Clinical Implications of Electrocardiographic Bundle Branch Block in Primary Care

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Implications of Electrocardiographic Bundle Branch Block in Primary Care Cardiac risk factors and prevention ORIGINAL RESEARCH ARTICLE Heart: first published as 10.1136/heartjnl-2018-314295 on 25 May 2019. Downloaded from Clinical implications of electrocardiographic bundle branch block in primary care Peter Vibe Rasmussen, 1,2 Morten Wagner Skov,2,3 Jonas Ghouse,2,3 Adrian Pietersen,4 Steen Møller Hansen,5 Christian Torp-Pedersen,5,6 Lars Køber,3,7 Stig Haunsø,2,3,7 Morten Salling Olesen,2,8 Jesper Hastrup Svendsen,3,7 Jacob Melgaard,6 Claus Graff,6 Anders Gaardsdal Holst,3,9 Jonas Bille Nielsen2,10,11 ► Additional material is ABSTRact In the primary care setting, patients are referred published online only. To view Objectives Electrocardiographic bundle branch block for 12-lead standard ECG recording based on a please visit the journal online broad range of indications, ranging from typical (http:// dx. doi. org/ 10. 1136/ (BBB) is common but the prognostic implications in heartjnl- 2018- 314295). primary care are unclear. We sought to investigate the symptoms of CV disease to more diffuse symptoms relationship between electrocardiographic BBB subtypes as well as monitoring of medical treatment (eg, QTc For numbered affiliations see and the risk of cardiovascular (CV) outcomes in a primary interval-prolonging drugs) or as part of a routine end of article. care population free of major CV disease. health check. Opportunistic ECG recordings Methods Retrospective cohort study of primary care will often result in identification of various BBB Correspondence to subtypes. However, to the best of our knowledge, Peter Vibe Rasmussen, patients referred for electrocardiogram (ECG) recording Department of Cardiology, between 2001 and 2011. Cox regression models were there are no clear and uniform recommendations or Herlev-Gentofte Hospital, used to estimate hazard ratios (HR) as well as absolute available risk prediction models aimed at handling Hellerup, Denmark ; peter. vibe. risks of CV outcomes based on various BBB subtypes. and informing general practice patients who present rasmussen@ gmail. com Results We included 202 268 individuals with a with a potentially asymptomatic BBB subtype. PVR and MWS contributed median follow-up period of 7.8 years (Inter-quartile To address this, we used a middle-aged and equally. range [IQR] 4.9–10.6). Left bundle branch block (LBBB) elderly primary care population free from major was associated with heart failure (HF) in both men CV disease, to (1) Estimate prevalences of BBB. Received 16 October 2018 (HR 3.96, 95% CI 3.30 to 4.76) and women (HR 2.51, (2) Describe associations between BBB subtypes Revised 7 March 2019 and CV outcomes. (3) Test if the BBB subtypes are Accepted 15 March 2019 95% CI 2.15 to 2.94) and with CV death in men (HR Published Online First 1.80, 95% CI 1.38 to 2.35). Right bundle branch block clinically useful in improving risk prediction of CV 25 May 2019 (RBBB) was associated with pacemaker implantation in events. (4) If so, to develop a model useful in risk both men (HR 3.26, 95% CI 2.74 to 3.89) and women prediction of CV events in primary care patients http://heart.bmj.com/ (HR 3.69, 95% CI 2.91 to 4.67), HF in both sexes and with different BBB subtypes. weakly associated with CV death in men. Regarding LBBB, we found an increasing hazard of HF with METHODS increasing QRS-interval duration (HR 1.25, 95% CI 1.11 Study population to 1.42 per 10 ms increase in men and HR 1.23, 95% CI The present study is a part of the Copenhagen ECG 1.08 to 1.40 per 10 ms increase in women). Absolute study, comprising all individuals referred for ECG 10-year risk predictions across age-specific and sex- on September 30, 2021 by guest. Protected copyright. recording at the Copenhagen General Practitioners’ specific subgroups revealed clinically relevant differences Laboratory (CGPL) between 2001 and 2011. CGPL between having various BBB subtypes. is a centralised core facility used by general practi- Conclusions Opportunistic findings of BBB subtypes in tioners in the area of Copenhagen for the purpose of primary care patients without major CV disease should conducting various clinical examinations including be considered warnings of future HF and pacemaker ECG recording, as described previously.6–8 implantation. Individuals were excluded if they, at the time of inclusion (date of first ECG recording), were <40 years of age, had a pacemaker or implantable cardioverter-defibrillator, had an ECG unsuitable INTRODUCTION for measurement (see section on electrocardiog- ► http:// dx. doi. org/ 10.1136/ The use of surface 12-lead electrocardio- raphy) or had a history of myocardial infarction heartjnl- 2019- 314751 gram (ECG) often results in identification of bundle (MI), atrial fibrillation (AF), ischaemic stroke, heart branch block (BBB), even in individuals free of failure (HF) or valvular heart disease. We chose known cardiopulmonary disease. BBB comprises to exclude individuals <40 years of age due to a the subtypes incomplete right bundle branch block © Author(s) (or their very low event rate and consequently low statistical (IRBBB), right bundle branch block (RBBB), left employer(s)) 2019. No power. commercial re-use. See rights bundle branch block (LBBB) and non-specific and permissions. Published intraventricular conduction defect (NIVCD). BBB by BMJ. subtypes have been associated with an adverse prog- Baseline variables and outcomes To cite: Rasmussen PV, nosis in patients with known cardiovascular (CV) Using Danish administrative healthcare registers and Skov MW, Ghouse J, et al. disease and in people recruited from the general a unique personal identification number assigned to Heart 2019;105:1160–1167. population with and without CV disease.1–5 all persons with permanent residence in Denmark, 1160 Rasmussen PV, et al. Heart 2019;105:1160–1167. doi:10.1136/heartjnl-2018-314295 Cardiac risk factors and prevention we followed individuals over time with respect to death, emigra- mortality using individuals without the BBB subtype in ques- tion, use of prescription drugs and any hospital, or outpatient tion as reference. In case of a significant association between Heart: first published as 10.1136/heartjnl-2018-314295 on 25 May 2019. Downloaded from clinic diagnoses. We identified baseline variables regarding any of the BBB subtypes and an outcome of interest, we further comorbidity and medication status as described in detail previ- tested the association between QRS duration, measured as a ously.6–8 In brief, diabetes was defined as a register diagnosis continuous variable, and the event within subjects with the of diabetes mellitus or treatment with glucose-lowering drugs. specific BBB subtype. MI, AF, HF, pacemaker implantation, valvular heart disease and Time-on-study was used as time scale in all survival ischaemic stroke were defined from hospital discharge diagnoses analyses. All Cox models were adjusted for the following and procedure codes in the Danish National Patient Registry. covariates obtained at baseline: age, hypertension, diabetes Hypertension was defined as a register diagnosis of hyperten- mellitus, a categorical variable of Charlson Comorbidity sion or simultaneous treatment with two types of antihyperten- Index (0, 1, >2 points) and left ventricular hypertrophy. As sive medication prior to or at inclusion. Finally, we constructed many CV diseases are known to present differently across the the Charlson Comorbidity Index which is a score combining two sexes, all analyses were conducted separately in men and several disease-specific comorbidities; for a list of included codes women.12 Follow-up began on the day of first ECG recording see online supplementary table 1.9 Our end points of interest and ended in case of emigration, event of interest, death or were incident HF, MI, pacemaker implantation, AF, CV death on 31 December 2013, whichever came first. Proportional and death from all causes. For a list of diagnostic codes see hazard assumptions were tested and accepted by evaluating online supplementary table 2. The use of Danish administrative log-log plots. We considered a two-sided p value <0.05 as registers ensures complete nationwide coverage. Thus, we were statistically significant. able to interpret all cases of values not observed as not present and could define all variables without missing values. Absolute risk prediction Risk predictions were performed in a competing risk setting Electrocardiography by combining a Cox model for all-cause mortality with a 13 All ECGs were digitally recorded and stored in the MUSE Cox model of the outcome in question. Absolute risks were Cardiology Information System (GE Healthcare, Wauwatosa, reported in a risk chart stratified by 10-year age groups, sex Wisconsin, USA) and were processed using version 21 of the and comorbidity (yes vs no) defined as either a Charlson Marquette 12SL algorithm.8 We excluded ECGs with rhythms Comorbidity Score >1, hypertension or diabetes mellitus. different from sinus rhythm and other findings not suitable for Differences in time-dependent area under the receiver oper- the study analyses (eg, advanced atrioventricular block, delta ating characteristics curve (AUC) were calculated to investi- waves, pace spikes, ventricular rates <30 beats per minute and gate the added discriminative value of BBB subtypes in risk 14 15 >120 beats per minute). We defined BBB subtypes according prediction of CV outcomes. Data were split into a training to the American Heart Association (AHA), American College and test set with 101 splits using randomly chosen seeds. Ulti- of Cardiology Foundation (ACCF), and Heart Rhythm Society mately, the seed with the median AUC in the models without (HRS) recommendations for standardisation and interpretation BBB was chosen. Model performance and calibration were http://heart.bmj.com/ of the ECG implementing a few minor modifications as the evaluated and accepted using Brier scores and calibration 12SL algorithm cannot directly measure a notch or slur in the plots showing the observed frequency versus the predicted 16 17 R-wave.10 risk.
Recommended publications
  • Abnormalities Caused by Left Bundle Branch Block - Print Article - JAAPA
    Marquette University e-Publications@Marquette Physician Assistant Studies Faculty Research and Physician Assistant Studies, Department Publications 12-17-2010 Abnormalities Caused by Left undB le Branch Block James F. Ginter Aurora Cardiovascular Services Patrick Loftis Marquette University, [email protected] Published version. Journal of the American Academy of Physician Assistants, Vol. 23, No. 12 (December 2010). Permalink. © 2010, American Academy of Physician Assistants and Haymarket Media Inc. Useded with permission. Abnormalities caused by left bundle branch block - Print Article - JAAPA http://www.jaapa.com/abnormalities-caused-by-left-bundle-branch-block/... << Return to Abnormalities caused by left bundle branch block James F. Ginter, MPAS, PA-C, Patrick Loftis, PA-C, MPAS, RN December 17 2010 One of the keys to achieving maximal cardiac output is simultaneous contraction of the atria followed by simultaneous contraction of the ventricles. The cardiac conduction system (Figure 1) coordinates the polarization and contraction of the heart chambers. As reviewed in the earlier segment of this department on right bundle branch block (RBBB), the process begins with a stimulus from the sinoatrial (SA) node. The stimulus is then slowed in the atrioventricular (AV) node, allowing complete contraction of the atria. From there, the stimulus proceeds to the His bundle and then to the left and right bundle branches. The bundle branches are responsible for delivering the stimulus to the Purkinje fibers of the left and right ventricles at the same speed, which allows simultaneous contraction of the ventricles. Bundle branch blocks are common disorders of the cardiac conduction system. They can affect the right bundle, the left bundle, or one of its branches (fascicular block), or they may occur in combination.
    [Show full text]
  • Postural Heart Block*
    Br Heart J: first published as 10.1136/hrt.44.2.221 on 1 August 1980. Downloaded from Case reports Br Heart J 1980; 44: 221-3 Postural heart block* PETER E SEDA, JOHN H McANULTY, C JOE ANDERSON From the Department of Medicine, University of Oregon Health Sciences Center, Portland, Oregon, USA SUMMARY A patient presented with orthostatic dizziness and syncope caused by postural heart block. When the patient was supine, atrioventricular conduction was normal and he was asymptomatic; when he was standing he developed second degree type II block and symptoms. The left bundle-branch block on his electrocardiogram and intracardiac electrophysiological study findings suggest that this heart block occurred distal to the His bundle. Orthostatic symptoms are usually presumed to be secondary to an inappropriate distribution of intravascular volume or to autonomic nervous system abnormalities. As shown in this patient, these symptoms may be the result of orthostatic heart block. Ambulatory monitoring may be useful in patients with orthostatic neurological symptoms, particularly when conduction abnormalities are present on the electrocardiogram. Orthostatic neurological symptoms usually result minute and regular, and increased to 90 beats a from inadequate cerebral perfusion caused by minute with some irregularity when he was upright. disturbances of the autonomic nervous system,'-3 The carotid pulse was normal, and there were no ineffective or inappropriate shifts in volume carotid bruits. The cardiac impulse was normal. http://heart.bmj.com/ distribution,4 or drugs.5 We report a patient with The second heart sound was paradoxically split. orthostatic dizziness and syncope caused by inter- There was a grade 2/6 apical systolic murmur.
    [Show full text]
  • Intra-His Bundle Block. Clinical, Electrocardiographic, and Electrophysiologic Characteristics
    Andréa et al OriginalArq Bras Article Cardiol Intra-His bundle 2002; 79: 532-7. Intra-His Bundle Block. Clinical, Electrocardiographic, and Electrophysiologic Characteristics Eduardo M. Andréa, Jacob Atié, Washington A. Maciel, Nilson A. de Oliveira Jr, Luiz Eduardo Camanho, Luís Gustavo Belo, Hecio Affonso de Carvalho, Leonardo Siqueira, Eduardo Saad, Ana Claudia Venancio Rio de Janeiro, RJ - Brazil Objective - To assess the clinical, electrocardiogra- Atrioventricular block is a conduction disturbance at phic, and electrophysiologic characteristics of patients the axis formed by the atrium, AV node, His bundle, and its (pt) with intra-His bundle block undergoing an electro- branches, which may vary from a mild delay in conduction physiologic study (EPS). (first-degree atrioventricular block) to a conduction block between atria and ventricles (second- and third-degree Methods - We analyzed the characteristics of 16 pt with atrioventricular blocks) 1. second-degree atrioventricular block and symptoms of Atrioventricular block may occur at the 3 following syncope or dyspnea, or both, undergoing conventional EPS. electrophysiological levels: atrioventricular node, within 2 Results - Intra-His bundle block was documented in 16 the His bundle, and below the His bundle . These levels pt during an EPS. In 15 (94%) pt, the atrioventricular block have anatomical correlation with, respectively, the atrioven- was recorded in sinus rhythm; 4 (25%) pt had intra-His tricular node, the penetrating His bundle (within the central Wenckebach phenomenon, which correlated with Mobitz I fibrous body), and nonpenetrating His bundle (out of the (MI) atrioventricular block on the electrocardiogram. Seven central fibrous body). First-degree atrioventricular block (44%) pt had 2:1 atrioventricular block, 2 of whom were usually has a delay in the conduction within the atrioventri- asymptomatic (12.5%).
    [Show full text]
  • ST-Segment Elevation in Conditions Other Than Acute Myocardial Infarction
    The new england journal of medicine review article current concepts ST-Segment Elevation in Conditions Other Than Acute Myocardial Infarction Kyuhyun Wang, M.D., Richard W. Asinger, M.D., and Henry J.L. Marriott, M.D. From the Hennepin County Medical Cen- cute myocardial infarction resulting from an occlusive ter, University of Minnesota, Minneapolis thrombus is recognized on an electrocardiogram by ST-segment elevation.1 (K.W., R.W.A.); and the University of South a 2-4 Florida, Tampa (H.J.L.M.). Address reprint Early reperfusion therapy has proved beneficial in such infarctions. The requests to Dr. Wang at the Hennepin earlier the reperfusion, the greater the benefit, and the time to treatment is now consid- County Medical Center, Cardiology Division, ered to indicate the quality of care. These days, when thrombolytic treatment and per- 701 Park Ave., MC 865A, Minneapolis, MN 55415. cutaneous intervention are carried out so readily, it is important to remember that acute infarction is not the only cause of ST-segment elevation. The purpose of this review is N Engl J Med 2003;349:2128-35. to describe other conditions that mimic infarction and emphasize the electrocardio- Copyright © 2003 Massachusetts Medical Society. graphic clues that can be used to differentiate them from true infarction. normal st-segment elevation and normal variants The level of the ST segment should be measured in relation to the end of the PR seg- ment, not the TP segment.5 In this way, ST-segment deviation can still be detected ac- curately, even if the TP segment is not present because the P wave is superimposed on the T wave during sinus tachycardia or if the PR segment is depressed or there is a prominent atrial repolarization (Ta) wave.
    [Show full text]
  • Atrial Fibrillation and Flutter with Left Bundle Branch Block Aberration Referred As Ventricular Tachycardia
    CONTRIBUTION 9H Atrial fibrillation and flutter with left bundle branch block aberration referred as ventricular tachycardia RICHARD G. TROHMAN, MD; KENNETH M. KESSLER, MD; DEBORAH WILLIAMS, MD; AND JAMES D. MALONEY, MD • Five patients were referred for electrophysiologic evaluation of nonsustained or sustained ventricular tachycardia. In each patient, the clinical rhythm disturbance was reproduced and identified as atrial fibrillation or flutter with left bundle branch block aberrancy. All five patients demonstrated enhanced or accelerated atrioventricular conduction through the normal atrioventricular nodal-His Purkinje pathway. This rapid conduction created an electrophysiologic substrate suitable to the preferential development of this less common form of aberration. Four of five patients responded well (ventricular rate control or reversion to sinus rhythm) to verapamil therapy. Electrocardiographic criteria for differentiating supraventricular tachycardia with aberration from ventricular tachycardia exist. Never- theless, misdiagnosis of wide complex tachycardia remains common. Electrophysiologic testing plays an important role in correctly identifying these rhythms, assessing long-term prognosis, and choosing effective therapy. • INDEX TERMS: LEFT BUNDLE BRANCH BLOCK ABERRANCY; ATRIAL FIBRILLATION AND FLUTTER 0 CLEVE CLIN ] MED 1991; 58:325-330 tween these rhythm disturbances is of obvious clinical importance. Our report describes the results of electro- physiologic testing in five patients referred for evalua- LECTROCARDIOGRAPHIC
    [Show full text]
  • An Incarcerated Diaphragmatic Hernia Presenting As Acute Chest Pain and Transient Left Bundle Branch Block: a Case Report
    Al-Khalasi et al., Int J Cardiol Cardiovasc International Journal of Cardiology and Dis 2021; 1(2):48-51. Cardiovascular Diseases Case Report An incarcerated diaphragmatic hernia presenting as acute chest pain and transient left bundle branch block: A case report Usama AL-Khalasi1*, Masoud S. Kashoub2, Hatim Al Lawati3 1Oman Medical Specialty Board Abstract (OMSB) Resident, Emergency Medicine Program, PGY3, Oman Background: Hiatal hernia is not an uncommon condition; however, a large hernia producing symptoms that mimic an acute cardiac condition is extremely uncommon. This clinical case report highlights unusual 2 Oman Medical Specialty Board (OMSB) presentation of hiatal hernia where early recognition and timely intervention were key to ensure favorable Resident, Internal Medicine Program, patient outcome. PGY3, Oman 3 Case summary: We report the case of a 52 years old gentleman with a history of ABO-incompatible living Senior Consultant, Interventional donor liver transplant for hepatitis B related hepatocellular carcinoma, who presented with acute pericarditis Cardiology & Structural Heart Disease, SQUH, Oman like chest pain. Physical examination was unremarkable apart from moderate distress due chest pain. His 12- lead electrocardiogram (ECG) showed a new left bundle branch block (LBBB) with secondary repolarization *Author for correspondence: abnormalities. High sensitivity Troponin-T was serially normal. The total white blood cell count was mildly Email: [email protected] elevated with normal C reactive protein. A plain chest radiograph showed gas-filled bowel loops in left hemithorax. Further evaluation with computed tomography (CT) showed a 4-5cm left diaphragmatic defect Received date: October 02, 2020 Accepted date: March 10, 2021 with bowel loops herniating into the left mediastinum.
    [Show full text]
  • Successful Radiofrequency Ablation of Para-Left Bundle Branch Premature
    Case Report Interventional Cardiology Successful radiofrequency ablation of para-left bundle branch premature Leonor Parreira*, Dinis Mesquita, Rita Marinheiro, Rita Marinheiro, ventricular contractions: Aiming Duarte Chambel, Pedro Amador, at the breakout point to spare the Rui Caria Department of Cardiology, Centro Hospitalar de Setúbal–Hospital de São Bernardo, conduction system Rua Camilo Castelo Branco, 175. 2900-400 Setubal, Portugal Abstract: *Author for correspondence: Background: The origin of the arrhythmia and its breakout point may be located apart. This has been Leonor Parreira, Department of Cardiology, Centro Hospitalar de Setúbal–Hospital de described for arrhythmias originating within the His-Purkinje system. Case presentation: We report São Bernardo, Rua Camilo Castelo Branco, a case of a 70-year-old man with right bundle branch block and left anterior fascicular block with 175. 2900-400 Setubal, Portugal, E-mail: idiopathic nonsustained ventricular tachycardia originating in the septal left ventricular outflow close [email protected] to the proximal left bundle branch. Ablation was successfully and safely performed away from the Received date: December 02, 2020 origin of the arrhythmia near the left anterior fascicle, at the breakout point. Arrhythmias from the Accepted date: December 25, 2020 Published date: January 01, 2021 conduction system may have different preferential exits and meticulous activation sequence mapping is the preferable strategy to select the ablation site. Keywords: Left ventricular outflow tract . Premature ventricular contractions . Membranous septum . Radiofrequency ablation . Right bundle branch block Introduction Idiopathic Premature Ventricular Contractions (PVCs) arise more frequently from the right ventricular outflow tract (RVOT) followed by the Left Ventricular Outflow Tract (LVOT), mainly from the aortic cusps [1].
    [Show full text]
  • Nci 10790713 2008 19 4 479.Pdf
    AACN19_4_479–484 22/10/08 11:44 PM Page 479 AACN Advanced Critical Care Volume 19, Number 4, pp.479–484 © 2008, AACN ECG Challenges Carol Jacobson, RN, MN Department Editor Understanding Atrioventricular Blocks, Part I: First-Degree and Second-Degree Atrioventricular Blocks Carol Jacobson, RN, MN he electrocardiographic diagnosis of AV blocks presents a challenge to T health care professionals who monitor cardiac rhythms. Much of the con- fusion exists as a result of differing definitions of the “degrees” of AV blocks in the literature, especially surrounding second-degree block. Many misconcep- tions exist about the definitions of type I and type II blocks and how these “types” differ from the “degrees” used in the AV block classification system. Additional sources of confusion and difference of opinion are (1) the concept of 2:1 conduction and (2) where to put blocks that involve failed conduction of 2 or more consecutive P waves.1 With this much uncertainty and difference of opinion among the experts, it is no wonder that instructors have a hard time explaining and teaching these concepts to students in cardiac arrhythmia inter- pretation classes. The term heart block or AV block refers to the problems associated with the conduction of an electrical impulse from the atria to the ventricles. The conduction can be delayed, intermittent, or absent. The classification system typically used to describe these “degrees” of conduction delay is still widely used in textbooks: First-degree AV block (delayed conduction) Second-degree AV block (intermittent conduction): type I and type II Third-degree or complete AV block (absent conduction) Marriott2 stated that the division into 3 degrees is too simple and proposed a much more detailed classification system to describe AV conduction distur- bances.
    [Show full text]
  • Continuing Problems with the Diagnosis of Mobitz Type II Second-Degree Atrioventricular Block
    Continuing Problems with the Diagnosis of Mobitz Type II Second-Degree Atrioventricular Block S. Serge BAROLD M.D.* Florida Heart Rhythm Institute, Tampa, Florida, USA ABSTRACT Second degree atrioventicular block remains poorly understood despite the major advances in cardiac elec- trophysiology. In this paper, we summarized the continuing problems with the diagnosis of Mobitz Type II second degree atrioventricular block. KEYWORDS Atrioventricular block, Second degree Möbitz type II atrioventricular block, Second degree type I atrioventricular block İkinci Derece Mobitz Tip II Atriyoventriküler Bloğun Tanısında Devam Eden Sorunlar ÖZET Kardiyak elektrofizyolojide büyük gelişmelere rağmen ikinci derece atriyoventriküler blok tam olarak anla- şılamamıştır. Bu yazıda ikinci derece Mobitz tip II atriyoventriküler bloğun tanısında devam eden sorunlar özetlenmiştir. ANAHTAR KELİMELER Atriyoventriküler blok, ikinci derece Mobitz tip II atriyoventriküler blok, ikinci derece tip I atriyoventriküler blok. İLETİŞİM ADRESİ S. Serge BAROLD, M.D. S. Serge Barold MD. 5806 Mariner’s Watch Drive, Tampa FL 33615, USA. Continuing Problems with the Diagnosis of Mobitz Type II Second-Degree Atrioventricular Block 55 econd-degree AV block remains poorly un- conducted P waves (i.e., 3:2 AV block) to deter- Sderstood despite the major advances in car- mine behavior of the PR interval (Figure 1). The diac electrophysiology in the last four deca- PR interval after the blocked impulse always des. The literature is replete with varying de- shortens if the P wave is conducted to the vent- finitions of second-degree AV block especially ricle. The term “inconstant” PR or AV intervals Mobitz type II block. It should therefore not be is important because many sequences of type I surprising that during formal testing, physici- second-degree AV block are atypical and do not ans score more poorly with second-degree AV conform to the traditional mathematical behavi- block ECGs than with those of other arrhythmi- or of the PR intervals described in standard text- as.
    [Show full text]
  • Wolff-Parkinson-White Syndrome Type B with Tachycardia-Dependent
    Br Heart J: first published as 10.1136/hrt.43.4.481 on 1 April 1980. Downloaded from Case reports Br HeartJ 1980; 43: 481-6 Wolff-Parkinson-White syndrome type B with tachycardia-dependent (phase 3) block in the accessory pathway and in left bundle-branch coexisting with rate-unrelated right bundle-branch block IVAN J MENDOZA, AGUSTIN CASTELLANOS, RUEY J SUNG From the Division of Cardiology, Department of Medicine, University of Miami School of Medicine, Miami, Florida, USA suMMARY A patient with Wolff-Parkinson-White syndrome type B developed 2:1 atrioventricular block resulting from the association of persistent right bundle-branch block with tachycardia-dependent (phase 3) left bundle-branch block. Electrophysiological studies disclosed the coexistence of a tachy- cardia-dependent (phase 3) block in the accessory pathway. This conduction disturbance was exposed, not by carotid sinus massage as in previous studies, but by pacing-induced prolongation of the interval between two consecutively conducted atrial impulses. Furthermore, the surface electrocardiogram showed, at different times, ventricular complexes resulting from: (1) exclusive atrioventricular conduc- tion through the normal pathway without bundle-branch block; (2) predominant, or exclusive, atrio- ventricular conduction through a right-sided accessory pathway; (3) exclusive atrioventricular conduction http://heart.bmj.com/ through the normal pathway with right bundle-branch block; (4) exclusive conduction through the normal pathway, with left bundle-branch block; (5) fusion between (1) and (2); and finally, (6) fusion between (2) and (3) However, QRS complexes resulting from simultaneously occurring Wolff-Parkinson-White syndrome type B and left bundle-branch block could not be identified.
    [Show full text]
  • Lyme Carditis Airley E
    Infect Dis Clin N Am 22 (2008) 275–288 Lyme Carditis a b Airley E. Fish, MD, MPH , Yuri B. Pride, MD , a, Duane S. Pinto, MD * aDivision of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Road, Palmer 415, Boston, MA 02215, USA bDepartment of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Deaconess 311, Boston, MA 02215, USA Lyme borreliosis, or Lyme disease, is a globally occurring, systemic disease caused by the spirochete Borrelia burgdorferi and transmitted by the Ixodes tick. The disease classically is divided into three stages. Stage 1, the early localized stage, generally occurs several days or up to 1 month after the initial tick bite. It is notable for an influenza-like illness and often is accompanied by the erythema migrans (EM) rash. Stage 2, the early dissem­ inated stage, occurs weeks to months after EM. Neurologic symptoms and musculoskeletal complaints are the hallmarks of this stage. Cardiac abnor­ malities, predominantly involving the conduction system and myocardium, also may manifest at this time. Stage 3 occurs several months to years after EM and is characterized by a monoarthritis or oligoarthritis affecting the large joints, and the development and progression of neurologic sequelae. Steere and colleagues first described the cardiovascular complications of Lyme disease nearly 30 years ago in a retrospective report of 20 North American cases. Australian and European cases were reported in the early to mid-1980s. The principal manifestation of Lyme carditis is self-limited conduction derangement, most commonly involving the atrioventricular node.
    [Show full text]
  • Myocarditis and Pericarditis Following Mrna COVID-19 Vaccination: What Do We Know So Far?
    children Review Myocarditis and Pericarditis Following mRNA COVID-19 Vaccination: What Do We Know So Far? Bibhuti B. Das 1,*, William B. Moskowitz 1, Mary B. Taylor 2 and April Palmer 3 1 Department of Pediatrics, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA; [email protected] 2 Department of Pediatrics, Division of Critical Care, University of Mississippi Medical Center, Jackson, MS 39216, USA; [email protected] 3 Department of Pediatrics, Division of Infectious Disease, University of Mississippi Medical Center, Jackson, MS 39216, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-601-984-5250; Fax: +1-601-984-5283 Abstract: This is a cross-sectional study of 29 published cases of acute myopericarditis following COVID-19 mRNA vaccination. The most common presentation was chest pain within 1–5 days after the second dose of mRNA COVID-19 vaccination. All patients had an elevated troponin. Cardiac magnetic resonance imaging revealed late gadolinium enhancement consistent with myocarditis in 69% of cases. All patients recovered clinically rapidly within 1–3 weeks. Most patients were treated with non-steroidal anti-inflammatory drugs for symptomatic relief, and 4 received intravenous immune globulin and corticosteroids. We speculate a possible causal relationship between vaccine administration and myocarditis. The data from our analysis confirms that all myocarditis and pericarditis cases are mild and resolve within a few days to few weeks. The bottom line is that the risk of cardiac complications among children and adults due to severe acute respiratory syndrome Citation: Das, B.B.; Moskowitz, W.B.; coronavirus 2 (SARS-CoV-2) infection far exceeds the minimal and rare risks of vaccination-related Taylor, M.B.; Palmer, A.
    [Show full text]