Hydrogen Fuel Cell Vehicle and a Stand- Alone Renewable Energy-Based Refuelling Station
Total Page:16
File Type:pdf, Size:1020Kb
HYDROGEN FUEL CELL VEHICLE AND A STAND- ALONE RENEWABLE ENERGY-BASED REFUELLING STATION Master’s Thesis University of Jyväskylä Department of Biological and Environmental Science Master’s Degree Programme in Renewable Energy Atte Pakkanen 20th August, 2007 2 JYVÄSKYLÄ UNIVERSITY - Faculty of Mathematics and Science - Department of Biological and Environmental Science - Master’s Degree Programme in Renewable Energy Pakkanen Atte: Hydrogen fuel cell vehicle and a stand-alone renewable energy-based refuelling station Master´s Thesis: 107 p., 2 appendixes (2 p.) Supervisors: Dr. Mohanlal Kolhe and D.Sc. (Tech.) Margareta Wihersaari Inspectors: Dr. Mohanlal Kolhe and Dr. Jussi Maunuksela August 2007 Key words: hydrogen, fuel cell, hydrogen vehicle, hydrogen storage, metal hydride storage, electrolysis, renewable energy, alternative transportation fuels ABSTRACT Energy use for transportation purposes and the number of passenger vehicles is increasing rapidly around the world. Fuelling infrastructure based on hydrogen provides an attractive alternative to predominating fossil fuels. This thesis project includes research on hydrogen fuel cell vehicle and its local refuelling station based on hydrogen production from renewable energy sources. Hydrogen produced via electrolysis is stored in portable metal hydride containers to be used in a fuel cell hybrid vehicle. The test vehicle is equipped with a battery unit and two 6 kW electric motors. The targets of this thesis project were to test and estimate the driving range of the vehicle, to examine the behaviour of the metal hydride containers under changing temperatures and determine the rate of hydrogen production via electrolysis. Also hydrogen leak tests to assure safe testing procedures in the future were included to these initial tests. The driving range tests resulted 7.6 km with full batteries only. According to the calculations, this range limit can be doubled with one full metal hydride container and a polymer electrolyte fuel cell used in this study. The metal hydride tests resulted that temperatures under 10 °C around the H2 container create a risk of PEM fuel cell malfunction. The hydrogen production rate under normal conditions was measured 530 cm3 / min with a nominal pressure of 6.7 bars. Leak tests proved that safe operation of the system is possible, but requires a careful system built-up. The equations produced by these leak tests can be used to estimate the fuel losses due to leakage in the future experiments. 3 JYVÄSKYLÄN YLIOPISTO - matemaattis-luonnontieteellinen tiedekunta bio- ja ympäristötieteiden laitos - uusiutuvan energian maisteriohjelma Pakkanen Atte: Vetyauto ja uusiutuvaan energiaan perustuva tankkausasema Pro gradu –tutkielma: 107 s., 2 liitettä (2 s.) Työn ohjaajat: professori Mohanlal Kolhe ja TkT Margareta Wihersaari Tarkastajat: professori Mohanlal Kolhe ja FT Jussi Maunuksela Elokuu 2007 Hakusanat: vety, polttokennot, vetyauto, vedyn varastointi, metallihydridivarasto, elektrolyysi, uusiutuva energia, vaihtoehtoiset liikennepolttoaineet TIIVISTELMÄ Liikenteen energian kulutus ja maailman autokanta kasvavat nopeasti. Vetyyn perustuva liikenneinfrastruktuuri tarjoaa houkuttelevan vaihtoehdon nykyiselle fossiilisiin polttoaineisiin perustuvalle tekniikalle. Tämä pro gradu -työ liittyy koemittakaavan laitteistokokonaisuuteen, jossa vetyä tuotetaan elektrolyysillä hyödyntäen uusiutuvaa energiaa. Tuotettu vety varastoidaan metallihydridisäiliöihin ja käytetään edelleen polttokennoauton polttoaineena. Tämä koekäyttöön rekisteröity ajoneuvo on varustettu kahdella 6 kW sähkömoottorilla, ja sillä voidaan ajaa myös ilman polttokennoa käyttäen pelkkiä akkuja energiavarastona. Tässä työssä oli tarkoitus tutkia tämän kevytajoneuvon pisintä mahdollista ajomatkaa, vetysäiliöiden käyttäytymistä eri lämpötiloissa sekä vedyn tuotantonopeutta elektrolyysillä. Tähän työhön sisältyi myös vuototestejä, joista saatua tietoa voidaan tulevaisuudessa hyödyntää auton tehokkuuteen ja turvalliseen käyttöön liittyvissä tutkimuksissa. Ajoneuvon ajomatkaksi täysillä akuilla ilman polttokennoja ja vetyä saatiin 7,6 km. Laskennallisesti tämä matka voidaan kaksinkertaistaa yhdellä täydellä vetysäiliöllä ja laitteistoon kuuluvalla 500 W PEM polttokennolla. Vetysäiliöillä tehdyissä testeissä paljastui, että jo alle 10 °C lämpötila voi aiheuttaa toimintahäiriöitä PEM polttokennon toiminnassa johtuen vetysäiliön paineen alenemisesta alhaisissa lämpötiloissa. Elektrolyysillä tuotetun vedyn valmistusnopeudeksi saatiin käytössä olleella laitteistolla 530 cm3 / min, joka mitattiin 6,7 baarin paineessa. Vuototestit osoittivat, että turvallisen vetylinjan rakentaminen on mahdollista, mutta vaatii huolellisuutta. Tutkimuksessa määritettyjä yhtälöitä voidaan käyttää tulevaisuudessa vuotohäviöiden arvioimiseen vedyn kulutusta seurattaessa. 4 CONTENTS 1 INTRODUCTION – ARRIVAL OF THE HYDROGEN AGE?.............................................................................. 7 2 ENERGY USE AND TRANSPORTATION ................................................................................................. 9 2.1 THE CHALLENGE OF THE ENERGY NEED ............................................................................................... 9 2.2 TRANSPORTATION AND GHG EMISSIONS........................................................................................... 10 2.3 THE SEARCH FOR AN ALTERNATIVE FUEL .......................................................................................... 12 2.3.1 Historical view on fuel changes ............................................................................................... 12 2.3.2 Improvements of internal combustion engine.......................................................................... 12 2.3.3 Competitors to the present ICE technology ............................................................................. 13 2.4 HYDROGEN ECONOMY........................................................................................................................ 14 3 HYDROGEN AS A FUEL............................................................................................................................. 16 3.1 PROPERTIES OF HYDROGEN ................................................................................................................ 16 3.1.1 The brief history of hydrogen ................................................................................................... 16 3.1.2 Hydrogen as an element ........................................................................................................... 16 3.1.3 Energy content and benefits of H2............................................................................................ 17 3.1.4 Combustion characteristics of H2 and safety issues ................................................................ 20 3.2 ELECTROLYSIS AS HYDROGEN PRODUCTION METHOD ....................................................................... 21 3.2.1 Hydrogen production at present .............................................................................................. 21 3.2.2 Principles and the efficiency of electrolysis.............................................................................22 3.2.3 PEM electrolysers..................................................................................................................... 23 4 HYDROGEN IN TRANSPORT APPLICATIONS.................................................................................... 26 4.1 METAL HYDRIDE STORAGE OF HYDROGEN......................................................................................... 26 4.1.1 Different hydrogen storage technologies................................................................................. 26 4.1.2 Requirements for an on-board fuel storage system ................................................................. 26 4.1.3 Metal hydride mechanisms and materials ............................................................................... 27 4.1.4 The storing capacity and durability of a metal hydride storage ............................................. 29 4.1.5 Metal hydrides compared with other storage options ............................................................. 30 4.2 FUEL CELLS ........................................................................................................................................ 31 4.2.1 Fuel cell performance............................................................................................................... 32 4.2.2 Advantages and disadvantages of a fuel cell ........................................................................... 33 4.2.3 Efficiency of a FC system ......................................................................................................... 34 4.2.4 PEM fuel cells........................................................................................................................... 35 4.2.5 Alkaline fuel cells...................................................................................................................... 37 4.3 HYDROGEN VEHICLES ........................................................................................................................ 38 4.3.1 Hydrogen vehicles in history.................................................................................................... 38 4.3.2 Fuel cell vehicle (FCV) ............................................................................................................ 40 4.3.3 Fuel