Entropies, Capacities, and Colorings of Graphs

Entropies, Capacities, and Colorings of Graphs

CORE Metadata, citation and similar papers at core.ac.uk Provided by REAL-d Entropies, Capacities, and Colorings of Graphs Simonyi G´abor MTA R´enyi Alfr´ed Matematikai Kutat´oint´ezet H-1364 Budapest, Pf. 127. [email protected] Budapest, 2006 Contents Bevezet´es ´es ´attekint´es (Summary in Hungarian) iii 1 Graph Entropies 1 1.1 Entropysplittinghypergraphs . .... 1 1.1.1 Introduction............................... 1 1.1.2 Basicdefinitions............................. 2 1.1.3 Splitting3-uniformhypergraphs . ... 3 1.1.4 The case k 4 ............................. 9 1.1.5 Connectionswithcographs.≥ . 11 1.2 Imperfectionratioandgraphentropy . ..... 13 1.2.1 Somepreliminaries . .. .. 13 1.2.2 An entropy formula for the imperfection ratio . ..... 15 1.2.3 Dilation ratio and entropy of convex corners . ..... 18 1.3 Witsenhausen rate of multiple sources . ...... 22 1.3.1 Introduction............................... 22 1.3.2 Thegraphtheorymodel . 22 1.3.3 Probabilisticgraphinvariants . ... 24 1.3.4 ProofofTheorem1.3.1. 27 2 Graph Capacities 29 2.1 Differentcapacitiesofadigraph . .... 29 2.1.1 Introduction............................... 29 2.1.2 Waterfalls ................................ 33 2.1.3 Independencegraphs . 34 2.1.4 Waterfallsinundirectedgraphs . .. 37 2.1.5 Whenaretheboundstight? . 42 2.2 Orientations of self-complementary graphs and the relation of Sperner and Shannoncapacities ............................... 47 2.2.1 Introduction............................... 47 2.2.2 D(G) versus C(G) ........................... 48 2.2.3 Self-complementarygraphs. 49 2.2.4 Consequences for Sperner capacity . .. 52 i 2.2.5 Furtherremarks............................. 53 2.3 Local chromatic number and Sperner capacity . ...... 55 2.3.1 Introduction............................... 55 2.3.2 Local chromatic number for directed graphs . .... 56 2.3.3 Spernercapacity ............................ 56 2.3.4 Mainresult ............................... 58 2.3.5 Application:oddcycles. 59 2.3.6 Theundirectedcase .......................... 61 2.3.7 Fractionalcolorings. 62 2.3.8 Fractionalcovers ............................ 67 3 Graph Colorings 71 3.1 Local chromatic number, Ky Fan’s theorem, and circular colorings . 71 3.1.1 Introduction............................... 71 3.1.2 Results.................................. 73 3.1.3 Lowerbound .............................. 76 3.1.4 Upperbound .............................. 81 3.1.5 Circularcolorings............................ 95 3.1.6 Furtherremarks. .. .. .100 3.2 Colorful subgraphs in Kneser-like graphs . .......103 3.2.1 Introduction...............................103 3.2.2 A generalization of Dol’nikov’s theorem . .104 3.2.3 Applying a theorem of Tucker and Bacon . 106 Bibliography 115 ii Bevezet´es ´es ´attekint´es (Summary in Hungarian) Az egyik legfontosabb ´es legt¨obbet vizsg´alt gr´afelm´eleti param´eter a kromatikus sz´am, azon sz´ınek minim´alis sz´ama, melyekkel a gr´af cs´ucsai kisz´ınezhet˝ok ´ugy, hogy szomsz´edos cs´ucsok sz´ıne k¨ul¨onb¨oz˝olegyen. A G gr´af χ(G) kromatikus sz´am´anak egyik legterm´eszetesebb als´obecsl´ese a gr´af ω(G) klikksz´ama, a cs´ucshalmaz legnagyobb olyan r´eszhalmaz´anak elemsz´ama, amelyben min- den cs´ucsp´ar ¨ossze van k¨otve. Ez a becsl´es sokszor nagyon gyenge, egy h´aromsz¨ogmentes gr´af kromatikus sz´ama is lehet tetsz˝olegesen nagy, ezt bizony´ıtja pl. Mycielski [123] konstrukci´oja. Az ´ertekez´esben fontos szerepet j´atszik gr´afok konorm´alisnak nevezett szorzata, illetve hatv´anya, melynek bevezet´es´et egyebek mellett sz´amos inform´aci´oelm´eleti k´erd´es mo- tiv´alja. E m˝uvelet sor´an a klikksz´am ´es a kromatikus sz´am ellent´etesen viselkedik: el˝obbi szupermultiplikat´ıv, ut´obbi szubmultiplikat´ıv erre a szorz´asra n´ezve, melynek defin´ıci´oja a k¨ovetkez˝o. Defin´ıci´o. Az F ´es G gr´afok konorm´alis szorzata az az F G gr´af, melyre · V (F G) = V (F ) V (G) · × E(F G) = (f,g), (f ′,g′) : f, f ′ E(F ) vagy g,g′ E(G) . · {{ } { } ∈ { } ∈ } Gt a G gr´af ¨onmag´aval vett t-szeres konorm´alis szorzata, amit G t-edik konorm´alis hatv´any´anak h´ıvunk. A most defini´alt hatv´anyoz´asra ´ugy ´erdemes gondolni, hogy amennyiben G ´elei a cs´ucsok valamif´ele megk¨ul¨onb¨oztethet˝os´eg´et jelentik, akkor a konorm´alis hatv´anyoz´as ezt a rel´aci´ot terjeszti ki a cs´ucsok t hossz´usorozataira: k´et ilyen sorozat pontosan akkor megk¨ul¨onb¨oztethet˝o, ha legal´abb egy koordin´at´aban az. Nem neh´ez bel´atni, hogy, mint fent eml´ıtett¨uk, tetsz˝oleges F ´es G gr´afra fenn´all az ω(F G) ω(F )ω(G) valamint a χ(F G) χ(F )χ(G) · ≥ · ≤ egyenl˝otlens´eg. A fentib˝ol k¨ovetkezik, hogy a χ∗(G) := lim t χ(Gt) t→∞ p iii ´es a c(G) := lim t ω(Gt) t→∞ hat´ar´ert´ekek egyar´ant l´eteznek, ´es r´ajuk ω(G) pc(G) χ∗(G) χ(G) teljes¨ul. ≤ ≤ ≤ Az els˝ok´ent fel´ırt χ∗(G) hat´ar´ert´ek j´ol ismert mennyis´eg. A kromatikus sz´am fel´ırhat´o egy eg´esz´ert´ek˝uprogramoz´asi feladat megold´asak´ent. Ennek val´os relax´aci´oj´at megoldva jutunk a frakcion´alis kromatikus sz´am fogalm´ahoz, mely McEliece ´es Posner [120] egy t´etel´eb˝ol ad´od´oan (ld. Berge ´es Simonovits [19] dolgozat´at is) megegyezik a fenti χ∗(G) hat´ar´ert´ekkel. A klikksz´am is fel´ırhat´oeg´esz´ert´ek˝uprogramoz´asi feladat megold´asak´ent, ennek val´os relax´aci´oja a frakcion´alis klikksz´am fogalm´ahoz vezet, amelynek ´ert´eke a line´aris prog- ramoz´as dualit´ast´etele r´ev´en mindig azonos a frakcion´alis kromatikus sz´am, teh´at χ∗(G) ´ert´ek´evel. V´arhat´ovolna mindezek alapj´an, hogy c(G) is ezzel a k¨oz¨os ´ert´ekkel legyen egyenl˝o. Ez azonban nincs ´ıgy. A c(G) mennyis´eg, pontosabban annak logaritmusa, Shannon [139] inform´aci´oelm´eleti vizsg´alataiban bukkant fel el˝osz¨or. Defin´ıci´o. (Shannon [139]) Egy G gr´af (logaritmikus) Shannon kapacit´asa1 a 1 C(G) = lim log ω(Gt) t 2 mennyis´eg. A logaritm´al´as oka az inform´aci´oelm´eleti h´att´er, a fenti mennyis´eg ugyanis egy zajos csatorna bitekben m´ert ´un. z´er´o-hiba kapacit´as´at fejezi ki. Innen ad´odik az is, hogy a logaritmus alapja 2. A tov´abbiakban is minden logaritmus kettes alap´ulesz, ezent´ul ezt nem ´ırjuk ki. A Shannon kapacit´as a modern kombinatorika egyik k¨ul¨on¨osen ´erdekes fogalma. Vizsg´alat´at sz´amos v´aratlan kapcsolat, valamint n´emely vele kapcsolatos probl´ema meglep˝oneh´ezs´ege egyar´ant indokolja. Az a tal´an ´artatlannak l´atsz´ok´erd´es p´eld´aul, hogy egy h´aromsz¨ogmentes gr´afra a C(G) ´ert´ek lehet-e tetsz˝olegesen nagy, ekvivalens Erd˝osnek egy m´aig megoldatlan probl´em´aj´aval, mely azt k´erdezi, hogy az R(3 : t) := R(3, 3,..., 3) Ramsey sz´am (az a legkisebb r sz´am, amire a Kr teljes gr´af ´eleit t sz´ınnel sz´ınezve biztosan keletkezik egysz´ın˝uh´aromsz¨og) gyorsabban n˝o-e, mint b´armilyen r¨ogz´ıtett c konstans t- edik hatv´anya (ld. Erd˝os, McEliece ´es Taylor [49], Alon ´es Orlitsky [6], valamint Rosenfeld ´es Neˇsetˇril [125] cikkeit). Shannon [139] meghat´arozta minden legfeljebb 4 cs´ucs´ugr´af Shannon kapacit´as´at ´es az 5 cs´ucs´uak´et is egy kiv´etellel. Az 5 hossz´us´ag´u C5 k¨or Shannon kapacit´as´ar´ol csak 23 ´evvel k´es˝obb bizony´ıtotta be Lov´asz [109], hogy a Shannon ´altal megadott als´okorl´attal, log √5- tel egyenl˝o. A Shannon kapacit´as probl´ema neh´ezs´eg´et a fentieken t´ul az is j´ol mutatja, 1Megjegyezz¨uk, hogy sz´amos t´argyal´as a C(G¯) mennyis´eget nevezi a G gr´af Shannon kapacit´as´anak, ahol G¯ a G gr´af komplementere. Maga Shannon is ezt a nyelvezetet haszn´alja, mi az´ert nem ezt k¨ovetj¨uk, mert az ir´any´ıtott gr´afok kapacit´asainak t´argyal´asa´ıgy term´eszetesebb lesz. Err˝ol b˝ovebben ld. a dolgozat 1.5. Megjegyz´es´et. iv hogy az ¨otn´el hosszabb p´aratlan k¨or¨okre mindm´aig ismeretlen a C(G) ´ert´ek, ´es m´eg azt is csak 2003-ban igazolta Bohman ´es Holzman [24], hogy C(C2k+1) > log 2 minden k-ra, azaz minden h´aromn´al hosszabb p´aratlan k¨or Shannon kapacit´asa meghaladja a klikksz´am´ab´ol ad´od´oegyszer˝uals´okorl´atot. A Shannon kapacit´as vizsg´alata ´altal inspir´alva vezette be Berge [15, 16, 17] a perfekt gr´afokat (ld. Ram´ırez-Alfons´ın ´es Berge [18]). Defin´ıci´o. (Berge [16]) Egy G gr´af perfekt, ha minden G′ fesz´ıtett r´eszgr´afj´ara χ(G′)= ω(G′) teljes¨ul. A perfekt gr´afok rendk´ıv¨ul fontos ´es sokat vizsg´alt gr´afoszt´alyt alkotnak. Ennek legf˝obb oka az, hogy kapcsolatot teremtenek olyan l´atsz´olag t´avolabbi ter¨uletek k¨oz¨ott, mint a gr´afelm´elet, a poli´ederes kombinatorika ´es az inform´aci´oelm´elet. Sz´amos ilyen kapcsolatot r´eszletesen t´argyal a Ram´ırez-Alfons´ın ´es Reed ´altal szerkesztett [128] k¨onyv, valamint Schrijver [136] monument´alis monogr´afi´aj´anak h´arom perfekt gr´afokr´ol sz´ol´ofe- jezete. Igen sok ´erdekes gr´af perfekt. Ilyenek p´eld´aul a p´aros gr´afok ´es ´elgr´afjaik, az intervallumgr´afok, vagy a r´eszben rendezett halmazokhoz rendelhet˝o´un.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    150 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us