Lunar Module Pilot
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
Evolution of the Rendezvous-Maneuver Plan for Lunar-Landing Missions
NASA TECHNICAL NOTE NASA TN D-7388 00 00 APOLLO EXPERIENCE REPORT - EVOLUTION OF THE RENDEZVOUS-MANEUVER PLAN FOR LUNAR-LANDING MISSIONS by Jumes D. Alexunder und Robert We Becker Lyndon B, Johnson Spuce Center ffoaston, Texus 77058 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. AUGUST 1973 1. Report No. 2. Government Accession No, 3. Recipient's Catalog No. NASA TN D-7388 4. Title and Subtitle 5. Report Date APOLLOEXPERIENCEREPORT August 1973 EVOLUTIONOFTHERENDEZVOUS-MANEUVERPLAN 6. Performing Organizatlon Code FOR THE LUNAR-LANDING MISSIONS 7. Author(s) 8. Performing Organization Report No. James D. Alexander and Robert W. Becker, JSC JSC S-334 10. Work Unit No. 9. Performing Organization Name and Address I - 924-22-20- 00- 72 Lyndon B. Johnson Space Center 11. Contract or Grant No. Houston, Texas 77058 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Note I National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D. C. 20546 I 15. Supplementary Notes The JSC Director waived the use of the International System of Units (SI) for this Apollo Experience I Report because, in his judgment, the use of SI units would impair the usefulness of the report or I I result in excessive cost. 16. Abstract The evolution of the nominal rendezvous-maneuver plan for the lunar landing missions is presented along with a summary of the significant developments for the lunar module abort and rescue plan. A general discussion of the rendezvous dispersion analysis that was conducted in support of both the nominal and contingency rendezvous planning is included. -
The Following Are Edited Excerpts from Two Interviews Conducted with Dr
Interviews with Dr. Wernher von Braun Editor's note: The following are edited excerpts from two interviews conducted with Dr. Wernher von Braun. Interview #1 was conducted on August 25, 1970, by Robert Sherrod while Dr. von Braun was deputy associate administrator for planning at NASA Headquarters. Interview #2 was conducted on November 17, 1971, by Roger Bilstein and John Beltz. These interviews are among those published in Before This Decade is Out: Personal Reflections on the Apollo Program, (SP-4223, 1999) edited by Glen E. Swanson, whick is vailable on-line at http://history.nasa.gov/SP-4223/sp4223.htm on the Web. Interview #1 In the Apollo Spacecraft Chronology, you are quoted as saying "It is true that for a long time we were not in favor of lunar orbit rendezvous. We favored Earth orbit rendezvous." Well, actually even that is not quite correct, because at the outset we just didn't know which route [for Apollo to travel to the Moon] was the most promising. We made an agreement with Houston that we at Marshall would concentrate on the study of Earth orbit rendezvous, but that did not mean we wanted to sell it as our preferred scheme. We weren't ready to vote for it yet; our study was meant to merely identify the problems involved. The agreement also said that Houston would concentrate on studying the lunar rendezvous mode. Only after both groups had done their homework would we compare notes. This agreement was based on common sense. You don't start selling your scheme until you are convinced that it is superior. -
Jacques Tiziou Space Collection
Jacques Tiziou Space Collection Isaac Middleton and Melissa A. N. Keiser 2019 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 2 Names and Subjects ...................................................................................................... 2 Container Listing ............................................................................................................. 4 Series : Files, (bulk 1960-2011)............................................................................... 4 Series : Photography, (bulk 1960-2011)................................................................. 25 Jacques Tiziou Space Collection NASM.2018.0078 Collection Overview Repository: National Air and Space Museum Archives Title: Jacques Tiziou Space Collection Identifier: NASM.2018.0078 Date: (bulk 1960s through -
America's Greatest Projects and Their Engineers - VII
America's Greatest Projects and Their Engineers - VII Course No: B05-005 Credit: 5 PDH Dominic Perrotta, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 076 77 P: (877) 322-5800 [email protected] America’s Greatest Projects & Their Engineers-Vol. VII The Apollo Project-Part 1 Preparing for Space Travel to the Moon Table of Contents I. Tragedy and Death Before the First Apollo Flight A. The Three Lives that Were Lost B. Investigation, Findings & Recommendations II. Beginning of the Man on the Moon Concept A. Plans to Land on the Moon B. Design Considerations and Decisions 1. Rockets – Launch Vehicles 2. Command/Service Module 3. Lunar Module III. NASA’s Objectives A. Unmanned Missions B. Manned Missions IV. Early Missions V. Apollo 7 Ready – First Manned Apollo Mission VI. Apollo 8 - Orbiting the Moon 1 I. Tragedy and Death Before the First Apollo Flight Everything seemed to be going well for the Apollo Project, the third in a series of space projects by the United States intended to place an American astronaut on the Moon before the end of the 1960’s decade. Apollo 1, known at that time as AS (Apollo Saturn)-204 would be the first manned spaceflight of the Apollo program, and would launch a few months after the flight of Gemini 12, which had occurred on 11 November 1966. Although Gemini 12 was a short duration flight, Pilot Buzz Aldrin had performed three extensive EVA’s (Extra Vehicular Activities), proving that Astronauts could work for long periods of time outside the spacecraft. -
GEMINI MANNED FLIGHT PROGRAM to DATE by LT
GEMINI MANNED FLIGHT PROGRAM TO DATE bY LT. COL. JAMES A. McDIVITT, USAF (M) Astronaut - NASA/MSC NEIL A. ARMSTRONG Astronaut - NASA/MSC SHEPARD: We'd like to talk during this part of the presentation aboui the Gemini program and tu give you a current status report on the last three flights which we have completed this year. A few days ago, a Marine colleague of mine and I were having a discussion in the control center at Houston. This Marine colleague is now a soft drink salesman but he happened to be there for the occasion of the receni eight-day mission which we completed. We were discussing a flight which occurred in May of 1961. The flight plan indicated so many seconds of control and rate command, SO many seconds of control in manual, so many seconds to look out the window, so many seconds for this, so many seconds for that, a completely chalked full flight plan. In the meantime on the control center floor discussion was going on between the ground and the pilots and they were saying "well if we don't get this thing done Tuesday we can do it Thursday." We have two gentlemen here to present the last part of this session for you. I could spend a great deal of time introducing both of them. They both have wide experience, varied backgrounds, with emphasis of course in the aero- space and aeronautical professions. They both I think are fairly well known to you so I won't take too much time in enumerating the many accomplishments which they have achieved to date. -
Ground Processing and Launch Facilities
Ground Processing and Launch Facilities • Historical examples – Early Launch Facilities – Saturn I – Saturn V – Russian • Modern examples – Shuttle – Delta IV Heavy – DC-XA U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND ENAE 791 - Launch and Entry Vehicle Design1 Cape Canaveral circa 1950 U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND ENAE 791 - Launch and Entry Vehicle Design2 Map of Cape Canaveral U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND ENAE 791 - Launch and Entry Vehicle Design3 “ICBM Row” U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND ENAE 791 - Launch and Entry Vehicle Design4 LC-5 – Mercury-Redstone U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND 5 ENAE 791 - Launch and Entry Vehicle Design LC-5 Emergency Crew Escape System U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND 6 ENAE 791 - Launch and Entry Vehicle Design Atlas Support Gantry U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND 7 ENAE 791 - Launch and Entry Vehicle Design LC-14 – Mercury-Atlas U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND 8 ENAE 791 - Launch and Entry Vehicle Design Titan II Access Tower Operation U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND 9 ENAE 791 - Launch and Entry Vehicle Design LC-34 Schematic U N I V E R S I T Y O F Ground Processing and Launch Facilities MARYLAND ENAE 791 - Launch and Entry Vehicle Design10 Saturn -
The Apollo Lunar Orbit Rendezvous Architecture Decision Revisited
Student Session II Paper No. GT-SSEC.E.2 The Apollo Lunar Orbit Rendezvous Architecture Decision Revisited David M. Reeves1 Georgia Institute of Technology National Institute of Aerospace, Hampton, VA, 23666 Michael D. Scher2 University of Maryland National Institute of Aerospace, Hampton, VA, 23666 Dr. Alan W. Wilhite3 Georgia Institute of Technology National Institute of Aerospace, Hampton, VA, 23666 Dr. Douglas O. Stanley4 Georgia Institute of Technology National Institute of Aerospace, Hampton, VA, ABSTRACT The 1962 Apollo architecture mode decision process was revisited with modern analysis and systems engineer tools to determine driving selection criteria and technology/operational mode design decisions that may be used for NASA’s current Space Exploration program. Results of the study agreed with the Apollo selection of the Lunar Orbit Rendezvous mode based on the technology maturity and politics in 1962. Using today’s greater emphasis on human safety and improvements in technology and design maturity, a slight edge may be given to the direct lunar mode over lunar orbit rendezvous. Also, the NOVA direct mode and Earth orbit rendezvous mode are not competitive based any selection criteria. Finally, reliability and development, operations, and production costs are major drivers in today’s decision process. 1Graduate Research Assistant, Georgia Institute of Technology, 100 Exploration Way, AIAA Student Member. 2 Graduate Research Assistant, University of Maryland, 100 Exploration Way, AIAA Student Member. 3 Langley Professor, Georgia Institute of Technology, 100 Exploration Way, AIAA Associate Fellow. 4 Langley Professor, Georgia Institute of Technology, 100 Exploration Way, AIAA Member. Page 1 of 12 Pages Student Session II Paper No. -
Can the Saturn V Be Flown on a Cluster of Five F10 Motors?
In This Issue Flying the Apogee Saturn V Kit on High- Power Motors Also In This Issue Can the Saturn V Be Flown on a Cluster of Five F10 Motors? Cover Photo: The Apogee Saturn V kit fl own on a G80 Rocket Engine. Get your own kit at: http://www.apogeerockets.com/Saturn5.asp Apogee Components, Inc. — Your Source For Rocket Supplies That Will Take You To The “Peak-of-Flight” 3355 Fillmore Ridge Heights Colorado Springs, Colorado 80907-9024 USA www.ApogeeRockets.com e-mail: [email protected] ISSUE 284 APRIL 12, 2011 Flying The Apogee Saturn V Kit On High Power Motors. By Tim Doll At NARAM 52, Tim Van Milligan mentioned that he is the start as a ‘mid power’ rocket – intended to fly with a often questioned regarding flying the Apogee Saturn V with motor using less than 62.5 grams of propellant with a liftoff high power motors (basically, any motor H or larger). Hav- weight of less than 1500 grams (~3.3 lbs). While a con- ing flown my Apogee Saturn V numerous times ‘high power’ scious decision to keep from limiting the potential market to – literally to failure - I thought I’d relate my experiences, those with a high power certification, making a large Saturn along with the relative strengths and weaknesses of the V ‘mid power’ necessitated certain design compromises Apogee Saturn V when subjected to the extremes of high to keep the rocket weight within the mid power thrust and power flight. weight constraints. In essence, it constrained the motor mount to 29mm and limited the weight and hence strength The Apogee Saturn V was designed pretty much from of the rocket. -
N AS a Facts
National Aeronautics and Space Administration NASA’s Launch Services Program he Launch Services Program (LSP) manufacturing, launch operations and rockets for launching Earth-orbit and Twas established at Kennedy Space countdown management, and providing interplanetary missions. Center for NASA’s acquisition and added quality and mission assurance in In September 2010, NASA’s Launch program management of expendable lieu of the requirement for the launch Services (NLS) contract was extended launch vehicle (ELV) missions. A skillful service provider to obtain a commercial by the agency for 10 years, through NASA/contractor team is in place to launch license. 2020, with the award of four indefinite meet the mission of the Launch Ser- Primary launch sites are Cape Canav- delivery/indefinite quantity contracts. The vices Program, which exists to provide eral Air Force Station (CCAFS) in Florida, expendable launch vehicles that NASA leadership, expertise and cost-effective and Vandenberg Air Force Base (VAFB) has available for its science, Earth-orbit services in the commercial arena to in California. and interplanetary missions are United satisfy agencywide space transporta- Other launch locations are NASA’s Launch Alliance’s (ULA) Atlas V and tion requirements and maximize the Wallops Flight Facility in Virginia, the Delta II, Space X’s Falcon 1 and 9, opportunity for mission success. Kwajalein Atoll in the South Pacific’s Orbital Sciences Corp.’s Pegasus and facts The principal objectives of the LSP Republic of the Marshall Islands, and Taurus XL, and Lockheed Martin Space are to provide safe, reliable, cost-effec- Kodiak Island in Alaska. Systems Co.’s Athena I and II. -
Results of the Tenth Saturn I Launch Vehicle Test Flight SA-10, MPR-SAT-FE-66-11, July 14, 1966
HUNTSVILLE ALABAMA U N MPR-SAT-FE-66-i t J (Supersedes MPR-SAT-65-14) July 14, 1966 X69-75421 (ACCE$$}0_IN_) ./BER) " (THRU) _; <k/ ,ooo_, o (NASA'CR OR T__) (CATEGORYI _. AVAILABLE TO U.S. GOVERNMENT AGENCIES AND CONTRACTORS ONLY RESULTSOFTHETENTHSATURN, LAUNCHVEHICLE [u] .C,_BsTfIc_o _ c_a_ _£Sk "+ , / +. _ ,+1 -: • 1_ ,t:_ 'v- Sc_e_t;*; SATURN FLIGHT EVALUATION WORKING GROUP GROUP-4 _/ Down_r_W_L3y_rvats; Declasf_ars. %, L " \ ',., ". MSFC - Fo_m 774 (Rev Ma_ 1_66) C • _, SECURITY NOTE This document contains irrformation affecting the national defense of the United States within the meaning of the Espionage Law, Title 18, U.S.C. , Sec- tions 793 and 794 as amended. The revelation ol its contents in any manner to an unauthorized person is prohibited by law. MPR-SAT-FE-66-11 RESULTS OF TIIE TENTH SATURN I LAUNCII VEIIICLE TEST FLIGHT SA-IO By Saturn Flight Evaluation Working Group George C. Marshall Space Flight Center AI3STIIA CT This report presents the results of the early engi- neering evaluation of the SA-10 test flight. Sixth of the Block II series, SA-i0 was the fifth Saturn vehicle to car W an Apollo boilerplate (BP-9) payload and the third in a series to carry a Pegasus payload (Pegasus C). The performance of each major vehicle system is discussed with special emphasis on malfunctions and deviations. This test flightof SA-10 was the tenth consecutive success for the Saturn I vehicles and marks the end el the Saturn I program This was the third flight test of the Pegasus meteoroid technology satellite, the third flight test to utilize the iterative guidance mode, the fourth flight test utilizing the ST-f24 guidance system forboth stages, andthe fifth flight test to dem- onstrate the closed loop performance of the path guidance during S-IV burn. -
NASA Symbols and Flags in the US Manned Space Program
SEPTEMBER-DECEMBER 2007 #230 THE FLAG BULLETIN THE INTERNATIONAL JOURNAL OF VEXILLOLOGY www.flagresearchcenter.com 225 [email protected] THE FLAG BULLETIN THE INTERNATIONAL JOURNAL OF VEXILLOLOGY September-December 2007 No. 230 Volume XLVI, Nos. 5-6 FLAGS IN SPACE: NASA SYMBOLS AND FLAGS IN THE U.S. MANNED SPACE PROGRAM Anne M. Platoff 143-221 COVER PICTURES 222 INDEX 223-224 The Flag Bulletin is officially recognized by the International Federation of Vexillological Associations for the publication of scholarly articles relating to vexillology Art layout for this issue by Terri Malgieri Funding for addition of color pages and binding of this combined issue was provided by the University of California, Santa Barbara Library and by the University of California Research Grants for Librarians Program. The Flag Bulletin at the time of publication was behind schedule and therefore the references in the article to dates after December 2007 reflect events that occurred after that date but before the publication of this issue in 2010. © Copyright 2007 by the Flag Research Center; all rights reserved. Postmaster: Send address changes to THE FLAG BULLETIN, 3 Edgehill Rd., Winchester, Mass. 01890 U.S.A. THE FLAG BULLETIN (ISSN 0015-3370) is published bimonthly; the annual subscription rate is $68.00. Periodicals postage paid at Winchester. www.flagresearchcenter.com www.flagresearchcenter.com 141 [email protected] ANNE M. PLATOFF (Annie) is a librarian at the University of Cali- fornia, Santa Barbara Library. From 1989-1996 she was a contrac- tor employee at NASA’s Johnson Space Center. During this time she worked as an Information Specialist for the New Initiatives Of- fice and the Exploration Programs Office, and later as a Policy Ana- lyst for the Public Affairs Office.