Statistics Publications Statistics 6-2015 Small area estimation combining information from several sources Jae Kwang Kim Iowa State University,
[email protected] Seunghwan Park Seoul National University Seo-young Kim Statistics Korea Follow this and additional works at: http://lib.dr.iastate.edu/stat_las_pubs Part of the Applied Statistics Commons, Design of Experiments and Sample Surveys Commons, Probability Commons, and the Statistical Methodology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ stat_las_pubs/117. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Statistics at Iowa State University Digital Repository. It has been accepted for inclusion in Statistics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact
[email protected]. Survey Methodology, June 2015 21 Vol. 41, No. 1, pp. 21-36 Statistics Canada, Catalogue No. 12-001-X Small area estimation combining information from several sources Jae-kwang Kim, Seunghwan Park and Seo-young Kim1 Abstract An area-level model approach to combining information from several sources is considered in the context of small area estimation. At each small area, several estimates are computed and linked through a system of structural error models. The best linear unbiased predictor of the small area parameter can be computed by the general least squares method. Parameters in the structural error models are estimated using the theory of measurement error models. Estimation of mean squared errors is also discussed.