester gives a 5-membered ring and a 1,7 diester gives a 6-membered ring: O OEt O OEt cyclic ketoester C C OEt O O Crossed Claisen- Similar to crossed Aldol- Electrophile has nohydrogens: O O O O C C EtO EtO C CH2 EtO C CH2 ketoester Variations on Crossed Claisen- ketone enolate and ester condensation. Esters, carbonates, formates and oxalates are common electrophiles: O O O O O O O O H C OEt H EtO C OEt OEt ethyl formate -ketoaldehyde diethyl carbonate -ketoester O O O O O OEt diketoester EtO C C OEt O diethyl oxalate
    [Show full text]
  • Aldol Condensation
    Chemistry 212 Laboratory Dibenzalacetone via Crossed Aldol Condensation Prelab: Calculate the amounts of all chemicals needed in measurable amounts (i.e. grams or milliliters rather than moles.) Introduction: Aldol condensations are important in organic synthesis, providing a good way to form carbon–carbon bonds. The "aldol" (aldehyde + alcohol) product is a structural unit found in many naturally occurring molecules and pharmaceuticals, and is therefore important. In an Aldol condensation an enolate ion reacts with a carbonyl compound to form a β- hydroxyaldehyde or β-hydroxyketone, followed by dehydration to give a conjugated enone. The general equation is shown in Figure 1. O O O R" B: H R R'" R "R R'" loss of H2O H R' R' Figure 1. The equation for the Aldol Condensation. The reaction involves the nucleophilic addition of an enolate to an aldehyde to form a β-hydroxy carbonyl. The β-hydroxy carbonyl is readily dehydrated under mild conditions. The aldol reaction occurs under both acidic and basic conditions as seen in Figure 2. ENOL pathway (reacts in H O protonated OH form) O O catalytic H+ O O H H R' H2O lost R' R R R' R R H aldol addition product aldol condensation product ENOLATE pathway O O M O M O base O H R' R R' R R enolate H Figure 2. The Aldol reaction and subsequent dehydration under acidic and basic conditions. The reaction we will be doing this week involves the reaction between benzaldehyde and acetone to do a double Aldol Condensation. The overall equation is shown in Figure 3.
    [Show full text]
  • Biocatalyzed Synthesis of Statins: a Sustainable Strategy for the Preparation of Valuable Drugs
    catalysts Review Biocatalyzed Synthesis of Statins: A Sustainable Strategy for the Preparation of Valuable Drugs Pilar Hoyos 1, Vittorio Pace 2 and Andrés R. Alcántara 1,* 1 Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Campus de Moncloa, E-28040 Madrid, Spain; [email protected] 2 Department of Pharmaceutical Chemistry, Faculty of Life Sciences, Althanstrasse 14, A-1090 Vienna, Austria; [email protected] * Correspondence: [email protected]; Tel.: +34-91-394-1823 Received: 25 February 2019; Accepted: 9 March 2019; Published: 14 March 2019 Abstract: Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are the largest selling class of drugs prescribed for the pharmacological treatment of hypercholesterolemia and dyslipidaemia. Statins also possess other therapeutic effects, called pleiotropic, because the blockade of the conversion of HMG-CoA to (R)-mevalonate produces a concomitant inhibition of the biosynthesis of numerous isoprenoid metabolites (e.g., geranylgeranyl pyrophosphate (GGPP) or farnesyl pyrophosphate (FPP)). Thus, the prenylation of several cell signalling proteins (small GTPase family members: Ras, Rac, and Rho) is hampered, so that these molecular switches, controlling multiple pathways and cell functions (maintenance of cell shape, motility, factor secretion, differentiation, and proliferation) are regulated, leading to beneficial effects in cardiovascular health, regulation of the immune system, anti-inflammatory and immunosuppressive properties, prevention and treatment of sepsis, treatment of autoimmune diseases, osteoporosis, kidney and neurological disorders, or even in cancer therapy. Thus, there is a growing interest in developing more sustainable protocols for preparation of statins, and the introduction of biocatalyzed steps into the synthetic pathways is highly advantageous—synthetic routes are conducted under mild reaction conditions, at ambient temperature, and can use water as a reaction medium in many cases.
    [Show full text]
  • The Claisen Condensation
    Lecture 19 The Claisen Condensation •• •• • • O • O • – • CH3COCH2CH3 • CH2 COCH2CH3 March 29, 2016 Chemistry 328N Exam Tomorrow Evening!! Review tonight 5PM -6PM Welch 1.316 Chemistry 328N Some “loose ends” before we go on Spectrosopy of acid derivatives A selective reduction for your tool box Chemistry 328N Reduction of Acid Derivatives Acids (page 679-681) Esters (page 738-739) Please work through the example on 738 Amides (page 739-742) Nitriles (page 742) Selective reductions with NaBH4 Chemistry 328N DIBAlH Diisobutylaluminum hydride (DIBAlH) at -78°C selectively reduces esters to aldehydes •at -78°C, the tetrahedral intermediate does not collapse and it is not until hydrolysis in aqueous acid that the carbonyl group of the aldehyde is liberated Stable at low temperature Chemistry 328N Infrared Spectroscopy C=O stretching frequency depends on whether the compound is an acyl chloride, anhydride, ester, or amide. C=O stretching frequency n O O O O O CH3CCl CH3COCCH3 CH3COCH3 CH3CNH2 1822 cm-1 1748 1736 cm-1 1694 cm-1 and 1815 cm-1 Chemistry 328N Infrared Spectroscopy Anhydrides have two peaks due to C=O stretching. One from symmetrical stretching of the C=O and the other from an antisymmetrical stretch. C=O stretching frequency n O O CH3COCCH3 1748 and 1815 cm-1 Chemistry 328N Infrared Spectroscopy Nitriles are readily identified by absorption due to carbon-nitrogen triple bond stretching that is “all alone” in the 2210-2260 cm-1 region. Chemistry 328N Hydrolysis and Decarboxylation Chemistry 328N t-Butyl esters Chemistry 328N t-Butyl esters Chemistry 328N t-Butyl ester hydrolysis Note which bond is broken in this hydrolysis !! Chemistry 328N Recall our discussion of the acidity of protons a to carbonyls The anion is stabilized by resonance The better the stabilization, the more acidic the a proton Acidity of a protons on“normal” aldehydes and ketones is about that of alcohols and less than water…pKa ~ 18-20 Some are far more acidic, i.e.
    [Show full text]
  • The Claisen Condensation Is a Carbon–Carbon Bond Forming Reaction That Occurs Between Two Esters Or One Ester and Another Carb
    Claisen Ester Condensation The Claisen condensation is a carbon–carbon bond forming reaction that occurs between two esters or one ester and another carbonyl compound in the presence of a strong base, resulting in a β-keto ester or a β-diketone. Requirements ❖ At least one of the reagents must be enolizable (have an α-proton and be able to undergo deprotonation to form the enolate anion). ❖ There are a number of different combinations of enolizable and nonenolizable carbonyl compounds that form a few different types of Claisen. ❖ The base used must not interfere with the reaction by undergoing nucleophilic substitution or addition with a carbonyl carbon. ❖ For this reason, the conjugate sodium alkoxide base of the alcohol formed (e.g. sodium ethoxide if ethanol is formed) is often used, since the alkoxide is regenerated. ❖ In mixed Claisen condensations, a non-nucleophilic base such as lithium diisopropylamide, or LDA, may be used, since only one compound is enolizable. ❖ LDA is not commonly used in the classic Claisen or Dieckmann condensations due to enolization of the electrophilic ester. ❖ The alkoxy portion of the ester must be a relatively good leaving group. ❖ Methyl and ethyl esters, which yields methoxide and ethoxide, respectively, are commonly used. Types Mechanism ❖ In the first step of the mechanism, an α-proton is removed by a strong base, resulting in the formation of an enolate anion, which is made relatively stable by the delocalization of electrons. ❖ Next, the carbonyl carbon of the (other) ester is nucleophilically attacked by the enolate anion. ❖ The alkoxy group is then eliminated (resulting in (re)generation of the alkoxide), and the alkoxide removes the newly formed doubly α-proton to form a new, highly resonance-stabilized enolate anion.
    [Show full text]
  • Cross-Aldol Condensation of Acetone and N-Butanol Into Aliphatic Ketones Over Supported Cu Catalysts on Ceria-Zirconia
    catalysts Article Cross-Aldol Condensation of Acetone and n-Butanol into Aliphatic Ketones over Supported Cu Catalysts on Ceria-Zirconia Minseok Kim 1, Jongha Park 1, Hari Prasad Reddy Kannapu 1,2 and Young-Woong Suh 1,2,* ID 1 Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea; [email protected] (M.K.); [email protected] (J.P.); [email protected] (H.P.R.K.) 2 Research Institute of Industrial Science, Hanyang University, Seoul 04763, Korea * Correspondence: [email protected]; Tel.: +82-2-2220-2329 Academic Editor: Christophe Len Received: 7 August 2017; Accepted: 23 August 2017; Published: 24 August 2017 Abstract: A long-chain hydrocarbon biofuel of jet fuel range can be produced via aldol condensation of fermented products such as acetone and alcohols over the catalysts containing both metallic sites for the dehydrogenation of alcohols and basic sites for the condensation reaction. However, an efficient catalyst system has not been studied widely yet the route is promising for biofuel production. In this work, Cu catalysts supported on ceria-zirconia (Cu/xCeZr) were prepared using coprecipitated CexZr1-xO2 supports with different Ce/Zr ratios for the cross-aldol condensation of acetone and n-butanol into mono- and di-alkylated aliphatic ketones, 2-heptanone and 6-undecanone. The acetone conversion and 6-undecanone selectivity increased with specific Cu surface area due to formation of the dehydrogenation product butyraldehyde at a higher concentration. The total yield of cross-aldol condensation products was strongly dependent on a combination of Cu sites and basic sites. This was confirmed by the results in the reaction between acetone and butyraldehyde over supported Cu catalysts that additionally examined the adsorbed acyl species on Cu surface taking part in the aldol condensation reaction.
    [Show full text]
  • CHEM 330 Topics Discussed on Sept. 18 Principle: a Claisen Condensation Promoted by Nah/Cat. Etoh Takes Place So That All Steps
    CHEM 330 Topics Discussed on Sept. 18 Principle: a Claisen condensation promoted by NaH/cat. EtOH takes place so that all steps but the final deprotonation of EtOH by NaH are reversible. Consequently, the system will tend to attain a thermodynamic energy minimum, and the product that forms will be the thermodynamically most favorable one. A reaction occurring under such conditions is said to proceed under thermodynamic control Principle: mixing one equivalent of pure ethyl acetoacetate with excess pure ethanol in the presence of a catalytic amount of EtONa will induce a reverse Claisen condensation ("retro-Claisen"), resulting in conversion of the starting acetoacetate into two molecules of ethyl acetate (the thermodynamically more favorable state of the system): – CH3-CO-CH2-COOEt + EtOH —[ cat. EtO ]—> 2 CH3-COOEt (overall ΔG < 0) Principle of microscopic reversibility: in each step of any given transformation, the forward and the reverse reactions occur along the same mechanistic pathway; i.e., by identical mechanisms operating in reverse Example: a reverse Claisen condensation occurs as follows: O O O O Na + Na + H–OEt OEt OEt OEt pKa ≈ 12 H pKa ≈ 17 + H–OEt + H–OEt 5 Keq ≈ 10 although the above equilibrium is shifted to the right, there will always be some residual free EtO and ethyl acetoacetate in the medium. Under the usual approximations (CHEM 203): –5 –3 [CH3COCH2COOEt] = [EtO ] ≈ 10 ≈ 3•10 – These residual concentrations of EtO( ) and CH3COCH2COOEt are sufficient to induce a slow, but inexorable, reverse reaction. O O O O O O + Na OEt OEt OEt OEt OEt OEt + H–OEt + H–OEt Na + H–OEt O O OEt OEt OEt Na H notice that the reversible reaction depends on proton exchanges among the various species: NaH removes all such protons and suppresses the retro-Claisen process lecture of Sept 18 p.
    [Show full text]
  • Claisen Condensation – Beyond Labz Virtual Chemlab Activity Purpose: 1) to Examine How Choice of Reagent and Solvent Impacts the Outcome of a Claisen Condensation
    Claisen Condensation – Beyond Labz Virtual ChemLab Activity Purpose: 1) To examine how choice of reagent and solvent impacts the outcome of a Claisen condensation. 2) To compare the Claisen condensation to the aldol condensation performed in lab. Figure 1. Reaction schemes of (a) the Claisen condensation of methyl propionate and (b) the Dieckmann cyclization of 1,7-dimethyl-heptanedioate Introduction: The Claisen condensation is a reaction that falls is in the category of carbonyl condensation reactions. It is very similar to the aldol reaction in that the nucleophile is an enolate that reacts with a carbonyl electrophile. However, in a Claisen condensation the electrophile is an ester instead of an aldehyde like in the aldol reaction. Consequently, the electrophile carbonyl is undergoes nucleophilic acyl substitution in a Claisen condensation, eliminating the -OR group and forming a ketone functional group two carbons away from the carbonyl of the enolate (Figure 2). This product is called a β-ketoester. Figure 2. Nucleophilic acyl substitution to make a β-ketoester in the Claisen condensation. However, despite it looking like you are done after the nucleophilic acyl substitution, you are not! The - β-ketoester is a strong enough acid (pKa ~ 11) that expelled alkoxide anion ( OMe in Figure 2 above) can deprotonate it, generating a resonance-stabilized carbanion (Figure 3). This step happens very fast, and this is where the first step of the Claisen condensation will hit equilibrium. For this reason, a second step consisting of an acid work-up is always required for the Claisen condensation. Figure 3. Deprotonation and subsequent acid work-up to generate the final, neutral β-ketoester product in the Claisen condensation.
    [Show full text]
  • THE VIRTUAL MIXED ALDOL REACTION in This Virtual Experiment, You Will Use the Virtual Laboratory to Synthesize a Beta-Hydroxy Ketone Using a Mixed Aldol Reaction
    THE VIRTUAL MIXED ALDOL REACTION In this virtual experiment, you will use the virtual laboratory to synthesize a beta-hydroxy ketone using a mixed aldol reaction. By making modifications to the reaction conditions, you will try to find conditions that will allow for the elimination of water in an aldol condensation reaction. Introduction The aldol reaction is an important C-C bond forming reaction that joins two carbonyl containing compounds together by using a base. The first step in the aldol reaction is the deprotonation of the α-hydrogen (note: α refers to the carbon position next to a C=O bond, β refers to the position 2 carbons away from the carbonyl). The hydrogens at the α position are slightly acidic due to the resonance stabilization of the corresponding enolate (aldehyde pKa = 17; ketone pKa= 20). The high pKa values indicate that in order to deprotonate the α-hydrogen of an aldehyde, an extremely strong base is required. This deprotonation was initially done using bases such as potassium hydroxide, (pKa of water, the conjugate acid of hydroxide = 15.7) which would only deprotonate 5% of the aldehydes (1015.7/1017) and 0.005% of the ketones (1015.7/1020). The aldol reaction was made a little more efficient by using a slightly stronger base such as potassium t-butoxide (pKa of t-butanol, its conjugate acid = 17). Like potassium hydroxide, potassium t-butoxide ionizes a small percentage of the carbonyl compound to the enolate ion. Complete and irreversible deprotonation requires a superbase such as lithium diisopropylamide (LDA, pKa of it’s conjugate acid = 35.7).
    [Show full text]
  • The Aldol Condensation
    R Carbon The Aldol Condensation R Carbon Carbon Contents Objectives 1 Introduction 1 Safety 1 Preparation of 4-(4’-methoxyphenyl)-3-buten-2-one (Product A) 2 Preparation of 1,5-bis(4’-methoxyphenyl)-1,4-pentadien-3-one (Product B) 6 Manuscript prepared by Dr. A. Jonathan Singh and Dr. Hemi Cumming. School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand. R Carbon Objectives In this experiment, the aldol condensation of acetone and p-anisaldehyde The objective of this experiment is to understand (4-methoxybenzaldehyde) is carried out under basic aspects of carbonyl chemistry and carbon-carbon conditions (Scheme 2). By employing a stepwise bond formations using the well-known aldol sequence, you will be able to isolate the mono- condensation reaction. Reaction products formed addition (Product A), and repeat the reaction, this in this experiment will be primarily characterized time using (Product A) as the source ketone to 1 by H NMR spectroscopy using the Spinsolve form the bis-addition (Product B). benchtop NMR spectrometer. Safety Introduction This experiment must be performed in a fume hood with adequate ventilation. Acetophenone Carbon-carbon bond formation is one of the and benzaldehyde are harmful – handle with care. cornerstones of organic synthesis. One of the Potassium hydroxide is caustic and corrosive – use key reactions used, the aldol condensation, with caution. Wear appropriate safety equipment features the reaction of two carbonyl compounds before commencing with this experiment. to form a new β-hydroxy carbonyl compound.1 Consult the relevant MSDS for additional safety This reaction can be performed under acid- or information.
    [Show full text]