Tight Lower Bounds for the Complexity of Multicoloring∗† Marthe Bonamy1, Łukasz Kowalik2, Michał Pilipczuk3, Arkadiusz Socała4, and Marcin Wrochna5 1 CNRS, LaBRI, Bordeaux, France
[email protected] 2 University of Warsaw, Warsaw, Poland
[email protected] 3 University of Warsaw, Warsaw, Poland
[email protected] 4 University of Warsaw, Warsaw, Poland
[email protected] 5 University of Warsaw, Warsaw, Poland
[email protected] Abstract In ¢the multicoloring problem, also known as (a:b)-coloring or b-fold coloring, we are given a graph G and a set of a colors, and the task is to assign a subset of b colors to each vertex of G so that adjacent vertices receive disjoint color subsets. This natural generalization of the classic coloring problem (the b = 1 case) is equivalent to finding a homomorphism to the Kneser graph KGa,b, and gives relaxations approaching the fractional chromatic number. We study the complexity of determining whether a graph has an (a:b)-coloring. Our main result is that this problem does not admit an algorithm with running time f(b)·2o(log b)·n, for any computable f(b), unless the Exponential Time Hypothesis (ETH) fails. A (b + 1)n · poly(n)-time algorithm due to Nederlof [2008] shows that this is tight. A direct corollary of our result is that the graph homomorphism problem does not admit a 2O(n+h) algorithm unless ETH fails, even if the target graph is required to be a Kneser graph. This refines the understanding given by the recent lower bound of Cygan et al.