Small-Area Estimation: Theory and Practice

Total Page:16

File Type:pdf, Size:1020Kb

Small-Area Estimation: Theory and Practice Section on Survey Research Methods Small-Area Estimation: Theory and Practice Michael Hidiroglou Statistical Innovation and Research Division, Statistics Canada, 16 th Floor Section D, R.H. Coats Building, Tunney's Pasture, Ottawa, Ontario, K1A 0T6, Canada Abstract This paper draws on the small area methodology discussed in Rao (2003) and illustrates how some of Small area estimation (SAE) was first studied at the estimators have been used in practice on a number Statistics Canada in the seventies. Small area estimates of surveys at Statistics Canada. It is structured as have been produced using administrative files or follows. Section 2 provides a summary of the primary surveys enhanced with administrative auxiliary data uses of small area estimates as criteria for computing since the early eighties. In this paper we provide a them. Section 3 defines the notation, provides a summary of existing procedures for producing official number of typical direct estimators, and indirect small-area estimates at Statistics Canada, as well as a estimators used in small area estimation. Section 4 summary of the ongoing research. The use of these provides four examples that reflect the diverse uses of techniques is provided for a number of applications at small area estimations at Statistics Canada Statistics Canada that include: the estimation of health statistics; the estimation of average weekly earnings; 2. Primary uses and Criteria for SAE Production the estimation of under-coverage in the census; and the estimation of unemployment rates. We also highlight One of the primary objectives for producing small area problems for producing small-area estimates for estimates is provide summary statistics to central or business surveys. local governments so that they can plan for immediate or future resource allocation. Typical small area estimates include Employment indicators (employed KEY WORDS: Small Area, Official Statistics, Fay- and unemployed), Health indicators (drug use, alcohol Herriot use) and Business indicators such as average salary. 1. Introduction The production of small area estimates depends on a number of factors. What the demand for such Small domain or area refers to a population for which statistics? What is the commitment and will of the reliable statistics of interest cannot be produced due to agency to support methodological, systems, and certain limitations of the available data. Examples of subject matter staff. How much methodology and domains include a geographical region (e.g. a subject matter expertise exist within the agency. How province, county, municipality, etc.), a demographic well correlated are existing auxiliary data with the group (e.g. age x sex), a demographic group within a variables of interest? Is the survey sample size large geographic region. The demand for such data small enough to allow reliable estimates by using both the areas has greatly increased during the past few years survey data and the existing auxiliary data? How much (Brackstone, 1987). This increase is due to the bias are the agency and clients willing to tolerate with usefulness of these data in government policy and the estimates,: what are the consequences for making program development, allocation of various funds and incorrect decisions? The size of the small areas in regional planning. terms of the number of the units that belong to them is also an important consideration. Small areas that are A number of national and regional statistical agencies, too small may results in confidentiality breeches. including Statistics Canada, have introduced programs Furthermore, small area estimates may be quite aimed at producing estimates for small areas to meet different from statistics based on local knowledge. the new demand. Available data to produce such estimates are based on surveys that are not designed for these levels. However, if administrative sources 3. SAE Estimators have data at the small area level, and that they are well correlated with variables of interest at the 3.1 Introduction corresponding level, several procedures are available to estimates various parameters of interest for these A survey population U consists of N distinct elements lower levels. (or ultimate units) identified through the labels j = 1, . , N. A sample s is selected from U with probability 3445 Section on Survey Research Methods p(s), and the probability of including the j-th element in Rao (2003). We will confine ourselves to just a few in the sample is π j . The design weight for each of them that include the synthetic estimator, and the more well-known composite estimators. selected unit js∈ is defined as w = 1/π . Suppose jj Ui denotes a domain (or subpopulation) of interest. 3. 2 Direct Estimation Denote as ssUii=∩ the part of the sample s that Let wj be the design weight associated with js∈ . falls in domainUi .The realized sample size of si is a The Horvitz-Thompson is the simplest direct estimator. random variable ni , where 0 ≤≤nNii. Auxiliary data x If the small area total Yi is to be estimated for small will either be known at the element level x j for js∈ area Ui , then the corresponding Horvitz-Thompson or for each small area i as totals Xxij= ∑ or ˆ estimator is given by YwyiHT, = ∑ j j provided jU∈ i js∈ i that the realized sample size n is non-zero. means XXiii= / N . i The problem is to estimate the domain total Auxiliary information can be available either at the population level or at the domain level. If it available Yyij= ∑ or the domain mean YYNiii= / , jU∈ i at the population level, then we used the Generalized where Ni , the number of elements in Ui may or may Regression Estimator (GREG) given by not be known. We define y to be y if jU∈ , and 0 ˆˆˆβ%%β ij j i YYi,,, GR=+−X ′′ i GREG() i HTX HT i , GREG where otherwise. An indicator variable aij is similarly m ˆ defined: it is equal to one if jU∈ i and 0 otherwise. Xx′ = ∑∑ j , XxHT′′= ∑ k/π k , and jU∈ i s Note that Y can be written asYy==∑∑ ya. i=1 i iijjij β% jU∈∈ jU iGREG, is the set of regression coefficient obtained by Small area estimation is categorized into two types of regressing y on x . That is estimators: direct and indirect estimators. A direct ij j estimator is one that uses values of the variable of ⎛⎞−1 % wwyjjjxx′ jjij x interest, y, only from the sample units in the domain of β = ⎜⎟∑∑, i, GREG ⎜⎟ss interest. However, a major disadvantage of such ⎝⎠ccjj estimators is that unacceptably large standard errors may where c is a specified constant ( c >0 ). result: this is especially true if the sample size within j j the domain is small or nil. An indirect estimator uses values of the variable of interest from a domain and/or The straight GREG is estimator is not efficient, and it time period other than the domain and time period of is better to use regression estimators that use auxiliary interest. Three types of indirect estimators can be data available as close possible to the small areas of identified. A domain indirect estimator uses values of interest. One such estimator is the domain–specific the variable of interest from another domain but not GREG that uses auxiliary data at the domain level. It is * ββˆˆˆˆ from another time period. A time indirect estimator given by YYXiGR,,,,,=+−X i′′ iGREG iHT iHT iGREG uses values of the variable of interest from another () −1 time period but not from another domain. An estimator βˆ ⎛⎞ where iGREG, = ⎜⎟∑∑wc jjjxx′ / j wyc jjj x / j. that is both domain and time indirect uses values of the ⎝⎠ssii variable of interest from another domain and another time period. An estimator that is approximately p-unbiased as the overall sample size increases but uses y-values outside An alternative is to use estimators that borrow strength the domain is the modified direct estimator given by across small areas, by modeling dependent on ˆˆˆββˆˆ independent variables across a number of small areas: YYXi,,, SR=+−X i′′ GREG() i HT i HT GREG where they are called indirect estimators. Indirect estimators −1 will be quite good (i.e.: indirectly increase the effective βˆ = ∑∑wcxx′ / wyc x / .This GREG()ss jjj j jjj j sample size and thus decrease the standard error) if the estimator is also referred to in Woodruff (1966), and models obtained across small areas still hold at the Battese, Harter, and Fuller (1988) as the “survey small area level. Departures from the model will result regression estimator”. in unknown biases. There is a wide variety of indirect estimators available, and a good summary is provided 3446 Section on Survey Research Methods Hidiroglou and Patak (2004) compared a number of composite estimator is most insensitive when the mean the direct estimators. One of their conclusions was that square errors of the two component estimators do not the direct estimators would be best if the domains of differ greatly. Simple weighting factors for the interest coincided as closely as possible with the composite estimators that depend on the realized design strata. domain size were given by Drew, Singh and Choudhry (1982), and by Hidiroglou and Särndal (1985) 3.2 Indirect Estimation Small area estimators are split into two main types, Some of the most widely used indirect estimators have depending on how models are applied to the data been the synthetic estimator, the regression-adjusted within the small areas: these two types are known as synthetic, the composite estimator, and the sample- area level and unit level. Small area estimators are dependent estimator. based on area level computations if models link small area means of interest (y) to area-specific auxiliary The synthetic estimator uses reliable information of a variables (such as x sample means).
Recommended publications
  • Sample Design for Small Area Estimation Wilford B
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2011 Sample design for small area estimation Wilford B. Molefe University of Wollongong Recommended Citation Molefe, Wilford B., Sample design for small area estimation, Doctor of Philosophy thesis, Center for Statistical and Survey Methodology, University of Wollongong, 2011. http://ro.uow.edu.au/theses/3495 Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. Sample Design for Small Area Estimation A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy from The University Of Wollongong by Wilford B. Molefe MSc.(Sheffield), B.A.(UB) Center for Statistical and Survey Methodology Wollongong NSW 2522, Australia 2011 Dedicated to My Beloved Wife Rosinah My Daughter Nametso My Son Masego ii Abstract Sample surveys have long been used as cost-effective means for data collection. Such data are used to provide suitable statistics not only for the population targeted by the survey but also for a variety of subpopulations, often called domains or areas. Sampling designs and in particular sample sizes are chosen in practice so as to provide reliable estimates for aggregates of the small areas such as large geographical regions or broad demographic groups. Budget and other constraints usually prevent the allocation of sufficiently large samples to each of the sub-domains or small areas to provide reliable estimates using traditional techniques. This thesis will develop approaches for sample design to support small area esti- mation.
    [Show full text]
  • Small Area Estimation Combining Information from Several Sources Jae Kwang Kim Iowa State University, [email protected]
    Statistics Publications Statistics 6-2015 Small area estimation combining information from several sources Jae Kwang Kim Iowa State University, [email protected] Seunghwan Park Seoul National University Seo-young Kim Statistics Korea Follow this and additional works at: http://lib.dr.iastate.edu/stat_las_pubs Part of the Applied Statistics Commons, Design of Experiments and Sample Surveys Commons, Probability Commons, and the Statistical Methodology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ stat_las_pubs/117. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Statistics at Iowa State University Digital Repository. It has been accepted for inclusion in Statistics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Survey Methodology, June 2015 21 Vol. 41, No. 1, pp. 21-36 Statistics Canada, Catalogue No. 12-001-X Small area estimation combining information from several sources Jae-kwang Kim, Seunghwan Park and Seo-young Kim1 Abstract An area-level model approach to combining information from several sources is considered in the context of small area estimation. At each small area, several estimates are computed and linked through a system of structural error models. The best linear unbiased predictor of the small area parameter can be computed by the general least squares method. Parameters in the structural error models are estimated using the theory of measurement error models. Estimation of mean squared errors is also discussed.
    [Show full text]
  • Guidelines on Small Area Estimation for City Statistics and Other Functional Geographies 2019 Edition Statistical Requirements Compendium Requirements Statistical
    Guidelines on small area estimation for city statistics and other functional geographies 2019 edition Statistical requirements compendium 2018 edition 2018 MANUALS AND GUIDELINES Guidelines on small area estimation for city statistics and other functional geographics 2019 edition Manuscript completed in October 2019. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of the following information. Luxembourg: Publications Office of the European Union, 2019 The European Commission is not liable for any consequence stemming from the reuse of this publication. © European Union, 2019 Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). For any use or reproduction of photos or other material that is not under the copyright of the European Union, permission must be sought directly from the copyright holders. For more information, please consult: https://ec.europa.eu/eurostat/about/policies/copyright Copyright for the cover photo: © Shutterstock/Ken Schulze The information and views set out in this publication are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Collection: Manuals and guidelines Theme: General and regional statistics Print: ISBN 978-92-76-11708-7 ISSN 2363-197X doi:10.2785/822325 KS-GQ-19-011-EN-C PDF: ISBN 978-92-76-11709-4 ISSN 2315-0815 doi: 10.2785/763467 KS-GQ-19-011-EN-N Acknowledgements The authors would like to thank Bernhard Stefan Zins for providing his expertise in variance estimation for the AROPE indicator and the respective estimation routines.
    [Show full text]
  • 1 Small Area Estimation of Latent Economic Wellbeing Angelo Moretti, Natalie Shlomo and Joseph Sakshaug Social Statistics, Schoo
    Small Area Estimation of Latent Economic Wellbeing Angelo Moretti, Natalie Shlomo and Joseph Sakshaug Social Statistics, School of Social Sciences, University of Manchester, United Kingdom Summary. Small area estimation (SAE) plays a crucial role in the social sciences due to the growing need for reliable and accurate estimates for small domains. In the study of wellbeing, for example, policy-makers need detailed information about the geographical distribution of a range of social indicators. We investigate data dimensionality reduction using factor analysis models and implement SAE on the factor scores under the empirical best linear unbiased prediction approach. We contrast this approach with the standard approach of providing a dashboard of indicators, or a weighted average of indicators at the local level. We demonstrate the approach in a simulation study and a real application based on the European Union Statistics for Income and Living Conditions (EU-SILC) for the municipalities of Tuscany. Keywords: Composite estimation; Direct estimation; EBLUP; Factor analysis; Factor scores; Model-based estimation. 1. Introduction Measuring poverty and wellbeing is a key issue for policy makers requiring a detailed understanding of the geographical distribution of social indicators. This understanding is essential for the formulation of targeted policies that address the needs of people in specific geographical locations. Most large-scale social surveys provide accurate estimates only at a national level. A relevant survey in the European Union (EU) for analyzing wellbeing is the European Union Statistics for Income and Living Conditions (EU-SILC). However, this data can be used to produce accurate direct estimates only at the NUTS (Nomenclature of Territorial Units for Statistics) 2 level.
    [Show full text]
  • Topics in Small Area Estimation with Applications to the National Resources Inventory Junyuan Wang Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Topics in small area estimation with applications to the National Resources Inventory Junyuan Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Statistics and Probability Commons Recommended Citation Wang, Junyuan, "Topics in small area estimation with applications to the National Resources Inventory " (2000). Retrospective Theses and Dissertations. 12372. https://lib.dr.iastate.edu/rtd/12372 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter ^ce, while others may t>e from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author dkJ not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate ttie deletkxi. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Applying Bivariate Binomial/Logit Normal Models to Small Area Estimation
    JSM 2013 - Survey Research Methods Section Applying Bivariate Binomial/Logit Normal Models to Small Area Estimation Carolina Franco1 and William R. Bell2 1Center for Statistical Research and Methodology, 2Research and Methodology Directorate U.S. Census Bureau Washington, DC 20233 Abstract The U.S. Census Bureau’s SAIPE (Small Area Income and Poverty Estimates) program esti- mates poverty for various age groups for states, counties, and school districts of the U.S. We focus here on poverty estimates of school-aged (5-17) children for counties. The corresponding SAIPE production model applies to log transformed direct survey estimates for each county of the num- ber of 5-17 year-olds in poverty, with logged covariates obtained from tabulations of administrative record sources (e.g., tax return data) and a previous census (2000) long form estimate. We explore an alternative model assuming a binomial distribution for rescaled survey estimates of the number of school-aged children in poverty, with an effective sample size defined so the variances of the binomial proportions equal the corresponding sampling variance estimates. The model assumes a normal distribution for logits of the underlying county poverty rates, with a mean function us- ing logit covariates derived from the covariates of the production SAIPE model, and with additive random effects. We apply a bivariate version of this model to direct estimates from the American Community Survey (ACS) for 2011 and the previous 5-year (2006-2010) ACS estimates. Keywords: Small Area Estimation; Complex Surveys; American Community Survey; Bivari- ate Model; SAIPE. 1. Introduction The U.S. Census Bureau’s SAIPE (Small Area Income and Poverty Estimates) program provides updated poverty estimates for various age groups for states, counties, and school districts of the U.S.
    [Show full text]
  • Mixed Model Prediction and Small Area Estimation Jiming Jiang∗ Department of Statistics University of California, USA P
    Sociedad de Estad´ıstica e Investigaci´on Operativa Test (2006) Vol. 15, No. 1, pp. 1–96 Mixed Model Prediction and Small Area Estimation Jiming Jiang∗ Department of Statistics University of California, USA P. Lahiri Joint Program in Survey Methodology University of Maryland, USA Abstract Over the last three decades, mixed models have been frequently used in a wide range of small area applications. Such models offer great flexibilities in combining information from various sources, and thus are well suited for solving most small area estimation problems. The present article reviews major research developments in the classical inferential approach for linear and generalized linear mixed models that are relevant to different issues concerning small area estimation and related problems. Key Words: Benchmarking, borrowing strength, design-consistency, mean squared errors, empirical Bayes, EBLUP, generalized linear mixed models, higher order asymptotics, resampling methods, sample surveys, variance components. AMS subject classification: 62C12, 62C25, 62G09, 62D05, 62F11, 62F15. 1 Introduction The term small domain or area typically refers to a population for which reliable statistics of interest cannot be produced due to certain limitations of the available data. Examples of domains include a geographical region (e.g. a state, county, municipality, etc.), a demographic group (e.g. a specific age sex race group), a demographic group within a geographic × × region, etc. Some of the groundwork in small area estimation related to the population counts and disease mapping research has been done by the epidemiologists and the demographers. The history of small area statistics ∗Correspondence to: Jiming Jiang. Department of Statistics, University of Califor- nia, Davis, CA 95616, USA.
    [Show full text]
  • Small Area Estimation
    INTROD. INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BINARY DATA SMALL AREA ESTIMATION Isabel Molina and J. Miguel Mar´ın Dept. of Statistics, Univ. Carlos III de Madrid J.N.K. Rao School of Mathematics and Statistics, Carleton University INTROD. INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BINARY DATA INTRODUCTION TO SMALL AREA ESTIMATION TRADITIONAL INDIRECT ESTIMATORS BASIC AREA-LEVEL MODEL BASIC UNIT-LEVEL MODEL EB METHOD FOR POVERTY ESTIMATION MODELS FOR BINARY DATA 2 INTROD. INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BINARY DATA DESIGN VERSUS MODEL BASED INFERENCE ELEMENT UNDER A MODEL UNDER THE DESIGN Population y ∼ Pθ U = f1;:::; Ng, Y = fy1;:::; yN g Sample y = (y1;:::; yn) s = (i1;:::; in) 2 Sπ, yi i.i.d. as y y = (yi1 ;:::; yin ) Probab. distrib. Pθ(y) Pπ(s) Parameter θ (e.g., θ = EPθ (Y)) θ = h(y1;:::; yN ) Estimator θ^(y) θ^(s) Sampling design: (Sπ; Pπ), Sπ ⊂ P(U) set of samples, Pπ probability distribution over Sπ satisfying Pπ(s) > 0, 8s 2 Sπ, and all units j 2 U are contained in some sample s 2 Sπ. 3 INTROD. INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BINARY DATA DESIGN-BASED INFERENCE • U finite population of size N. • y1;:::; yN measurements at the population units (fixed). • Target quantity: δ = h(y1;:::; yN ): • Example: population mean N 1 X Y¯ = y : N j j=1 • s random sample of size n drawn from the population U according to a given design. • r = U − s non-sample (size N − n).
    [Show full text]
  • Survey Methodology
    Catalogue no. 12-001-XIE Survey Methodology June 2006 How to obtain more information Specific inquiries about this product and related statistics or services should be directed to: Business Survey Methods Division, Statistics Canada, Ottawa, Ontario, K1A 0T6 (telephone: 1 800 263-1136). For information on the wide range of data available from Statistics Canada, you can contact us by calling one of our toll-free numbers. You can also contact us by e-mail or by visiting our website. National inquiries line 1 800 263-1136 National telecommunications device for the hearing impaired 1 800 363-7629 Depository Services Program inquiries 1 800 700-1033 Fax line for Depository Services Program 1 800 889-9734 E-mail inquiries [email protected] Website www.statcan.ca Information to access the product This product, catalogue no. 12-001-XIE, is available for free. To obtain a single issue, visit our website at www.statcan.ca and select Our Products and Services. Standards of service to the public Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner and in the official language of their choice. To this end, the Agency has developed standards of service that its employees observe in serving its clients. To obtain a copy of these service standards, please contact Statistics Canada toll free at 1 800 263-1136. The service standards are also published on www.statcan.ca under About Statistics Canada > Providing services to Canadians. Statistics Canada Business Survey Methods Division Survey Methodology June 2006 Published by authority of the Minister responsible for Statistics Canada © Minister of Industry, 2006 All rights reserved.
    [Show full text]
  • INTRODUCTION to SMALL AREA ESTIMATION TECHNIQUES a Practical Guide for National Statistics Offices
    INTRODUCTION TO SMALL AREA ESTIMATION TECHNIQUES A Practical Guide for National Statistics Offices MAY 2020 ASIAN DEVELOPMENT BANK INTRODUCTION TO SMALL AREA ESTIMATION TECHNIQUES A Practical Guide for National Statistics Offices MAY 2020 ASIAN DEVELOPMENT BANK Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) © 2020 Asian Development Bank 6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines Tel +63 2 8632 4444; Fax +63 2 8636 2444 www.adb.org Some rights reserved. Published in 2020. ISBN 978-92-9262-222-0 (print); 978-92-9262-223-7 (electronic); 978-92-9262-224-4 (ebook) Publication Stock No. TIM200160-2 DOI: http://dx.doi.org/10.22617/TIM200160-2 The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent. ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. The mention of specific companies or products of manufacturers does not imply that they are endorsed or recommended by ADB in preference to others of a similar nature that are not mentioned. By making any designation of or reference to a particular territory or geographic area, or by using the term “country” in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area. This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) https://creativecommons.org/licenses/by/3.0/igo/.
    [Show full text]
  • Statistical Models for Small Area Estimation
    Centro de Investigaci´onen Matem´aticas,A.C. STATISTICAL MODELS FOR SMALL AREA ESTIMATION TESIS Que para obtener el Grado de: Maestro en Ciencias con Orientaci´onen Probabilidad y Estad´ıstica P R E S E N T A: Georges Bucyibaruta Director: Dr. Rogelio Ramos Quiroga Guanajuato, Gto, M´exico,Noviembre de 2014 Integrantes del Jurado. Presidente: Dr. Miguel Nakamura Savoy (CIMAT). Secretario: Dr. Enrique Ra´ulVilla Diharce (CIMAT). Vocal y Director de la Tesis: Dr. Rogelio Ramos Quiroga (CIMAT). Asesor: Dr. Rogelio Ramos Quiroga Sustentante: Georges Bucyibaruta iii Abstract The demand for reliable small area estimates derived from survey data has increased greatly in recent years due to, among other things, their growing use in formulating policies and programs, allocation of government funds, regional planning, small area business decisions and other applications. Traditional area-specific (direct) estimates may not provide acceptable precision for small areas because sample sizes are rarely large enough in many small areas of interest. This makes it necessary to borrow information across related areas through indirect estimation based on models, using auxiliary information such as recent census data and current ad- ministrative data. Methods based on models are now widely accepted. Popular techniques for small area estimation use explicit statistical models, to indirectly estimate the small area parameters of interest. In this thesis, a brief review of the theory of Linear and Generalized Linear Mixed Models is given, the point estimation focusing on Restricted Maximum Likelihood. Bootstrap meth- ods for two-Level models are used for the construction of confidence intervals. Model-based approaches for small area estimation are discussed under a finite population framework.
    [Show full text]
  • Producing Small Area Estimates Based on Area-Level Models in R
    A Framework for Producing Small Area Estimates Based on Area-Level Models in R Sylvia Harmening Ann-Kristin Kreutzmann Sören Pannier Freie Universität Berlin Freie Universität Berlin Freie Universität Berlin Nicola Salvati Timo Schmid University of Pisa Freie Universität Berlin Abstract The R package emdi facilitates the estimation of regionally disaggregated indicators using small area estimation methods and provides tools for model building, diagnostics, presenting, and exporting the results. The package version 1.1.7 includes unit-level small area models that rely on access to micro data which may be challenging due to confi- dentiality constraints. In contrast, area-level models are less demanding with respect to (a) data requirements, as only aggregates are needed for estimating regional indicators, and (b) computational resources, and enable the incorporation of design-based properties. Therefore, the area-level model (Fay and Herriot 1979) and various extensions have been added to version 2.0.2 of the package emdi. These extensions include amongst others (a) transformed area-level models with back-transformations, (b) spatial and robust exten- sions, (c) adjusted variance estimation methods, and (d) area-level models that account for measurement errors. Corresponding mean squared error estimators are implemented for assessing the uncertainty. User-friendly tools like a stepwise variable selection func- tion, model diagnostics, benchmarking options, high quality maps and export options of the results enable the user a complete analysis procedure - from model building to diag- nostics. The functionality of the package is demonstrated by illustrative examples based on synthetic data for Austrian districts. Keywords: Fay-Herriot models, official statistics, survey statistics, small area estimation.
    [Show full text]