A Small Area Procedure for Estimating Population Counts Emily J

Total Page:16

File Type:pdf, Size:1020Kb

A Small Area Procedure for Estimating Population Counts Emily J Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 A Small Area Procedure for Estimating Population Counts Emily J. Berg Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Statistics and Probability Commons Recommended Citation Berg, Emily J., "A Small Area Procedure for Estimating Population Counts" (2010). Graduate Theses and Dissertations. 11215. https://lib.dr.iastate.edu/etd/11215 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A small area procedure for estimating population counts by Emily Berg A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Statistics Program of Study Committee: Sarah Nusser, Major Professor Wayne A. Fuller Mark Kaiser Jae Kwang Kim Dan Nettleton Dan Nordman Iowa State University Ames, Iowa 2010 ii ACKNOWLEDGEMENTS I would like to acknowledge and thank my major professor, Professor Fuller. iii Abstract Many large scale surveys are designed to achieve acceptable reliability for large domains. Direct estimators for more detailed levels of aggregation are often judged to be unreliable due to small sample sizes. Estimation for small domains, often defined by geographic and demographic characteristics, is known as small area estimation. A common approach to small area estimation is to derive predictors under a specified mixed model for the direct estimators. A procedure of this type is developed for small areas defined by the cells of a two-way table. Construction of small domain estimators using the Canadian Labour Force Survey (LFS) motivates the proposed model and estimation procedures. The LFS is designed to produce estimates of employment characteristics for certain pre-specified geographic and de- mographic domains. Direct estimators for specific occupations in small provinces are not published due to large estimated coefficients of variation. A preliminary study conducted in cooperation with Statistics Canada investigated estimation procedures for small areas defined by the cross-classification of occupations and provinces using data from a previous Census as auxiliary information. For consistency with published estimates, predictors are desired that preserve the direct estimators of the margins of the two-way table. One method in the Statistics Canada study is based on a nonlinear mixed model for the direct estimators of the proportions. An initial predictor is defined to be a convex combination of the direct estimator and an estimator obtained by raking the Census totals to the direct estimators of the marginal totals. The estimators resulting from the raking operation are called the SPREE estimators and are expected to have smaller variances than the direct estimators. The weight assigned to the direct estimator depends on the relative magnitudes of an estimator of a random model component and an estimator of the sampling variance. The final predictors are defined by raking the initial predictors to the direct estimators of the marginal totals. Estimation of the mean squared error (MSE) of the predictors was not fully developed. This dissertation addresses several issues raised by the procedure discussed above. First, the method above uses SPREE to estimate a fixed expected value. SPREE is unbiased if the Census interactions persist unchanged through time and is efficient if the direct estimators of iv the cell totals are realizations of independent Poisson random variables. A generalization of SPREE that is more efficient under a specified covariance structure is explored. A simulation study shows that predictors constructed under the specified covariance structure can have smaller MSE's than predictors calculated with the direct estimators of the variances. An estimator of the MSE of the initial convex combination of the direct estimator and the estimator of the fixed expected value is derived using Taylor linearizations. The LFS procedure uses a final raking operation to benchmark the predictors. A bootstrap procedure is investigated as a way to account for the effects of raking on the MSE's of the predictors. The procedures are applied to the Canadian Labour Force Survey, but the issues discussed are of general interest because they arise in many small area applications. v TABLE OF CONTENTS ACKNOWLEDGEMENTS . ii LIST OF TABLES . ix LIST OF FIGURES . xix CHAPTER 1. Introduction . 1 1.1 Occupations in the Canadian Labour Force Survey . 2 1.2 Challenges . 3 1.3 Outline . 4 CHAPTER 2. Literature on Small Area Estimation of Counts and Propor- tions . 5 2.1 SPREE and Generalizations . 5 2.2 Generalized Linear Mixed Models . 7 2.3 Exponential Quadratic Variance Function Models . 8 2.4 Semi-parametric Models . 8 2.5 Extensions and Reviews . 9 2.6 Benchmarking . 10 2.7 MSE Estimation . 10 2.8 Estimation of Unknown Sampling Variances . 13 CHAPTER 3. A Model for Vectors of Small Area Proportions . 18 3.1 Fixed Expected Value . 19 3.2 Small Area Effects . 20 3.3 Sampling Errors . 21 vi 3.4 Minimum Mean Squared Error Linear Predictors . 23 3.5 Totals . 24 3.6 Multiple Two-way Tables . 26 3.7 Summary . 26 CHAPTER 4. Procedure . 28 4.1 Estimators of Model Parameters . 28 4.1.1 Estimator of ck and Sampling Variances . 30 4.1.2 Estimator of λo ................................ 33 4.1.3 Estimator of ................................ 34 4.2 Predictors of True Proportions and Totals . 40 4.2.1 Initial Predictors of Proportions . 40 4.2.2 Beale Predictors of Proportions . 41 4.2.3 Benchmarked Predictors . 44 CHAPTER 5. MSE Estimators . 50 5.1 MSE Estimators based on Taylor Linearization . 50 5.1.1 MSE Estimators for Proportions . 50 5.1.2 MSE Estimators for Totals . 56 5.1.3 Estimating the MSE After Raking . 58 5.2 Bootstrap Estimator of MSE . 59 5.2.1 Bootstrap Distributions . 59 5.2.2 Definitions of Bootstrap MSE Estimators . 62 5.2.3 Computation of Bootstrap MSE Estimators . 64 5.2.4 Moments of Bootstrap Distributions of Proportions and Totals . 65 5.2.5 Bootstrap Distributions of Direct Estimators of Sampling Variances . 67 5.2.6 Details on Implementation . 69 5.2.7 Simplifications to Bootstrap MSE Estimator when Working Model for Sampling Variances Holds . 72 5.3 Benefits and Drawbacks of Taylor and Bootstrap MSE Estimators . 73 vii CHAPTER 6. Simulation . 76 6.1 Simulation Models . 76 6.1.1 Parameters for the Simulation . 81 6.2 Details of Computing and Estimation . 85 6.3 Efficiencies of Predictors . 88 6.3.1 Effect of Beale Ratio Estimator of γik on MSE of Predictor . 94 6.3.2 Effect of Raking on MSE of Predictor . 96 6.4 Comparison of Predictors Calculated with Direct Estimators of Sampling Vari- ances to Predictors Calculated with Model Estimators of Sampling Variances . 98 6.5 Comparison of Bootstrap and Taylor MSE Estimators . 108 6.5.1 SRS, 0.003 . 112 6.5.2 SRS, = 0:02 . 118 6.5.3 Two Stage, 0.003 . 124 6.5.4 Two Stage, 0.02 . 129 6.5.5 Estimators of Leading Terms . 133 6.5.6 Effect of Estimating Parameters . 138 6.5.7 Raking Effect . 140 6.5.8 Summary . 144 6.6 Empirical Properties of Normal Theory Prediction Intervals . 147 6.6.1 Empirical Coverages of Normal Theory 95% Confidence Intervals . 147 6.6.2 Interval Widths . 151 6.6.3 Summary . 153 6.7 Augmented Model Predictors . 154 CHAPTER 7. Canadian Labour Force Survey . 158 7.1 National Occupational Classification . 158 7.2 Census and LFS Data . 159 7.3 Estimation and Prediction for Canadian LFS . 161 7.4 Sampling Variances . 165 viii 7.5 Estimates and Predictions for A1 . 185 7.5.1 Model Estimates for A1 . 188 7.5.2 Predictions for A1 . 191 7.5.3 Comparison of MSE's and CV's of Predictors to MSE's and CV's of Direct Estimators for A1 . 196 7.5.4 Model Assessment for A1 . 200 7.6 Estimates and Predictions for E0 . 203 7.6.1 Model Estimates for E0 . 206 7.6.2 Predictions for E0 . 208 7.6.3 Comparison of MSE's and CV's of Predictors to MSE's and CV's of Direct Estimators for E0 . 212 7.6.4 Model Assessment for E0 . 214 7.7 Summary . 216 CHAPTER 8. Summary and Future Study . 219 8.1 Summary . 219 8.2 Future Study . 225 APPENDIX 1 Linear approximation to the operation that converts totals to proportions . 227 APPENDIX 2 Justification of the Linear Approximation for λb ........ 228 APPENDIX 3 Initial Estimator of λo ....................... 231 APPENDIX 4 Distortion of Covariances in Bootstrap Data Generating Procedure . 233 APPENDIX 5 Distortion of Covariances in Bootstrap Data Generating Procedure . 243 BIBLIOGRAPHY . ..
Recommended publications
  • Sample Design for Small Area Estimation Wilford B
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2011 Sample design for small area estimation Wilford B. Molefe University of Wollongong Recommended Citation Molefe, Wilford B., Sample design for small area estimation, Doctor of Philosophy thesis, Center for Statistical and Survey Methodology, University of Wollongong, 2011. http://ro.uow.edu.au/theses/3495 Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. Sample Design for Small Area Estimation A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy from The University Of Wollongong by Wilford B. Molefe MSc.(Sheffield), B.A.(UB) Center for Statistical and Survey Methodology Wollongong NSW 2522, Australia 2011 Dedicated to My Beloved Wife Rosinah My Daughter Nametso My Son Masego ii Abstract Sample surveys have long been used as cost-effective means for data collection. Such data are used to provide suitable statistics not only for the population targeted by the survey but also for a variety of subpopulations, often called domains or areas. Sampling designs and in particular sample sizes are chosen in practice so as to provide reliable estimates for aggregates of the small areas such as large geographical regions or broad demographic groups. Budget and other constraints usually prevent the allocation of sufficiently large samples to each of the sub-domains or small areas to provide reliable estimates using traditional techniques. This thesis will develop approaches for sample design to support small area esti- mation.
    [Show full text]
  • Small Area Estimation Combining Information from Several Sources Jae Kwang Kim Iowa State University, [email protected]
    Statistics Publications Statistics 6-2015 Small area estimation combining information from several sources Jae Kwang Kim Iowa State University, [email protected] Seunghwan Park Seoul National University Seo-young Kim Statistics Korea Follow this and additional works at: http://lib.dr.iastate.edu/stat_las_pubs Part of the Applied Statistics Commons, Design of Experiments and Sample Surveys Commons, Probability Commons, and the Statistical Methodology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ stat_las_pubs/117. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Statistics at Iowa State University Digital Repository. It has been accepted for inclusion in Statistics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Survey Methodology, June 2015 21 Vol. 41, No. 1, pp. 21-36 Statistics Canada, Catalogue No. 12-001-X Small area estimation combining information from several sources Jae-kwang Kim, Seunghwan Park and Seo-young Kim1 Abstract An area-level model approach to combining information from several sources is considered in the context of small area estimation. At each small area, several estimates are computed and linked through a system of structural error models. The best linear unbiased predictor of the small area parameter can be computed by the general least squares method. Parameters in the structural error models are estimated using the theory of measurement error models. Estimation of mean squared errors is also discussed.
    [Show full text]
  • Guidelines on Small Area Estimation for City Statistics and Other Functional Geographies 2019 Edition Statistical Requirements Compendium Requirements Statistical
    Guidelines on small area estimation for city statistics and other functional geographies 2019 edition Statistical requirements compendium 2018 edition 2018 MANUALS AND GUIDELINES Guidelines on small area estimation for city statistics and other functional geographics 2019 edition Manuscript completed in October 2019. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of the following information. Luxembourg: Publications Office of the European Union, 2019 The European Commission is not liable for any consequence stemming from the reuse of this publication. © European Union, 2019 Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). For any use or reproduction of photos or other material that is not under the copyright of the European Union, permission must be sought directly from the copyright holders. For more information, please consult: https://ec.europa.eu/eurostat/about/policies/copyright Copyright for the cover photo: © Shutterstock/Ken Schulze The information and views set out in this publication are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Collection: Manuals and guidelines Theme: General and regional statistics Print: ISBN 978-92-76-11708-7 ISSN 2363-197X doi:10.2785/822325 KS-GQ-19-011-EN-C PDF: ISBN 978-92-76-11709-4 ISSN 2315-0815 doi: 10.2785/763467 KS-GQ-19-011-EN-N Acknowledgements The authors would like to thank Bernhard Stefan Zins for providing his expertise in variance estimation for the AROPE indicator and the respective estimation routines.
    [Show full text]
  • 1 Small Area Estimation of Latent Economic Wellbeing Angelo Moretti, Natalie Shlomo and Joseph Sakshaug Social Statistics, Schoo
    Small Area Estimation of Latent Economic Wellbeing Angelo Moretti, Natalie Shlomo and Joseph Sakshaug Social Statistics, School of Social Sciences, University of Manchester, United Kingdom Summary. Small area estimation (SAE) plays a crucial role in the social sciences due to the growing need for reliable and accurate estimates for small domains. In the study of wellbeing, for example, policy-makers need detailed information about the geographical distribution of a range of social indicators. We investigate data dimensionality reduction using factor analysis models and implement SAE on the factor scores under the empirical best linear unbiased prediction approach. We contrast this approach with the standard approach of providing a dashboard of indicators, or a weighted average of indicators at the local level. We demonstrate the approach in a simulation study and a real application based on the European Union Statistics for Income and Living Conditions (EU-SILC) for the municipalities of Tuscany. Keywords: Composite estimation; Direct estimation; EBLUP; Factor analysis; Factor scores; Model-based estimation. 1. Introduction Measuring poverty and wellbeing is a key issue for policy makers requiring a detailed understanding of the geographical distribution of social indicators. This understanding is essential for the formulation of targeted policies that address the needs of people in specific geographical locations. Most large-scale social surveys provide accurate estimates only at a national level. A relevant survey in the European Union (EU) for analyzing wellbeing is the European Union Statistics for Income and Living Conditions (EU-SILC). However, this data can be used to produce accurate direct estimates only at the NUTS (Nomenclature of Territorial Units for Statistics) 2 level.
    [Show full text]
  • Topics in Small Area Estimation with Applications to the National Resources Inventory Junyuan Wang Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Topics in small area estimation with applications to the National Resources Inventory Junyuan Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Statistics and Probability Commons Recommended Citation Wang, Junyuan, "Topics in small area estimation with applications to the National Resources Inventory " (2000). Retrospective Theses and Dissertations. 12372. https://lib.dr.iastate.edu/rtd/12372 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter ^ce, while others may t>e from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author dkJ not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate ttie deletkxi. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Applying Bivariate Binomial/Logit Normal Models to Small Area Estimation
    JSM 2013 - Survey Research Methods Section Applying Bivariate Binomial/Logit Normal Models to Small Area Estimation Carolina Franco1 and William R. Bell2 1Center for Statistical Research and Methodology, 2Research and Methodology Directorate U.S. Census Bureau Washington, DC 20233 Abstract The U.S. Census Bureau’s SAIPE (Small Area Income and Poverty Estimates) program esti- mates poverty for various age groups for states, counties, and school districts of the U.S. We focus here on poverty estimates of school-aged (5-17) children for counties. The corresponding SAIPE production model applies to log transformed direct survey estimates for each county of the num- ber of 5-17 year-olds in poverty, with logged covariates obtained from tabulations of administrative record sources (e.g., tax return data) and a previous census (2000) long form estimate. We explore an alternative model assuming a binomial distribution for rescaled survey estimates of the number of school-aged children in poverty, with an effective sample size defined so the variances of the binomial proportions equal the corresponding sampling variance estimates. The model assumes a normal distribution for logits of the underlying county poverty rates, with a mean function us- ing logit covariates derived from the covariates of the production SAIPE model, and with additive random effects. We apply a bivariate version of this model to direct estimates from the American Community Survey (ACS) for 2011 and the previous 5-year (2006-2010) ACS estimates. Keywords: Small Area Estimation; Complex Surveys; American Community Survey; Bivari- ate Model; SAIPE. 1. Introduction The U.S. Census Bureau’s SAIPE (Small Area Income and Poverty Estimates) program provides updated poverty estimates for various age groups for states, counties, and school districts of the U.S.
    [Show full text]
  • Mixed Model Prediction and Small Area Estimation Jiming Jiang∗ Department of Statistics University of California, USA P
    Sociedad de Estad´ıstica e Investigaci´on Operativa Test (2006) Vol. 15, No. 1, pp. 1–96 Mixed Model Prediction and Small Area Estimation Jiming Jiang∗ Department of Statistics University of California, USA P. Lahiri Joint Program in Survey Methodology University of Maryland, USA Abstract Over the last three decades, mixed models have been frequently used in a wide range of small area applications. Such models offer great flexibilities in combining information from various sources, and thus are well suited for solving most small area estimation problems. The present article reviews major research developments in the classical inferential approach for linear and generalized linear mixed models that are relevant to different issues concerning small area estimation and related problems. Key Words: Benchmarking, borrowing strength, design-consistency, mean squared errors, empirical Bayes, EBLUP, generalized linear mixed models, higher order asymptotics, resampling methods, sample surveys, variance components. AMS subject classification: 62C12, 62C25, 62G09, 62D05, 62F11, 62F15. 1 Introduction The term small domain or area typically refers to a population for which reliable statistics of interest cannot be produced due to certain limitations of the available data. Examples of domains include a geographical region (e.g. a state, county, municipality, etc.), a demographic group (e.g. a specific age sex race group), a demographic group within a geographic × × region, etc. Some of the groundwork in small area estimation related to the population counts and disease mapping research has been done by the epidemiologists and the demographers. The history of small area statistics ∗Correspondence to: Jiming Jiang. Department of Statistics, University of Califor- nia, Davis, CA 95616, USA.
    [Show full text]
  • Small Area Estimation
    INTROD. INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BINARY DATA SMALL AREA ESTIMATION Isabel Molina and J. Miguel Mar´ın Dept. of Statistics, Univ. Carlos III de Madrid J.N.K. Rao School of Mathematics and Statistics, Carleton University INTROD. INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BINARY DATA INTRODUCTION TO SMALL AREA ESTIMATION TRADITIONAL INDIRECT ESTIMATORS BASIC AREA-LEVEL MODEL BASIC UNIT-LEVEL MODEL EB METHOD FOR POVERTY ESTIMATION MODELS FOR BINARY DATA 2 INTROD. INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BINARY DATA DESIGN VERSUS MODEL BASED INFERENCE ELEMENT UNDER A MODEL UNDER THE DESIGN Population y ∼ Pθ U = f1;:::; Ng, Y = fy1;:::; yN g Sample y = (y1;:::; yn) s = (i1;:::; in) 2 Sπ, yi i.i.d. as y y = (yi1 ;:::; yin ) Probab. distrib. Pθ(y) Pπ(s) Parameter θ (e.g., θ = EPθ (Y)) θ = h(y1;:::; yN ) Estimator θ^(y) θ^(s) Sampling design: (Sπ; Pπ), Sπ ⊂ P(U) set of samples, Pπ probability distribution over Sπ satisfying Pπ(s) > 0, 8s 2 Sπ, and all units j 2 U are contained in some sample s 2 Sπ. 3 INTROD. INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BINARY DATA DESIGN-BASED INFERENCE • U finite population of size N. • y1;:::; yN measurements at the population units (fixed). • Target quantity: δ = h(y1;:::; yN ): • Example: population mean N 1 X Y¯ = y : N j j=1 • s random sample of size n drawn from the population U according to a given design. • r = U − s non-sample (size N − n).
    [Show full text]
  • Survey Methodology
    Catalogue no. 12-001-XIE Survey Methodology June 2006 How to obtain more information Specific inquiries about this product and related statistics or services should be directed to: Business Survey Methods Division, Statistics Canada, Ottawa, Ontario, K1A 0T6 (telephone: 1 800 263-1136). For information on the wide range of data available from Statistics Canada, you can contact us by calling one of our toll-free numbers. You can also contact us by e-mail or by visiting our website. National inquiries line 1 800 263-1136 National telecommunications device for the hearing impaired 1 800 363-7629 Depository Services Program inquiries 1 800 700-1033 Fax line for Depository Services Program 1 800 889-9734 E-mail inquiries [email protected] Website www.statcan.ca Information to access the product This product, catalogue no. 12-001-XIE, is available for free. To obtain a single issue, visit our website at www.statcan.ca and select Our Products and Services. Standards of service to the public Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner and in the official language of their choice. To this end, the Agency has developed standards of service that its employees observe in serving its clients. To obtain a copy of these service standards, please contact Statistics Canada toll free at 1 800 263-1136. The service standards are also published on www.statcan.ca under About Statistics Canada > Providing services to Canadians. Statistics Canada Business Survey Methods Division Survey Methodology June 2006 Published by authority of the Minister responsible for Statistics Canada © Minister of Industry, 2006 All rights reserved.
    [Show full text]
  • INTRODUCTION to SMALL AREA ESTIMATION TECHNIQUES a Practical Guide for National Statistics Offices
    INTRODUCTION TO SMALL AREA ESTIMATION TECHNIQUES A Practical Guide for National Statistics Offices MAY 2020 ASIAN DEVELOPMENT BANK INTRODUCTION TO SMALL AREA ESTIMATION TECHNIQUES A Practical Guide for National Statistics Offices MAY 2020 ASIAN DEVELOPMENT BANK Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) © 2020 Asian Development Bank 6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines Tel +63 2 8632 4444; Fax +63 2 8636 2444 www.adb.org Some rights reserved. Published in 2020. ISBN 978-92-9262-222-0 (print); 978-92-9262-223-7 (electronic); 978-92-9262-224-4 (ebook) Publication Stock No. TIM200160-2 DOI: http://dx.doi.org/10.22617/TIM200160-2 The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent. ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. The mention of specific companies or products of manufacturers does not imply that they are endorsed or recommended by ADB in preference to others of a similar nature that are not mentioned. By making any designation of or reference to a particular territory or geographic area, or by using the term “country” in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area. This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) https://creativecommons.org/licenses/by/3.0/igo/.
    [Show full text]
  • Small-Area Estimation: Theory and Practice
    Section on Survey Research Methods Small-Area Estimation: Theory and Practice Michael Hidiroglou Statistical Innovation and Research Division, Statistics Canada, 16 th Floor Section D, R.H. Coats Building, Tunney's Pasture, Ottawa, Ontario, K1A 0T6, Canada Abstract This paper draws on the small area methodology discussed in Rao (2003) and illustrates how some of Small area estimation (SAE) was first studied at the estimators have been used in practice on a number Statistics Canada in the seventies. Small area estimates of surveys at Statistics Canada. It is structured as have been produced using administrative files or follows. Section 2 provides a summary of the primary surveys enhanced with administrative auxiliary data uses of small area estimates as criteria for computing since the early eighties. In this paper we provide a them. Section 3 defines the notation, provides a summary of existing procedures for producing official number of typical direct estimators, and indirect small-area estimates at Statistics Canada, as well as a estimators used in small area estimation. Section 4 summary of the ongoing research. The use of these provides four examples that reflect the diverse uses of techniques is provided for a number of applications at small area estimations at Statistics Canada Statistics Canada that include: the estimation of health statistics; the estimation of average weekly earnings; 2. Primary uses and Criteria for SAE Production the estimation of under-coverage in the census; and the estimation of unemployment rates. We also highlight One of the primary objectives for producing small area problems for producing small-area estimates for estimates is provide summary statistics to central or business surveys.
    [Show full text]
  • Statistical Models for Small Area Estimation
    Centro de Investigaci´onen Matem´aticas,A.C. STATISTICAL MODELS FOR SMALL AREA ESTIMATION TESIS Que para obtener el Grado de: Maestro en Ciencias con Orientaci´onen Probabilidad y Estad´ıstica P R E S E N T A: Georges Bucyibaruta Director: Dr. Rogelio Ramos Quiroga Guanajuato, Gto, M´exico,Noviembre de 2014 Integrantes del Jurado. Presidente: Dr. Miguel Nakamura Savoy (CIMAT). Secretario: Dr. Enrique Ra´ulVilla Diharce (CIMAT). Vocal y Director de la Tesis: Dr. Rogelio Ramos Quiroga (CIMAT). Asesor: Dr. Rogelio Ramos Quiroga Sustentante: Georges Bucyibaruta iii Abstract The demand for reliable small area estimates derived from survey data has increased greatly in recent years due to, among other things, their growing use in formulating policies and programs, allocation of government funds, regional planning, small area business decisions and other applications. Traditional area-specific (direct) estimates may not provide acceptable precision for small areas because sample sizes are rarely large enough in many small areas of interest. This makes it necessary to borrow information across related areas through indirect estimation based on models, using auxiliary information such as recent census data and current ad- ministrative data. Methods based on models are now widely accepted. Popular techniques for small area estimation use explicit statistical models, to indirectly estimate the small area parameters of interest. In this thesis, a brief review of the theory of Linear and Generalized Linear Mixed Models is given, the point estimation focusing on Restricted Maximum Likelihood. Bootstrap meth- ods for two-Level models are used for the construction of confidence intervals. Model-based approaches for small area estimation are discussed under a finite population framework.
    [Show full text]