The Number Field Sieve for Discrete Logarithms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fast Tabulation of Challenge Pseudoprimes Andrew Shallue and Jonathan Webster
THE OPEN BOOK SERIES 2 ANTS XIII Proceedings of the Thirteenth Algorithmic Number Theory Symposium Fast tabulation of challenge pseudoprimes Andrew Shallue and Jonathan Webster msp THE OPEN BOOK SERIES 2 (2019) Thirteenth Algorithmic Number Theory Symposium msp dx.doi.org/10.2140/obs.2019.2.411 Fast tabulation of challenge pseudoprimes Andrew Shallue and Jonathan Webster We provide a new algorithm for tabulating composite numbers which are pseudoprimes to both a Fermat test and a Lucas test. Our algorithm is optimized for parameter choices that minimize the occurrence of pseudoprimes, and for pseudoprimes with a fixed number of prime factors. Using this, we have confirmed that there are no PSW-challenge pseudoprimes with two or three prime factors up to 280. In the case where one is tabulating challenge pseudoprimes with a fixed number of prime factors, we prove our algorithm gives an unconditional asymptotic improvement over previous methods. 1. Introduction Pomerance, Selfridge, and Wagstaff famously offered $620 for a composite n that satisfies (1) 2n 1 1 .mod n/ so n is a base-2 Fermat pseudoprime, Á (2) .5 n/ 1 so n is not a square modulo 5, and j D (3) Fn 1 0 .mod n/ so n is a Fibonacci pseudoprime, C Á or to prove that no such n exists. We call composites that satisfy these conditions PSW-challenge pseudo- primes. In[PSW80] they credit R. Baillie with the discovery that combining a Fermat test with a Lucas test (with a certain specific parameter choice) makes for an especially effective primality test[BW80]. -
Sieve Algorithms for the Discrete Logarithm in Medium Characteristic Finite Fields Laurent Grémy
Sieve algorithms for the discrete logarithm in medium characteristic finite fields Laurent Grémy To cite this version: Laurent Grémy. Sieve algorithms for the discrete logarithm in medium characteristic finite fields. Cryptography and Security [cs.CR]. Université de Lorraine, 2017. English. NNT : 2017LORR0141. tel-01647623 HAL Id: tel-01647623 https://tel.archives-ouvertes.fr/tel-01647623 Submitted on 24 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php -
11.6 Discrete Logarithms Over Finite Fields
Algorithms 61 11.6 Discrete logarithms over finite fields Andrew Odlyzko, University of Minnesota Surveys and detailed expositions with proofs can be found in [7, 25, 26, 28, 33, 34, 47]. 11.6.1 Basic definitions 11.6.1 Remark Discrete exponentiation in a finite field is a direct analog of ordinary exponentiation. The exponent can only be an integer, say n, but for w in a field F , wn is defined except when w = 0 and n ≤ 0, and satisfies the usual properties, in particular wm+n = wmwn and (for u and v in F )(uv)m = umvm. The discrete logarithm is the inverse function, in analogy with the ordinary logarithm for real numbers. If F is a finite field, then it has at least one primitive element g; i.e., all nonzero elements of F are expressible as powers of g, see Chapter ??. 11.6.2 Definition Given a finite field F , a primitive element g of F , and a nonzero element w of F , the discrete logarithm of w to base g, written as logg(w), is the least non-negative integer n such that w = gn. 11.6.3 Remark The value logg(w) is unique modulo q − 1, and 0 ≤ logg(w) ≤ q − 2. It is often convenient to allow it to be represented by any integer n such that w = gn. 11.6.4 Remark The discrete logarithm of w to base g is often called the index of w with respect to the base g. More generally, we can define discrete logarithms in groups. -
The Factoring Dead: Preparing for the Cryptopocalypse
THE FACTORING DEAD: PREPARING FOR THE CRYPTOPOCALYPSE Javed Samuel — javed[at]isecpartners[dot]com iSEC Partners, Inc 123 Mission Street, Suite 1020 San Francisco, CA 94105 https://www.isecpartners.com March 20, 2014 Abstract This paper will explain the latest breakthroughs in the academic cryptography community and look ahead at what practical issues could arise for popular cryptosystems. Specifically, we will focus on the recent major devel- opments in discrete mathematics and their potential ability to undermine our trust in the most basic asymmetric primitives, including RSA. We will explain the basic theories behind RSA and the state-of-the-art in large number- ing factoring, and how several recent papers may point the way to massive improvements in this area. The paper will then switch to the practical aspects of the doomsday scenario, and will answer the question “What happens the day after RSA is broken?” We will point out the many obvious and hidden uses of RSA and related algorithms and outline how software engineers and security teams can operate in a post-RSA world. We will also discuss the results of our survey of popular products and software, and point out the ways in which individuals can prepare for the “zombie cryptopocalypse”. 1 INTRODUCTION Over the past few years, there have been numerous attacks on the current SSL infrastructure. These have ranged from BEAST [97], CRIME [88], Lucky 13 [2][86], RC4 bias attacks [1][91] and BREACH [42]. These attacks all show the fragility of the current SSL architecture as vulnerabilities have been found in a variety of features ranging from compression, timing and padding [90]. -
USING NUMBER FIELDS to COMPUTE LOGARITHMS in FINITE FIELDS 1. Introduction Let Q = Pn, Where P Is a Prime Number and N a Positiv
MATHEMATICS OF COMPUTATION Volume 69, Number 231, Pages 1267{1283 S 0025-5718(99)01137-0 Article electronically published on May 24, 1999 USING NUMBER FIELDS TO COMPUTE LOGARITHMS IN FINITE FIELDS OLIVER SCHIROKAUER Abstract. We describe an adaptation of the number field sieve to the problem of computing logarithms in a finite field. We conjecture that the running time of the algorithm, when restricted to finite fields of an arbitrary but fixed 1=3 degree, is Lq[1=3; (64=9) + o(1)]; where q is the cardinality of the field, s 1−s Lq [s; c]=exp(c(log q) (log log q) ); and the o(1) is for q !1.Thenumber field sieve factoring algorithm is conjectured to factor a number the size of q inthesameamountoftime. 1. Introduction n Let q = p ,wherep is a prime number and n a positive integer, and let Fq be the field of q elements. Let t and v be nonzero elements in Fq such that v is in the multiplicative subgroup generated by t,andletx be the smallest nonnegative integer such that tx = v. We call the exponent x the discrete logarithm of v with respect to the base t and write x =logt v. In this paper we present an algorithm to compute logt v. The most succesful methods to date to compute discrete logarithms in a finite field are all descendants of the index calculus method described by Kraitchik in the 1920's (see [14] and [15]) and rediscovered and modified by numerous mathe- maticians since then (see [25] and [31]). -
Use of SIMD-Based Data Parallelism to Speed up Sieving in Integer-Factoring Algorithms ?
Use of SIMD-Based Data Parallelism to Speed up Sieving in Integer-Factoring Algorithms ? Binanda Sengupta and Abhijit Das Department of Computer Science and Engineering Indian Institute of Technology Kharagpur, West Bengal, PIN: 721302, India binanda.sengupta,[email protected] Abstract. Many cryptographic protocols derive their security from the appar- ent computational intractability of the integer factorization problem. Currently, the best known integer-factoring algorithms run in subexponential time. Effi- cient parallel implementations of these algorithms constitute an important area of practical research. Most reported implementations use multi-core and/or dis- tributed parallelization. In this paper, we use SIMD-based parallelization to speed up the sieving stage of integer-factoring algorithms. We experiment on the two fastest variants of factoring algorithms: the number-field sieve method and the multiple-polynomial quadratic sieve method. Using Intel’s SSE2 and AVX in- trinsics, we have been able to speed up index calculations in each core during sieving. This performance enhancement is attributed to a reduction in the pack- ing and unpacking overheads associated with SIMD registers. We handle both line sieving and lattice sieving. We also propose improvements to make our im- plementations cache-friendly. We obtain speedup figures in the range 5–40%. To the best of our knowledge, no public discussions on SIMD parallelization in the context of integer-factoring algorithms are available in the literature. Keywords: Integer Factorization, Sieving, Multiple-Polynomial Quadratic Sieve Method, Number-Field Sieve Method, Single Instruction Multiple Data, Stream- ing SIMD Extensions, Advanced Vector Extensions 1 Introduction Let n be a large composite integer having the factorization k v vp1 vp2 pk vpi n = p1 p2 ··· pk = ∏ pi : i=1 The integer factorization problem deals with the determination of all the prime divisors p1; p2;:::; pk of n and their corresponding multiplicities vp1 ;vp2 ;:::;vpk . -
Factoring Integere with the Number Fleld Sieve Version 19920507
Factoring integere with the number fleld sieve version 19920507 Factoring integers with the number field sieve J.P. Buhler, H.W. Lenstra, Jr., and Carl Pomerance Abstract. In 1990, the ninth Fermat number was factored into primes by means of a new algorithm, the "number field sieve", which was invented by John Pollard. The present paper is devoted to the description and analysis of a more general version of the number field sieve. It should be possible to use this algorithm to factor arbitrary integers into prime factors, not just integers of a special form like the ninth Fermat number. Under reasonable heuristic assumptions, the analysis predicts that the time needed by the general number field sieve to factor n is exp((c+o(l))(logn)1/3(loglogn)2/3) (for n-*oo), where c=(64/9)l/3 = 1.9223. This is asymptotically faster than all other known factoring algorithms, such äs the quadratic sieve and the elliptic curve method. There does not yet exist an Implementation of the number field sieve for general integers, so that a practical comparison cannot yet be made. Key words: factoring integers, algebraic number fields. 1991 Mathematics subject classification: 11Y05, 11Y40. Acknowledgements. The authors wish to thank Dan Bernstein, Arjeh Cohen, Michael Filaseta, Andrew Gran- ville, Arjen Lenstra, Victor Miller, Robert Rumely, and Robert Silverman for their helpful suggestions. The authors were supported by NSF under Grants No. DMS 90-12989, No. DMS 90-02939, and No. DMS 90-02538, respectively. The second and third authors are grateful to the Institute for Advanced Study (Princeton), where pari of the work on which this paper is based was done. -
Selecting Polynomials for the Function Field Sieve
Selecting polynomials for the Function Field Sieve Razvan Barbulescu The Function Field Sieve (FFS) algorithm is dedicated to computing discrete logarithms in n a finite field Fqn , where q is a prime power, small compared to q . Introduced by Adleman in [Adl94] and inspired by the Number Field Sieve (NFS), the algorithm collects pairs of polynomials (a; b) 2 Fq[t] such that the norms of a − bx in two function fields are both smooth (the sieving stage), i.e having only irreducible divisors of small degree. It then solves a sparse linear system (the linear algebra stage), whose solutions, called virtual logarithms, allow to compute the discrete algorithm of any element during a final stage (individual logarithm stage). The choice of the defining polynomials f and g for the two function fields can be seen as a preliminary stage of the algorithm. It takes a small amount of time but it can greatly influence the sieving stage by slightly changing the probabilities of smoothness. In order to solve the discrete logarithm in Fqn , the main required property of f; g 2 Fq[t][x] is that their resultant Resx(f; g) has an irreducible factor '(t) of degree n. Various methods have been proposed to build such polynomials, but the best results in practice correspond to the method of Joux and Lercier [JL02]. Its particularity is that one of the two polynomials, say g, is linear. Moreover, for any polynomial f in Fq[t][x] and any input Fqn , one can associate a linear polynomial g satisfying the requirements of the FFS. -
The Impact of the Number Field Sieve on the Discrete Logarithm Problem In
Algorithmic Number Theory MSRI Publications Volume 44, 2008 The impact of the number field sieve on the discrete logarithm problem in finite fields OLIVER SCHIROKAUER 1. Introduction n Let p be a prime number and n a positive integer, and let q p . Let ކq D be the field of q elements and denote by ކq the multiplicative subgroup of ކq. Assume t and u are elements in ކq with the property that u is in the subgroup generated by t. The discrete logarithm of u with respect to the base t, written log u, is the least non-negative integer x such that t x u. t D In this paper we describe two methods to compute discrete logarithms, both of which derive from the number field sieve (NFS) factoring algorithm described in [Stevenhagen 2008] and [Lenstra and Lenstra 1993]. When factoring an integer N with the NFS, we first choose a number ring R as in [Stevenhagen 2008] for which there is a ring homomorphism R ޚ=N ޚ. Then we combine smooth W ! 2 2 elements in R and in ޚ to obtain squares ˛1 a R and ˛2 a ޚ R, D 1 2 D 2 2 Â such that .˛1/ .˛2/. If .a1/ .a2/, then the gcd of N and a a2, D 6D ˙ 10 where a10 is a representative in ޚ for .a1/, is a non-trivial factor of N . When using the strategy to compute discrete logarithms in ކq, we choose either two number rings or two polynomial rings, call them R1 and R2, such that there are ring homomorphisms 1 R1 ކq and 2 R2 ކq. -
Average Case Error Estimates of the Strong Lucas Probable Prime Test
Average Case Error Estimates of the Strong Lucas Probable Prime Test Master Thesis Semira Einsele Monday 27th July, 2020 Advisors: Prof. Dr. Kenneth Paterson Prof. Dr. Ozlem¨ Imamoglu Department of Mathematics, ETH Z¨urich Abstract Generating and testing large prime numbers is crucial in many public- key cryptography algorithms. A common choice of a probabilistic pri- mality test is the strong Lucas probable prime test which is based on the Lucas sequences. Throughout this work, we estimate bounds for average error behaviour of this test. To do so, let us consider a procedure that draws k-bit odd integers in- dependently from the uniform distribution, subjects each number to t independent iterations of the strong Lucas probable prime test with randomly chosen bases, and outputs the first number that passes all t tests. Let qk,t denote the probability that this procedurep returns a com- 2 2.3− k posite number. We show that qk,1 < log(k)k 4 for k ≥ 2. We see that slightly modifying the procedure, using trial division by the first l odd primes, gives remarkable improvements in this error analysis. Let qk,l,t denote the probability that the now modified procedurep returns a 2 1.87727− k composite number. We show that qk,128,1 < k 4 for k ≥ 2. We also give general bounds for both qk,t and qk,l,t when t ≥ 2, k ≥ 21 and l 2 N. In addition, we treat the numbers, that add the most to our probability estimate differently in the analysis, and give improved bounds for large t. -
The Tower Number Field Sieve
The Tower Number Field Sieve Razvan Barbulescu1, Pierrick Gaudry2, and Thorsten Kleinjung3 1 CNRS and IMJ-PRG(UPMC/CNRS), France, 2 CNRS and Loria(Inria/Univ. Lorraine/CNRS), France 3 EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland [email protected], [email protected], thorsten.kleinjung@epfl.ch Abstract. The security of pairing-based crypto-systems relies on the difficulty to compute discrete logarithms in finite fields Fpn where n is a small integer larger than 1. The state-of-art algorithm is the number field sieve (NFS) together with its many variants. When p has a special form (SNFS), as in many pairings constructions, NFS has a faster vari- ant due to Joux and Pierrot. We present a new NFS variant for SNFS computations, which is better for some cryptographically relevant cases, according to a precise comparison of norm sizes. The new algorithm is an adaptation of Schirokauer’s variant of NFS based on tower extensions, for which we give a middlebrow presentation. Keywords: discrete logarithm, number field sieve, pairings. 1 Introduction The discrete logarithm problem (DLP) in finite fields is a central topic in public key cryptography. The case of Fpn where p is prime and n is a small integer greater than 1, albeit less studied than the prime case, is at the foundation of pairing-based cryptography. The number field sieve (NFS) started life as a factoring algorithm but was rapidly extended to compute discrete logarithms in Fp [33,19,20] and has today a large number of variants. In 2000 Schirokauer [34] proposed the tower number field sieve (TNFS), as the first variant of NFS to solve DLP in fields Fpn with n > 1. -
On Factoring Integers and Evaluating Discrete Logarithms
On Factoring Integers and Evaluating Discrete Logarithms A thesis presented by JOHN AARON GREGG to the departments of Mathematics and Computer Science in partial fulfillment of the honors requirements for the degree of Bachelor of Arts Harvard College Cambridge, Massachusetts May 10, 2003 ABSTRACT We present a survey of the state of two problems in mathematics and computer science: factoring integers and solving discrete logarithms. Included are applications in cryptography, a discussion of algorithms which solve the problems and the connections between these algo- rithms, and an analysis of the theoretical relationship between these problems and their cousins among hard problems of number theory, including a new randomized reduction from factoring to composite discrete log. In conclusion we consider several alternative models of complexity and investigate the problems and their relationship in those models. ACKNOWLEDGEMENTS Many thanks to William Stein and Salil Vadhan for their valuable comments, and Kathy Paur for kindly reviewing a last-minute draft. ii Contents 1 Introduction 1 1.1 Notation . 2 1.2 Computational Complexity Theory . 2 1.3 Modes of Complexity and Reductions . 6 1.4 Elliptic Curves . 8 2 Applications: Cryptography 10 2.1 Cryptographic Protocols . 10 2.1.1 RSA encryption . 12 2.1.2 Rabin (x2 mod N) Encryption . 13 2.1.3 Diffie-Hellman Key Exchange . 16 2.1.4 Generalized Diffie-Hellman . 17 2.1.5 ElGamal Encryption . 17 2.1.6 Elliptic Curve Cryptography . 18 2.2 Cryptographic Primitives . 19 3 The Relationship Between the Problems I – Algorithms 20 3.1 Background Mathematics . 20 3.1.1 Smoothness .