The Function Field Sieve Is Quite Special

Total Page:16

File Type:pdf, Size:1020Kb

The Function Field Sieve Is Quite Special In C. Fieker and D.R. Kohel, editors, Algorithmic Number Theory: 5th International Sym- posium, ANTS-V, Sydney, Australia, July 7-12, 2002. Proceedings, volume 2369 of Lecture Notes in Computer Science, pages 431–445. Springer Berlin / Heidelberg, July 2002. The Function Field Sieve is quite special Antoine Joux1 and Reynald Lercier2 1 DCSSI Crypto Lab, 51, Bd de Latour Maubourg F-75700 Paris 07 SP, France [email protected] 2 CELAR, Route de Laillé F-35570 Bruz, France [email protected] Abstract. In this paper, we describe improvements to the function field sieve (FFS) for the discrete logarithm problem in Fpn , when p is small. Our main contribution is a new way to build the algebraic function fields needed in the algorithm. With this new construction, the heuristic complexity is as good as the complexity of the construction proposed by Adleman and Huang [2], i.e Lpn [1/3, c] = n 1 n 2 1 exp((c + o(1)) log(p ) 3 log(log(p )) 3 ) where c = (32/9) 3 . With either of these constructions the FFS becomes an equivalent of the special number field sieve used to factor integers of the form AN ±B. From an asymptotic point of view, this is faster than older algorithm such as Coppersmith’s algorithm and Adleman’s original FFS. From a practical viewpoint, we argue that our construction has better properties than the construction of Adleman and Huang. We demonstrate the efficiency of the algorithm by successfully computing discrete logarithms in a large finite field of characteristic two, namely F2521 . 1 Introduction Due to their cryptographic significances, the integer factorization problem and the discrete logarithm problem in finite fields have been extensively studied in the last decades. The best methods currently known to solve these problems are index calculus techniques. In the field of integer factorization, the number field sieve (NFS) [15] having surpassed its ancestor, the quadratic sieve [24], is now the faster of the known factoring algorithm. It exists in two flavors, the general number field sieve which can factor any integer and the special number field sieve which is useful for numbers of a special form: many integers of the form AN ± B were factored using the special number field sieve. The latest example is the factorization of 2773 + 1 at CWI [21]. For the computation of discrete logarithms in prime fields, the situation is similar. The quadratic sieve has an analog called the gaussian integer method [6, 13]. Similarly a variant of the number field sieve [23] can be used for computing discrete logarithms. Furthermore, as for factorization, we can distinguish between the general number field sieve and the special number field sieve. For example a computation of discrete logarithms modulo p = (739 · 7149 − 736)/3 can be found in [27]. In this paper, we address the case of discrete logarithm computations in Fpn , when p is small. The best known practical method for the typical case p = 2 is due to Coppersmith [5]. It was used in 1992 by Gordon and McCurley [11] to compute discrete logarithms in F2401 . In the same paper, the sieving part of the discrete logarithm computation for F2503 was also reported. More recently, the sieving part of a discrete logarithm computation in F2607 using Coppersmith’s method has been performed [25]. The linear algebra step of this computation has been finished very recently [26]. From a more theoretical viewpoint, there exists an analog of the general number field sieve called the function field sieve (FFS), which is not restricted to p = 2 [1, 2]. From a practical viewpoint, only Coppersmith’s algorithm was considered by now in the characteristic two case [7]. Adleman and Huang [2] showed that the asymptotics of the function field sieve can be largely im- proved. In fact, with these improvements the function field sieve becomes an equivalent of the special number field sieve. In this paper, we propose a different method that achieves the same complexity. Moreover, in most cases, our method is faster. As a consequence, both the asymptotic complexity and the practical implementation turn out to be better than in older works. We finally illustrate this result by a computation in F2521 . 1 2 2 Algorithmic considerations The function field sieve was introduced in [1] for computing discrete logarithms in Fpn with small values of p. It is quite similar to the number field sieve and it has a complexity of the same order Lpn [1/3]. However, there are some crucial differences that allow large improvements. Most notably, a field such as Fpn can be represented in many different ways. In Coppersmith’s algorithm [5], as in the work of Adleman and Huang [2], the key idea was to select a “small representation” of the finite field, more precisely, this is done by selecting a polynomial λ(t) of degree as low as possible, such that tn − λ(t) is irreducible. Once λ(t) is chosen, it is possible to find two good polynomials having a common root in this field. Clearly, these two constructions focus on a small subset of the possible representations of Fpn . In this paper, we propose a construction that allows a much larger varieties of possible representations. This extra degree of freedom reduces the task of choosing good polynomials at the beginning of the function field sieve algorithm. It turns out that this method keeps the good complexity proved by Adleman and Huang (cf. section 3). Moreover, the selected polynomials are somewhat better. In term of the asymptotic complexity, this is hidden in the o(1), however this yields a significant decrease of the practical run times. In this section, we mostly focus on our new polynomial selection phase. As a foreword, let us recall that the method we use to compute discrete logarithms in a field Fpn is derived from the well known Pollig–Hellman method. The first step is to factor pn − 1. For any small factor ` of pn − 1, discrete logarithms modulo ` can be found using the Pollard Rho method. For the remaining prime factors ` of pn −1, we use the index-calculus method described here. Finally, we combine the results thanks to the Chinese Remainder Theorem in order to get a result modulo pn − 1. Therefore, in the sequel, we will assume that we are computing discrete logarithms modulo a large prime factor ` of pn − 1. This is not an issue since computing the prime factors of pn − 1 can be done with the special number field sieve with a complexity of the same order Lpn [1/3]. 2.1 Representation of Fpn One classical way to work with Fpn consists in handling equivalence classes in the quotient of the com- mutative ring Fp[t] by one of its proper maximal ideals f(t)Fp[t] where f(t) is an irreducible element of Fp[t] of degree n. Each equivalence class is then uniquely determined by a polynomial of Fp[t] of degree strictly smaller than n. Consequently, any element of Fpn can be seen as a polynomial of degree smaller than n. With such a representation, adding two elements of Fpn is the same as adding two elements of Fp[t]. Multiplying two elements of Fpn is the same as multiplying two elements of Fp[t] and reducing the result modulo f(t). Since there are numerous irreducible elements of degree n in Fp[t], there are numerous ways to represent Fpn . The computation of the map between two representations consists in computing the roots over one representation of Fpn of a polynomial of degree n whose coefficients are in Fp. From an algorithmic viewpoint, this is known as the “equal degree factorization” problem. This can be done quite efficiently since there exists algorithms for this task whose complexity is polynomial in log pn (a good survey can be found in [16]). As a consequence, if some particular representation of Fpn is well suited to discrete logarithm computations, it is a simple matter to switch from a given representation to the more adapted one. In the sequel, we take that step for granted and forget about the given initial representation. 2.2 General principle of the FFS The Function Field Sieve algorithm is an “index-calculus” method. So it can be seen at a high level of abstraction as a two steps algorithm. Step 1: One fixes a subset S = {γ1, . , γ|S|} of Fpn ' Fp[t] called the factor base and tries to collect relations between products of elements of S. So, we have equations of the form X logx γ = 0 (1) (,γ)∈Z×S 3 where x is a generator of the multiplicative subgroup of order ` in Fpn . When enough such relations are collected, one obtains the quantities logx γ via the inversion modulo ` of the corresponding linear system. Step 2: To find the discrete logarithm of an element y which is not in S, one tries random integers ν until xν y is a product of elements of S. Then X logx y = −ν + logx γ mod `. (2) (,γ)∈Z×S The way how the factor base S is chosen is specific to each variation. In the original Function Field Sieve as described by Adleman, the factor base is the image by a morphism φ in Fpn of the generators of two sets Sα and Sβ. The set Sα is a set of Fp-rational principal places in the rational function field Fp(t). The set Sβ is a set of Fp-rational principal places defined in an algebraic function field. Once a random polynomial µ(t) ∈ Fp[t] has been chosen, this function field is defined by an absolutely 0 Pd Pd i j irreducible bivariate polynomial H(t, X) = i=0 j=0 hi,jX t such that H(t, µ(t)) = 0 mod f(t).
Recommended publications
  • Sieve Algorithms for the Discrete Logarithm in Medium Characteristic Finite Fields Laurent Grémy
    Sieve algorithms for the discrete logarithm in medium characteristic finite fields Laurent Grémy To cite this version: Laurent Grémy. Sieve algorithms for the discrete logarithm in medium characteristic finite fields. Cryptography and Security [cs.CR]. Université de Lorraine, 2017. English. NNT : 2017LORR0141. tel-01647623 HAL Id: tel-01647623 https://tel.archives-ouvertes.fr/tel-01647623 Submitted on 24 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php
    [Show full text]
  • The Number Field Sieve for Discrete Logarithms
    The Number Field Sieve for Discrete Logarithms Henrik Røst Haarberg Master of Science Submission date: June 2016 Supervisor: Kristian Gjøsteen, MATH Norwegian University of Science and Technology Department of Mathematical Sciences Abstract We present two general number field sieve algorithms solving the discrete logarithm problem in finite fields. The first algorithm pre- sented deals with discrete logarithms in prime fields Fp, while the second considers prime power fields Fpn . We prove, using the standard heuristic, that these algorithms will run in sub-exponential time. We also give an overview of different index calculus algorithms solving the discrete logarithm problem efficiently for different possible relations between the characteristic and the extension degree. To be able to give a good introduction to the algorithms, we present theory necessary to understand the underlying algebraic structures used in the algorithms. This theory is largely algebraic number theory. 1 Contents 1 Introduction 4 1.1 Discrete logarithms . .4 1.2 The general number field sieve and L-notation . .4 2 Theory 6 2.1 Number fields . .6 2.1.1 Dedekind domains . .7 2.1.2 Module structure . .9 2.1.3 Norm of ideals . .9 2.1.4 Units . 10 2.2 Prime ideals . 10 2.3 Smooth numbers . 13 2.3.1 Density . 13 2.3.2 Exponent vectors . 13 3 The number field sieve in prime fields 15 3.1 Overview . 15 3.2 Calculating logarithms . 15 3.3 Sieving . 17 3.4 Schirokauer maps . 18 3.5 Linear algebra . 20 3.5.1 A note about smooth t and g .............. 22 3.6 Run time .
    [Show full text]
  • 11.6 Discrete Logarithms Over Finite Fields
    Algorithms 61 11.6 Discrete logarithms over finite fields Andrew Odlyzko, University of Minnesota Surveys and detailed expositions with proofs can be found in [7, 25, 26, 28, 33, 34, 47]. 11.6.1 Basic definitions 11.6.1 Remark Discrete exponentiation in a finite field is a direct analog of ordinary exponentiation. The exponent can only be an integer, say n, but for w in a field F , wn is defined except when w = 0 and n ≤ 0, and satisfies the usual properties, in particular wm+n = wmwn and (for u and v in F )(uv)m = umvm. The discrete logarithm is the inverse function, in analogy with the ordinary logarithm for real numbers. If F is a finite field, then it has at least one primitive element g; i.e., all nonzero elements of F are expressible as powers of g, see Chapter ??. 11.6.2 Definition Given a finite field F , a primitive element g of F , and a nonzero element w of F , the discrete logarithm of w to base g, written as logg(w), is the least non-negative integer n such that w = gn. 11.6.3 Remark The value logg(w) is unique modulo q − 1, and 0 ≤ logg(w) ≤ q − 2. It is often convenient to allow it to be represented by any integer n such that w = gn. 11.6.4 Remark The discrete logarithm of w to base g is often called the index of w with respect to the base g. More generally, we can define discrete logarithms in groups.
    [Show full text]
  • The Factoring Dead: Preparing for the Cryptopocalypse
    THE FACTORING DEAD: PREPARING FOR THE CRYPTOPOCALYPSE Javed Samuel — javed[at]isecpartners[dot]com iSEC Partners, Inc 123 Mission Street, Suite 1020 San Francisco, CA 94105 https://www.isecpartners.com March 20, 2014 Abstract This paper will explain the latest breakthroughs in the academic cryptography community and look ahead at what practical issues could arise for popular cryptosystems. Specifically, we will focus on the recent major devel- opments in discrete mathematics and their potential ability to undermine our trust in the most basic asymmetric primitives, including RSA. We will explain the basic theories behind RSA and the state-of-the-art in large number- ing factoring, and how several recent papers may point the way to massive improvements in this area. The paper will then switch to the practical aspects of the doomsday scenario, and will answer the question “What happens the day after RSA is broken?” We will point out the many obvious and hidden uses of RSA and related algorithms and outline how software engineers and security teams can operate in a post-RSA world. We will also discuss the results of our survey of popular products and software, and point out the ways in which individuals can prepare for the “zombie cryptopocalypse”. 1 INTRODUCTION Over the past few years, there have been numerous attacks on the current SSL infrastructure. These have ranged from BEAST [97], CRIME [88], Lucky 13 [2][86], RC4 bias attacks [1][91] and BREACH [42]. These attacks all show the fragility of the current SSL architecture as vulnerabilities have been found in a variety of features ranging from compression, timing and padding [90].
    [Show full text]
  • USING NUMBER FIELDS to COMPUTE LOGARITHMS in FINITE FIELDS 1. Introduction Let Q = Pn, Where P Is a Prime Number and N a Positiv
    MATHEMATICS OF COMPUTATION Volume 69, Number 231, Pages 1267{1283 S 0025-5718(99)01137-0 Article electronically published on May 24, 1999 USING NUMBER FIELDS TO COMPUTE LOGARITHMS IN FINITE FIELDS OLIVER SCHIROKAUER Abstract. We describe an adaptation of the number field sieve to the problem of computing logarithms in a finite field. We conjecture that the running time of the algorithm, when restricted to finite fields of an arbitrary but fixed 1=3 degree, is Lq[1=3; (64=9) + o(1)]; where q is the cardinality of the field, s 1−s Lq [s; c]=exp(c(log q) (log log q) ); and the o(1) is for q !1.Thenumber field sieve factoring algorithm is conjectured to factor a number the size of q inthesameamountoftime. 1. Introduction n Let q = p ,wherep is a prime number and n a positive integer, and let Fq be the field of q elements. Let t and v be nonzero elements in Fq such that v is in the multiplicative subgroup generated by t,andletx be the smallest nonnegative integer such that tx = v. We call the exponent x the discrete logarithm of v with respect to the base t and write x =logt v. In this paper we present an algorithm to compute logt v. The most succesful methods to date to compute discrete logarithms in a finite field are all descendants of the index calculus method described by Kraitchik in the 1920's (see [14] and [15]) and rediscovered and modified by numerous mathe- maticians since then (see [25] and [31]).
    [Show full text]
  • Selecting Polynomials for the Function Field Sieve
    Selecting polynomials for the Function Field Sieve Razvan Barbulescu The Function Field Sieve (FFS) algorithm is dedicated to computing discrete logarithms in n a finite field Fqn , where q is a prime power, small compared to q . Introduced by Adleman in [Adl94] and inspired by the Number Field Sieve (NFS), the algorithm collects pairs of polynomials (a; b) 2 Fq[t] such that the norms of a − bx in two function fields are both smooth (the sieving stage), i.e having only irreducible divisors of small degree. It then solves a sparse linear system (the linear algebra stage), whose solutions, called virtual logarithms, allow to compute the discrete algorithm of any element during a final stage (individual logarithm stage). The choice of the defining polynomials f and g for the two function fields can be seen as a preliminary stage of the algorithm. It takes a small amount of time but it can greatly influence the sieving stage by slightly changing the probabilities of smoothness. In order to solve the discrete logarithm in Fqn , the main required property of f; g 2 Fq[t][x] is that their resultant Resx(f; g) has an irreducible factor '(t) of degree n. Various methods have been proposed to build such polynomials, but the best results in practice correspond to the method of Joux and Lercier [JL02]. Its particularity is that one of the two polynomials, say g, is linear. Moreover, for any polynomial f in Fq[t][x] and any input Fqn , one can associate a linear polynomial g satisfying the requirements of the FFS.
    [Show full text]
  • The Impact of the Number Field Sieve on the Discrete Logarithm Problem In
    Algorithmic Number Theory MSRI Publications Volume 44, 2008 The impact of the number field sieve on the discrete logarithm problem in finite fields OLIVER SCHIROKAUER 1. Introduction n Let p be a prime number and n a positive integer, and let q p . Let ކq D be the field of q elements and denote by ކq the multiplicative subgroup of ކq. Assume t and u are elements in ކq with the property that u is in the subgroup generated by t. The discrete logarithm of u with respect to the base t, written log u, is the least non-negative integer x such that t x u. t D In this paper we describe two methods to compute discrete logarithms, both of which derive from the number field sieve (NFS) factoring algorithm described in [Stevenhagen 2008] and [Lenstra and Lenstra 1993]. When factoring an integer N with the NFS, we first choose a number ring R as in [Stevenhagen 2008] for which there is a ring homomorphism R ޚ=N ޚ. Then we combine smooth W ! 2 2 elements in R and in ޚ to obtain squares ˛1 a R and ˛2 a ޚ R, D 1 2 D 2 2 Â such that .˛1/ .˛2/. If .a1/ .a2/, then the gcd of N and a a2, D 6D ˙ 10 where a10 is a representative in ޚ for .a1/, is a non-trivial factor of N . When using the strategy to compute discrete logarithms in ކq, we choose either two number rings or two polynomial rings, call them R1 and R2, such that there are ring homomorphisms 1 R1 ކq and 2 R2 ކq.
    [Show full text]
  • The Tower Number Field Sieve
    The Tower Number Field Sieve Razvan Barbulescu1, Pierrick Gaudry2, and Thorsten Kleinjung3 1 CNRS and IMJ-PRG(UPMC/CNRS), France, 2 CNRS and Loria(Inria/Univ. Lorraine/CNRS), France 3 EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland [email protected], [email protected], thorsten.kleinjung@epfl.ch Abstract. The security of pairing-based crypto-systems relies on the difficulty to compute discrete logarithms in finite fields Fpn where n is a small integer larger than 1. The state-of-art algorithm is the number field sieve (NFS) together with its many variants. When p has a special form (SNFS), as in many pairings constructions, NFS has a faster vari- ant due to Joux and Pierrot. We present a new NFS variant for SNFS computations, which is better for some cryptographically relevant cases, according to a precise comparison of norm sizes. The new algorithm is an adaptation of Schirokauer’s variant of NFS based on tower extensions, for which we give a middlebrow presentation. Keywords: discrete logarithm, number field sieve, pairings. 1 Introduction The discrete logarithm problem (DLP) in finite fields is a central topic in public key cryptography. The case of Fpn where p is prime and n is a small integer greater than 1, albeit less studied than the prime case, is at the foundation of pairing-based cryptography. The number field sieve (NFS) started life as a factoring algorithm but was rapidly extended to compute discrete logarithms in Fp [33,19,20] and has today a large number of variants. In 2000 Schirokauer [34] proposed the tower number field sieve (TNFS), as the first variant of NFS to solve DLP in fields Fpn with n > 1.
    [Show full text]
  • 1 Introduction
    Algorithms for Finite Fields 1 Introduction This course will discuss efficient ways to do computations over finite fields. First, we will search for efficient ways to factor polynomials over finite fields. There is a probabilistic polynomial time algorithm for this, as we’ll see. Second, we’ll discuss computations involving discrete logarithms. That is, suppose h ∈< g >, find n such that h = gn. As of the first class day, there is no polynomial time algorithm for this problem. It is possible that there is no such algorithm. Third, we will look at primality testing for integers. There is a deterministic polynomial time algorithm for this problem, and it is essentially a finite field algorithm. It starts with a ring depending of the number to be tested, which is a field if and only if the number is prime. For every prime number p and positive integer n, there exists a field n with p elements, and any two such fields are isomorphic. Fpn denotes n “the” finite field with p elements. When n = 1, we have Fp = Z/pZ. One pn way of describing Fpn is as the splitting field of x − x in the algebraic closure of Fp. This is unsatisfactory, however, since this does not show how to compute the algebraic closure. A better way is to choose an irreducible f(x) ∈ Fp[x] of degree n and think of Fpn as Fp[x]/(f(x)). This is better n−1 since we may describe each element in this field as a0 + a1x + ... + an−1x for ai ∈ Fp.
    [Show full text]
  • Relation Collection for the Function Field Sieve
    Relation collection for the Function Field Sieve Jer´ emie´ Detrey, Pierrick Gaudry and Marion Videau CARAMEL project-team, LORIA, INRIA / CNRS / Universite´ de Lorraine, Vandœuvre-les-Nancy,` France Email: fJeremie.Detrey, Pierrick.Gaudry, [email protected] Abstract—In this paper, we focus on the relation collection of algorithms. The purpose of this paper is to present a new step of the Function Field Sieve (FFS), which is to date the best implementation of this important step for FFS, targeting algorithm known for computing discrete logarithms in small- in our case finite fields of small characteristic with no characteristic finite fields of cryptographic sizes. Denoting such special Galois structure. We choose two benchmarks in the a finite field by Fpn , where p is much smaller than n, the main idea behind this step is to find polynomials of the form cases of characteristic 2 and 3, that are the most interesting a(t) − b(t)x in Fp[t][x] which, when considered as principal for cryptographic applications. The extension degrees were ideals in carefully selected function fields, can be factored into chosen so as to match the “kilobit milestone”: we consider products of low-degree prime ideals. Such polynomials are 1039 1039 and 647 . Note that the factorization of 2 − 1 called “relations”, and current record-sized discrete-logarithm F2 F3 computations need billions of those. has been completed only recently [12]. This is relevant Collecting relations is therefore a crucial and extremely to our benchmark as, among others, an 80-digit (265-bit) expensive step in FFS, and a practical implementation thereof prime factor was exhibited: had 21039 − 1 been a product of requires heavy use of cache-aware sieving algorithms, along only moderately large primes, there would have been better with efficient polynomial arithmetic over Fp[t].
    [Show full text]
  • Mathematical Monographs
    Translations of MATHEMATICAL ONOGRAPHS M Volume 232 ÕLiÀ/ iÀiÌVÊ Algorithms in Cryptography "°Ê °Ê6>Ãi American Mathematical Society Number-Theoretic Algorithms in Cryptography 10.1090/mmono/232 Translations of MATHEMATICAL MONOGRAPHS Volume 232 Number-Theoretic Algorithms in Cryptography O. N. Vasilenko Translated by Alex Martsinkovsky M THE ATI A CA M L ΤΡΗΤΟΣ ΜΗ N Ε S Ε A Ι O Σ Μ C C I Ι Ω I Τ Ε American Mathematical Society R E Γ Ω E T Α Y M A Providence, Rhode Island F O 8 U 88 NDED 1 EDITORIAL COMMITTEE AMS Subcommittee Robert D. MacPherson Grigorii A. Margulis James D. Stasheff (Chair) ASL Subcommittee Steffen Lempp (Chair) IMS Subcommittee Mark I. Freidlin (Chair) O. N. Vasilenko TEORETIKO-QISLOVYE ALGORITMY V KRIPTOGRAFII MCNMO, Moskva, 2003 This work was originally published in Russian by MCNMO under the title “Teoretiko-qislovye algoritmy v kriptografii”c 2003. The present translation was created under license for the American Mathematical Society and is published by permission. Translated from the Russian by Alex Martsinkovsky 2000 Mathematics Subject Classification. Primary 11T71; Secondary 94A60. For additional information and updates on this book, visit www.ams.org/bookpages/mmono-232 Library of Congress Cataloging-in-Publication Data Vasilenko, O. N. (Oleg Nikolaevich) [Teoretiko-chislovye algoritmy v kriptografii. English] Number-theoretic algorithms in cryptography / O. N. Vasilenko ; translated by Alex Martsinkovsky. p. cm. — (Translations of mathematical monographs ; v. 232) Includes bibliographical references and index. ISBN-13: 978-0-8218-4090-0 (alk. paper) ISBN-10: 0-8218-4090-8 (alk. paper) 1. Number theory. 2.
    [Show full text]
  • Function Field Sieve
    Function Field Sieve Recent advances in the index-calculus attack on the discrete logarithm problem A Thesis submitted to Indian Institute of Science Education and Research Pune in partial fulfillment of the requirements for the BS-MS Dual Degree Programme by K Hariram Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan, Pune 411008, INDIA. March, 2015 Supervisor: Dr. Ayan Mahalanobis c K Hariram 2015 All rights reserved This is to certify that this dissertation entitled Function Field Sieve: Recent advances in the index-calculus attack on the discrete logarithm problem submitted towards the partial fulfilment of the BS-MS dual degree programme at the Indian Institute of Science Education and Research Pune represents research carried out by K Hariram at IISER Pune under the supervision of Dr. Ayan Mahalanobis, Assisstant Professor, Department of Mathematics during the academic year 2014-2015. Dr. Ayan Mahalanobis Committee: Dr. Ayan Mahalanobis Dr. Bhaskar Balasubramanyam Dedicated to my mother Declaration I hereby declare that the matter embodied in the report entitled Function Field Sieve: Recent advances in the index-calculus attack on the discrete logarithm problem are the results of the investigations carried out by me at the Department of Mathematics, IISER Pune under the supervision of Dr. Ayan Mahalanobis and the same has not been submitted elsewhere for any other degree. K Hariram Acknowledgments I would like to thank my supervisor supervisor. He has guided me throughout the project and helped me with my shortcomings. He also organised talk sessions among students in his group to discuss work done by each member.
    [Show full text]