ST-Segment Elevation in Conditions Other Than Acute Myocardial Infarction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abnormalities Caused by Left Bundle Branch Block - Print Article - JAAPA
Marquette University e-Publications@Marquette Physician Assistant Studies Faculty Research and Physician Assistant Studies, Department Publications 12-17-2010 Abnormalities Caused by Left undB le Branch Block James F. Ginter Aurora Cardiovascular Services Patrick Loftis Marquette University, [email protected] Published version. Journal of the American Academy of Physician Assistants, Vol. 23, No. 12 (December 2010). Permalink. © 2010, American Academy of Physician Assistants and Haymarket Media Inc. Useded with permission. Abnormalities caused by left bundle branch block - Print Article - JAAPA http://www.jaapa.com/abnormalities-caused-by-left-bundle-branch-block/... << Return to Abnormalities caused by left bundle branch block James F. Ginter, MPAS, PA-C, Patrick Loftis, PA-C, MPAS, RN December 17 2010 One of the keys to achieving maximal cardiac output is simultaneous contraction of the atria followed by simultaneous contraction of the ventricles. The cardiac conduction system (Figure 1) coordinates the polarization and contraction of the heart chambers. As reviewed in the earlier segment of this department on right bundle branch block (RBBB), the process begins with a stimulus from the sinoatrial (SA) node. The stimulus is then slowed in the atrioventricular (AV) node, allowing complete contraction of the atria. From there, the stimulus proceeds to the His bundle and then to the left and right bundle branches. The bundle branches are responsible for delivering the stimulus to the Purkinje fibers of the left and right ventricles at the same speed, which allows simultaneous contraction of the ventricles. Bundle branch blocks are common disorders of the cardiac conduction system. They can affect the right bundle, the left bundle, or one of its branches (fascicular block), or they may occur in combination. -
Nitric Oxide-Mediated Flow-Dependent Dilation Is Impaired in Coronary Arteries in Patients with Coronary Spastic Angina
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 920 JACC Vol. 30, No. 4 October 1997:920–6 Nitric Oxide-Mediated Flow-Dependent Dilation Is Impaired in Coronary Arteries in Patients With Coronary Spastic Angina KIYOTAKA KUGIYAMA, MD, MASAMICHI OHGUSHI, MD, TAKESHI MOTOYAMA, MD, SEIGO SUGIYAMA, MD, HISAO OGAWA, MD, MICHIHIRO YOSHIMURA, MD, YOSHITO INOBE, MD, OSAMU HIRASHIMA, MD, HIROAKI KAWANO, MD, HIROFUMI SOEJIMA, MD, HIROFUMI YASUE, MD Kumamoto City, Japan Objectives. This study sought to examine whether flow- Results. Flow-dependent dilation of the proximal LAD was dependent dilation is impaired at the site of coronary artery found to be less in spasm arteries than in control arteries. G spasm in patients with coronary spastic angina. Infusion of N -monomethyl-L-arginine (L-NMMA) in the proxi- Background. Physiologic stimuli such as exercise and exposure mal LAD suppressed flow-dependent dilation in control arteries to cold have been shown to cause an increase in coronary blood but had no significant effect on spasm arteries. The dilator flow, leading to flow-dependent dilation of coronary arteries in response to nitroglycerin was not impaired in spasm coronary normal subjects, but cause coronary constriction in patients with arteries. coronary spastic angina. Conclusions. Our results indicate that flow-dependent coronary Methods. A maximal increase in blood flow was induced dilation is impaired in spasm arteries, partly due to a deficiency in selectively in the left anterior descending coronary artery (LAD) endothelial nitric oxide bioactivity, which in turn may contribute by infusion of adenosine through a Doppler flow catheter tip in the to the increase in coronary tone during physiologic stimuli in midportion of the LAD in 10 patients with coronary spastic patients with coronary spastic angina. -
Hyperglycemia Increases New-Onset Atrial Fibrillation in Patients with Acute ST-Elevation Myocardial Infarction
Original ArticleHyperglycemia Predicts AF in STEMIs Acta Cardiol Sin 2012;28:279-285 Arrhythmia and Electrophysiology Hyperglycemia Increases New-Onset Atrial Fibrillation in Patients with Acute ST-Elevation Myocardial Infarction Hong-Pin Hsu,1 Yu-Lan Jou,1 Tao-Cheng Wu,2,3 Ying-Hwa Chen,2,3 Shao-Song Huang,2,3 Yenn-Jiang Lin,2,3 Li-Wei Lo,2,3 Yu-Feng Hu,2,3 Ta-Chuan Tuan,3 Shih-Lin Chang2,3 and Shih-Ann Chen2,3 Background: Atrial fibrillation (AF) is a frequent complication of acute myocardial infarction, and is often accompanied by an increased morbidity and mortality. The aim of this study was to investigate the predictors and outcome of new-onset AF occurring after acute ST-elevation myocardial infarction (STEMI). Methods: A total of 307 patients with acute STEMI from May 2007 to June 2009 were included in our study. Of those patients, 57 patients experienced new-onset AF during their hospitalization in the coronary care unit with continuous ECG monitoring. The primary endpoint was the occurrence of AF during the hospitalization. The secondary endpoint was the all-cause mortality during a 12-month follow-up period. Results: Two hundred eighty three patients (92.2%) received revascularization during the hospitalization. The patients with new-onset AF after the acute STEMI were older, with lower diastolic blood pressure, higher initial fasting glucose, lower lipid level, and a higher incidence of coronary artery disease history when compared to those without new-onset AF. In a multivariable analysis, the initial fasting glucose level (p = 0.025, OR = 1.007, 95% CI = 1.001~1.012) was an independent predictor of the occurrence of new-onset AF after acute STEMI. -
Postural Heart Block*
Br Heart J: first published as 10.1136/hrt.44.2.221 on 1 August 1980. Downloaded from Case reports Br Heart J 1980; 44: 221-3 Postural heart block* PETER E SEDA, JOHN H McANULTY, C JOE ANDERSON From the Department of Medicine, University of Oregon Health Sciences Center, Portland, Oregon, USA SUMMARY A patient presented with orthostatic dizziness and syncope caused by postural heart block. When the patient was supine, atrioventricular conduction was normal and he was asymptomatic; when he was standing he developed second degree type II block and symptoms. The left bundle-branch block on his electrocardiogram and intracardiac electrophysiological study findings suggest that this heart block occurred distal to the His bundle. Orthostatic symptoms are usually presumed to be secondary to an inappropriate distribution of intravascular volume or to autonomic nervous system abnormalities. As shown in this patient, these symptoms may be the result of orthostatic heart block. Ambulatory monitoring may be useful in patients with orthostatic neurological symptoms, particularly when conduction abnormalities are present on the electrocardiogram. Orthostatic neurological symptoms usually result minute and regular, and increased to 90 beats a from inadequate cerebral perfusion caused by minute with some irregularity when he was upright. disturbances of the autonomic nervous system,'-3 The carotid pulse was normal, and there were no ineffective or inappropriate shifts in volume carotid bruits. The cardiac impulse was normal. http://heart.bmj.com/ distribution,4 or drugs.5 We report a patient with The second heart sound was paradoxically split. orthostatic dizziness and syncope caused by inter- There was a grade 2/6 apical systolic murmur. -
Young Adults. Look for ST Elevation, Tall QRS Voltage, "Fishhook" Deformity at the J Point, and Prominent T Waves
EKG Abnormalities I. Early repolarization abnormality: A. A normal variant. Early repolarization is most often seen in healthy young adults. Look for ST elevation, tall QRS voltage, "fishhook" deformity at the J point, and prominent T waves. ST segment elevation is maximal in leads with tallest R waves. Note high take off of the ST segment in leads V4-6; the ST elevation in V2-3 is generally seen in most normal ECG's; the ST elevation in V2- 6 is concave upwards, another characteristic of this normal variant. Characteristics’ of early repolarization • notching or slurring of the terminal portion of the QRS wave • symmetric concordant T waves of large amplitude • relative temporal stability • most commonly presents in the precordial leads but often associated with it is less pronounced ST segment elevation in the limb leads To differentiate from anterior MI • the initial part of the ST segment is usually flat or convex upward in AMI • reciprocal ST depression may be present in AMI but not in early repolarization • ST segments in early repolarization are usually <2 mm (but have been reported up to 4 mm) To differentiate from pericarditis • the ST changes are more widespread in pericarditis • the T wave is normal in pericarditis • the ratio of the degree of ST elevation (measured using the PR segment as the baseline) to the height of the T wave is greater than 0.25 in V6 in pericarditis. 1 II. Acute Pericarditis: Stage 1 Pericarditis Changes A. Timing 1. Onset: Day 2-3 2. Duration: Up to 2 weeks B. Findings 1. -
Clinical Implications of Electrocardiographic Bundle Branch Block in Primary Care
Cardiac risk factors and prevention ORIGINAL RESEARCH ARTICLE Heart: first published as 10.1136/heartjnl-2018-314295 on 25 May 2019. Downloaded from Clinical implications of electrocardiographic bundle branch block in primary care Peter Vibe Rasmussen, 1,2 Morten Wagner Skov,2,3 Jonas Ghouse,2,3 Adrian Pietersen,4 Steen Møller Hansen,5 Christian Torp-Pedersen,5,6 Lars Køber,3,7 Stig Haunsø,2,3,7 Morten Salling Olesen,2,8 Jesper Hastrup Svendsen,3,7 Jacob Melgaard,6 Claus Graff,6 Anders Gaardsdal Holst,3,9 Jonas Bille Nielsen2,10,11 ► Additional material is ABSTRact In the primary care setting, patients are referred published online only. To view Objectives Electrocardiographic bundle branch block for 12-lead standard ECG recording based on a please visit the journal online broad range of indications, ranging from typical (http:// dx. doi. org/ 10. 1136/ (BBB) is common but the prognostic implications in heartjnl- 2018- 314295). primary care are unclear. We sought to investigate the symptoms of CV disease to more diffuse symptoms relationship between electrocardiographic BBB subtypes as well as monitoring of medical treatment (eg, QTc For numbered affiliations see and the risk of cardiovascular (CV) outcomes in a primary interval-prolonging drugs) or as part of a routine end of article. care population free of major CV disease. health check. Opportunistic ECG recordings Methods Retrospective cohort study of primary care will often result in identification of various BBB Correspondence to subtypes. However, to the best of our knowledge, Peter Vibe Rasmussen, patients referred for electrocardiogram (ECG) recording Department of Cardiology, between 2001 and 2011. -
ECG Learning Center
ECG Learning Center Authored by: Frank G. Yanowitz, M.D Dr. Alan Professor of Medicine Lindsay: University of Utah School of Medicine Medical Director, ECG Department "A teacher LDS Hospital Salt Lake City, Utah of substance and style" I n t r o d u c t i o n E C G O u t l i n e I m a g e I n d e x T e s t Y o u r K n o w l e d g e A C C / A H A C l i n i c a l Whats New: Advanced ECG Quiz C o m p e t e n c e i n E C G This work is licensed under a D i a g n o s e s Creative Commons License. K N O W L E D G E W E A V E R S | S P E N C E R S. E C C L E S H E A L T H S C I E N C E S L I B R A R Y http://library.med.utah.edu/kw/ecg/ [5/11/2006 9:39:27 AM] ECG Introduction THE ALAN E. LINDSAY ECG LEARNING CENTER Frank G. Yanowitz, M.D Professor of Medicine University of Utah School of Medicine Medical Director, ECG Department LDS Hospital Salt Lake City, Utah This tutorial is dedicated to the memory of Dr. Alan E. Lindsay, master teacher of electrocardiography, friend, mentor, and colleague. Many of the excellent ECG tracings illustrated in this learning program are from Dr. -
Corrected QT-Interval Dispersion: an Electrocardiographic Tool to Predict Recurrence of Myocardial Infarction
Original Research Corrected QT-Interval Dispersion: An Electrocardiographic Tool to Predict Recurrence of Myocardial Infarction Ailed Elena Rodríguez-Jiménez MD MS, Hugo Cruz-Inerarity MD, Tessa Negrín-Valdés MD, Raikel Fardales-Rodríguez MD, Elibet Chávez-González MD PhD ABSTRACT RESULTS Patients with recurrent infarction (56; 11.8%) had higher INTRODUCTION Many clinical settings lack the necessary resourc- average initial blood glucose values than those who did not have es to complete angiographic studies, which are commonly used to recurrence; the opposite occurred for systolic and diastolic blood predict complications and death following acute coronary syndrome. pressure and for left ventricular ejection fraction. Dispersion of the Corrected QT-interval dispersion can be useful for assessing risk of corrected QT-interval was a good predictor of infarction recurrence ac- myocardial infarction recurrence. cording to a multivariate analysis (OR = 3.09; 95% CI = 1.105–8.641; p = 0.032). Cardiac arrest is the variable that best predicts recurrence. OBJECTIVE Evaluate the relationship between corrected QT-interval No recurrence of infarction occurred in 97% of patients without car- dispersion and recurrence of myocardial infarction in patients with ST- segment elevation. diac arrest, left ventricular ejection fraction >45% and corrected QT- interval dispersion <80 ms. METHODS We conducted a prospective observational study of 522 patients with ST-segment elevation myocardial infarction admitted con- CONCLUSIONS Risk of infarction recurrence is low in patients secutively to the Camilo Cienfuegos General Provincial Hospital in Sancti without cardiac arrest, with left ventricular ejection fraction >45% Spiritus, Cuba, from January 2014 through June 2017. Of these, 476 and with dispersion of corrected QT-interval <80 ms. -
Intra-His Bundle Block. Clinical, Electrocardiographic, and Electrophysiologic Characteristics
Andréa et al OriginalArq Bras Article Cardiol Intra-His bundle 2002; 79: 532-7. Intra-His Bundle Block. Clinical, Electrocardiographic, and Electrophysiologic Characteristics Eduardo M. Andréa, Jacob Atié, Washington A. Maciel, Nilson A. de Oliveira Jr, Luiz Eduardo Camanho, Luís Gustavo Belo, Hecio Affonso de Carvalho, Leonardo Siqueira, Eduardo Saad, Ana Claudia Venancio Rio de Janeiro, RJ - Brazil Objective - To assess the clinical, electrocardiogra- Atrioventricular block is a conduction disturbance at phic, and electrophysiologic characteristics of patients the axis formed by the atrium, AV node, His bundle, and its (pt) with intra-His bundle block undergoing an electro- branches, which may vary from a mild delay in conduction physiologic study (EPS). (first-degree atrioventricular block) to a conduction block between atria and ventricles (second- and third-degree Methods - We analyzed the characteristics of 16 pt with atrioventricular blocks) 1. second-degree atrioventricular block and symptoms of Atrioventricular block may occur at the 3 following syncope or dyspnea, or both, undergoing conventional EPS. electrophysiological levels: atrioventricular node, within 2 Results - Intra-His bundle block was documented in 16 the His bundle, and below the His bundle . These levels pt during an EPS. In 15 (94%) pt, the atrioventricular block have anatomical correlation with, respectively, the atrioven- was recorded in sinus rhythm; 4 (25%) pt had intra-His tricular node, the penetrating His bundle (within the central Wenckebach phenomenon, which correlated with Mobitz I fibrous body), and nonpenetrating His bundle (out of the (MI) atrioventricular block on the electrocardiogram. Seven central fibrous body). First-degree atrioventricular block (44%) pt had 2:1 atrioventricular block, 2 of whom were usually has a delay in the conduction within the atrioventri- asymptomatic (12.5%). -
ST-Elevation Myocardial Infarction Due to Acute Thrombosis in an Adolescent with COVID-19
Prepublication Release ST-Elevation Myocardial Infarction Due to Acute Thrombosis in an Adolescent With COVID-19 Jessica Persson, MD, Michael Shorofsky, MD, Ryan Leahy, MD, MS, Richard Friesen, MD, Amber Khanna, MD, MS, Lyndsey Cole, MD, John S. Kim, MD, MS DOI: 10.1542/peds.2020-049793 Journal: Pediatrics Article Type: Case Report Citation: Persson J, Shorofsky M, Leahy R, et al. ST-elevation myocardial infarction due to acute thrombosis in an adolescent with COVID-19. Pediatrics. 2021; doi: 10.1542/peds.2020- 049793 This is a prepublication version of an article that has undergone peer review and been accepted for publication but is not the final version of record. This paper may be cited using the DOI and date of access. This paper may contain information that has errors in facts, figures, and statements, and will be corrected in the final published version. The journal is providing an early version of this article to expedite access to this information. The American Academy of Pediatrics, the editors, and authors are not responsible for inaccurate information and data described in this version. Downloaded from©202 www.aappublications.org/news1 American Academy by of guest Pediatrics on September 25, 2021 Prepublication Release ST-Elevation Myocardial Infarction Due to Acute Thrombosis in an Adolescent With COVID-19 Jessica Persson, MD1, Michael Shorofsky, MD1, Ryan Leahy, MD, MS1, Richard Friesen, MD1, Amber Khanna, MD, MS1,2, Lyndsey Cole, MD3, John S. Kim, MD, MS1 1Division of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 2Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 3Section of Infectious Diseases, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado Corresponding Author: John S. -
Veno-Occlusive Unloading of the Heart Reduces Infarct Size in Experimental
www.nature.com/scientificreports OPEN Veno‑occlusive unloading of the heart reduces infarct size in experimental ischemia–reperfusion Esben Søvsø Szocska Hansen2, Tobias Lynge Madsen1, Gregory Wood1, Asger Granfeldt3, Nikolaj Bøgh2, Bawer Jalal Tofg1, Peter Agger4, Jakob Lykke Lindhardt1, Christian Bo Poulsen1, Hans Erik Bøtker1 & Won Yong Kim1,2* Mechanical unloading of the left ventricle reduces infarct size after acute myocardial infarction by reducing cardiac work. Left ventricular veno‑occlusive unloading reduces cardiac work and may reduce ischemia and reperfusion injury. In a porcine model of myocardial ischemia–reperfusion injury we randomized 18 pigs to either control or veno‑occlusive unloading using a balloon engaged from the femoral vein into the inferior caval vein and infated at onset of ischemia. Evans blue and 2,3,5‑triphenyltetrazolium chloride were used to determine the myocardial area at risk and infarct size, respectively. Pressure–volume loops were recorded to calculate cardiac work, left ventricular (LV) volumes and ejection fraction. Veno‑occlusive unloading reduced infarct size compared with controls (Unloading 13.9 ± 8.2% versus Control 22.4 ± 6.6%; p = 0.04). Unloading increased myocardial salvage (54.8 ± 23.4% vs 28.5 ± 14.0%; p = 0.02), while the area at risk was similar (28.4 ± 6.7% vs 27.4 ± 5.8%; p = 0.74). LV ejection fraction was preserved in the unloaded group, while the control group showed a reduced LV ejection fraction. Veno‑occlusive unloading reduced myocardial infarct size and preserved LV ejection fraction in an experimental acute ischemia–reperfusion model. This proof‑of‑concept study demonstrated the potential of veno‑occlusive unloading as an adjunctive cardioprotective therapy in patients undergoing revascularization for acute myocardial infarction. -
Angelmed Guardian System
Angel Medical Systems, Inc. Guardian® System Executive Summary Circulatory System Devices Panel AngelMed Guardian® System for the Alerting of Patients to ST Segment Changes Indicative of Coronary Artery Occlusion PMA P150009 SPONSOR EXECUTIVE SUMMARY CIRCULATORY SYSTEM DEVICES PANEL MEETING DATE: March 16, 2016 Sponsored by Angel Medical Systems, Inc. 1 Angel Medical Systems, Inc. Guardian® System Executive Summary Circulatory System Devices Panel Table of Contents 1 Synopsis .......................................................................................................................1 2 Unmet Need for Earlier Treatment of Heart Attacks .............................................5 2.1 Epidemiology of Recurrent Heart Attacks ...................................................................5 2.2 Impact of Treatment Delay on Clinical Outcomes .......................................................6 2.3 Inadequacy of Reliance on Symptoms to Prompt Treatment for Heart Attacks ..........................................................................................................................6 2.4 Rationale for Continuous ST Segment Monitoring to Identify Coronary Occlusion ......................................................................................................................7 3 AngelMed Guardian System ......................................................................................9 3.1 Overview of the Guardian System ................................................................................9 3.2