Making Genes, Making Waves: a Social Activist in Science

Total Page:16

File Type:pdf, Size:1020Kb

Making Genes, Making Waves: a Social Activist in Science Making Genes, Making Waves Making Genes, Making Waves A SOCIAL ACTIVIST IN SCIENCE .......JON BECKWITH HARVARD UNIVERSITY PRESS CAMBRIDGE, MASSACHUSETTS AND LONDON, ENGLAND 2002 Copyright © 2002 by Jon Beckwith All rights reserved Printed in the United States of America Library of Congress Cataloging-in-Publication Data Beckwith, Jonathan R. Making genes, making waves : a social activist in science / Jon Beckwith. p. cm. Includes bibliographical references. ISBN 0-674-00928-2 (hardcover : alk. paper) 1. Beckwith, Jonathan R. 2. Geneticists—United States—Biography. 3. Political activists—United States—Biography. 4. Science—Social aspects. I. Title. QH429.2.B38 A3 2002 576.5Ј092—dc21 [B] 2002022747 Designed by Gwen Nefsky Frankfeldt ▲▲▲ Contents 1 The Quail Farmer and the Scientist 1 2 Becoming a Scientist 13 3 Becoming an Activist 38 4 On Which Side Are the Angels? 54 5 The Tarantella of the Living 68 6 Does Science Take a Back Seat to Politics? 83 7 Their Own Atomic History 98 8 The Myth of the Criminal Chromosome 116 9 It’s the Devil in Your DNA 135 10 I’m Not Very Scary Anymore 153 11 Story-Telling in Science 171 12 Geneticists and the Two Cultures 191 13 The Scientist and the Quail Farmer 211 Bibliography 219 Acknowledgments 227 Index 229 Making Genes, Making Waves CHAPTER ▲ 1 The Quail Farmer and the Scientist The stone farmhouse surrounded by fields of rapeseed and wheat is unassuming. Yet enveloped within it is the story of a dramatic life. It is 1998 and I have come to this isolated spot to renew an old friendship, perhaps to find out something about myself, and cer- tainly to explore a mystery. I am nervous about my meeting with Robert Williams—the first time we will have seen each other in thirty-five years. Since we were graduate students in the same bio- chemistry laboratory in the late 1950s, our lives have taken turns neither of us could have foreseen, Bob’s being the most surprising. For while I have remained a scientist, Bob is now a quail farmer in Normandy. ▲▲▲ Bob Williams and I met when we started graduate school at Harvard University in 1957. He was far from his birthplace, Paris, where he grew up, the child of an American father and a French mother. I was only a few miles from home and just a mile from Mount Auburn Hospital in Cambridge, where I was born. Bob was enthusiastically committed to science. I was much less sure of my future, not having found the inspiration in science that I needed, and wondering what science had to do with real life. I was close to 2 ▲ The Quail Farmer and the Scientist quitting in my first year as a chemistry graduate student when Bob suggested, “You should talk to Lowell Hager, my Ph.D. supervisor. I think you’d like working in his lab.” I made an appointment right away. A few days later, as I ap- proached Professor Hager’s office, I heard a series of sporadic clicks coming from inside, sounding like an erratic grandfather’s clock. Puzzled, I waited a short time and then decided to knock. A voice said “come in,” and as I entered, the source of the strange noise be- came clear. Lowell was standing in front of his desk, facing the door, with a Ping-Pong ball and paddle. The clicks were produced when the ball hit the door—Lowell was honing his skills for his next match. In the Harvard of the 1950s, this casualness was unusual. Most of my professors were very formal, addressing me as “Mr. Beck- with,” never as Jon, acting with what they considered to be the dignity appropriate to their position. Lowell’s un-Harvard, uncon- strained personality was a refreshing change and his lab was a re- laxing place to work. It was clear that part of my lack of enthusiasm for science related to the work environments I had experienced in other labs—where students were driven to work long days and into the nights, so that their professors could add more papers to their bibliographies. Bob had been right. It took me very little time to decide that I wanted to do my Ph.D. with Lowell, switching from chemistry to biochemistry. So Bob and I ended up doing our Ph.D. work in the same lab for the next several years; without his sugges- tion I would probably no longer be in science. Yet I was still not convinced that I was going to make a vocation of science. I looked at Bob and saw how committed he was to a sci- entific career, how he talked of nothing but science and did so with evident enthusiasm. He worked long hours in the lab apparently for the joy of it; there was no pressure from Lowell. He didn’t seem to have a life outside of the lab. Could I make the same commit- The Quail Farmer and the Scientist ▲ 3 ment? For those who knew us at the time, a bet on Bob rather than myself as the future scientist would have seemed a sure thing. Nev- ertheless, it was during my graduate years that I finally found the spark that carried me into my scientific career. The research papers of a group of French geneticists led by François Jacob and Jacques Monod at the Institut Pasteur in Paris overwhelmed me with the ingenuity of their genetic approaches, the clean logic that guided their experiments, and their elegant writing style. I was not a ge- neticist, but I now wanted to become one. Bob and I finished our Ph.D.’s and set out on separate paths. I pursued my goal of working with my Parisian idols and began to learn bacterial genetics. I moved through several labs, traveling from Berkeley to Princeton, New Jersey, and then on to London and Cambridge, England. Several times, I asked François Jacob if there might be space for me in his laboratory; finally, in 1964, I was accepted and arrived at the Institut Pasteur for my last year of postdoctoral work. Meanwhile, Bob had spent a few years learning the genetics of bacterial viruses with Seymour Benzer at Purdue University and had then taken a position at the Institut de Biolo- gie Physicochimique in Paris with Marianne Grunberg-Manago, a well-known biochemist. I saw Bob once during this period, while my wife, Barbara, and I were living in England. One of my dreams, in addition to becom- ing a Pastorien (a researcher at the Institut Pasteur), was to own an old French car—the Citroen “traction avant” (front-wheel drive). This sleek black Citroen was as much the star of French gangster films of the forties and fifties as were Jean Gabin and Lino Ventura. Luckily, Bob’s cousin in Paris ran a garage and had a used “traction avant.” On a trip to Paris, Bob introduced Barbara and me to his cousin and we returned to England with the car of my dreams. Bob and I did not see each other again for thirty-five years. I thought that we had little in common other than our involvement 4 ▲ The Quail Farmer and the Scientist in science. And even in that realm, our specific interests had di- verged. I still imagined that I might not be in science for the rest of my life. The friendship fostered by our close working relationship seemed to have ended. ▲▲▲ I hadn’t thought much about Bob until late in the 1970s, when I visited Lowell Hager, who had moved to the University of Illinois at Urbana-Champaign. Lowell brought me up to date on Bob’s life since I had last seen him. The story he told shattered my image of Bob and challenged my facile impression of a man totally immersed in science. In the late 1960s in Paris, Bob had married and moved into a commune, which surprised me. But after a year, the marriage soured and Bob’s attitudes toward science also soured. He quit his laboratory research position, and ended up unem- ployed for some time. The next events recounted by Lowell were even more startling and worrisome. In 1971, Bob moved to Chile with Sarah, the daughter from his marriage. Then governed by the Socialist Party of Salvador Allende, Chile sought international help to improve the nutrition and health of its poorest citizens. Bob started projects to find new sources of food in the seas that washed Chile’s extensive coastline. Then, in 1973, came the violent military coup led by Augusto Pinochet. Not only were Chilean supporters of Allende tortured and murdered, but some foreigners who had helped the government were also targeted. The 1982 Costa-Gavras movie Missing presents the story of an American who suffered this fate. Neither Lowell nor Marianne had heard anything from Bob since the coup and feared that he was dead. Bob, at least as far as his sci- entific colleagues were concerned, had disappeared. Here was a man who had seemed to me totally devoted to sci- ence and who rarely discussed political issues. How could he have The Quail Farmer and the Scientist ▲ 5 changed so much—to reject science and plunge into such a deep political commitment? ▲▲▲ Perhaps if I had thought of the changes in my own life I might have considered more the parallels as well as the mirror im- ages of the evolution of the two of us. I might have understood ear- lier what had led to the startling changes in Bob’s life.
Recommended publications
  • My Name Is Michael Mark Gottesman and My Position Is Deputy Director for Intramural Research at the National Institutes of Health
    NHGRI: OH_Gottesman_Michael_20111113 1 3/1/16 My name is Michael Mark Gottesman and my position is deputy director for intramural research at the National Institutes of Health. I was born on October 7, 1946 in Jersey City, New Jersey. And when I was around two years old, my family moved to Flushing, Queens, and I had most of my formative years growing up in Flushing. I cannot remember a time when I wasn’t interested in science. Probably the first interaction with issues related to public health was as one of many probably millions of children in the United States who got the Salk vaccine as a -- as a test. I remember lining up, they explained to us that this was a trial, and we all got shots, which was not that much fun for a six-year-old or a seven-year-old. And that was a huge sea change. I remember learning about the fact that before then people got polio, kids got polio. They wandered off to camp, they came back paralyzed. And after that period, we didn’t need to worry about polio. So I had the sense that there was a lot that biomedical research could do to alleviate human disease. The next big event scientifically in my life was the launch of Sputnik in 1957, and it was a wake-up call to the United States. We were so-called “falling behind” in the space race, and I was an eleven-year-old boy who was interested in space science. So I spent my childhood after that making rockets, probably not as safely as it should have been, but no unfortunate accidents befell me.
    [Show full text]
  • Population Dynamics
    FOCUS ON BACTERIAL GROWTH EDITORIAL Population dynamics This Focus issue on bacterial growth, highlights the versatility and adaptability with which bacterial cells respond to their environmental and community context. Bacteria have an immense capacity to grow. As men- antagonizing each other; for example, by the secretion of tioned by Megan Bergkessel, David Basta and Dianne toxins or through the type VI secretion system. By con- Newman on page 549, if Escherichia coli were to con- trast, mutualistic clonemates growing next to each other tinue exponential growth, a single bacterial “cell would often cooperate; for example, through the secretion of grow to a population with the mass of the Earth within 2 public goods. days”. However, bacteria rarely encounter perfect growth To regulate cooperative behaviour, bacteria use quo- conditions outside of the laboratory: nutrients are lim- rum sensing, whereby the concentrations of secreted sig- ited, the bacteria have to compete with other cells for nalling molecules inform bacteria about the surrounding resources or they are under attack by other bacterial population density. On page 576, Bonnie Bassler and Kai species, host defences or antimicrobial therapy. Thus, Papenfort review quorum sensing systems in Gram- bacteria have developed a wide variety of mechanisms negative bacteria, highlighting the different signalling that enable them to optimize their growth patterns molecules, receptors and response networks. They also according to the surrounding conditions. This Focus describe the broad effects that quorum sensing can have issue explores factors that influence bacterial growth by not only enabling communication between members dynamics and how bacterial populations respond to of one bacterial species but also between species, gen- them; for example, by forming biofilms and produc- era and even kingdoms; for example, between the gut ing a structured extracellular matrix, by executing microbiota and the mammalian host.
    [Show full text]
  • Real-Time Egg Laying Dynamics in Caenorhabditis Elegans
    UNIVERSITY OF CALIFORNIA, IRVINE Real-time egg laying dynamics in Caenorhabditis elegans DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Engineering by Philip Vijay Thomas Dissertation Committee: Professor Elliot Hui, Chair Professor Olivier Cinquin Professor Abraham Lee 2015 c 2015 Philip Vijay Thomas TABLE OF CONTENTS Page LIST OF FIGURES iv ACKNOWLEDGMENTS v CURRICULUM VITAE vi ABSTRACT OF THE DISSERTATION viii 1 Introduction and motivation 1 1.1 The impact of C. elegans in aging and lifespan studies along with current limitations . 1 1.2 Starvation and its effect on worms . 4 1.3 Microfabricated systems for C. elegans biology . 5 2 Real-time C. elegans embryo cytometry to study reproductive aging 7 2.1 High capacity low-weight passive bubble trap . 8 2.2 Microfluidic device layout . 10 2.3 Tuning habitat exit sizes to flush out embryos while retaining worms . 11 2.4 Equal flow resistance to make identical habitats . 12 2.5 Video enumeration of eggs . 13 2.6 Switching between discrete and continuously varying media concentrations . 15 3 Optimizing worm health in C. elegans microfluidics 17 3.1 E. coli densities of 1010 cells/mL maintain egg-laying in liquid worm culture 18 3.2 E. coli biofilms in devices . 19 3.3 Amino acid addition to S-media, γ irradiation of bacteria, and elevated syringe temperatures are ineffective in reducing biofilms in devices . 20 3.4 Use of a curli major subunit deletion strain significantly reduces biofilm in S-media . 23 4 Conclusions and future directions 26 Bibliography 30 ii A Appendix Title 41 A.1 Methods .
    [Show full text]
  • JOURNAL of BACTERIOLOGY Volume 145 Contents for January 1981 Numberl
    JOURNAL OF BACTERIOLOGY Volume 145 Contents for January 1981 Numberl Morphology and Ultrastructure Structure of the Heptose Region of Lipopolysaccharides from Rho- dospirillum tenue. JOANNA RADZIEJEWSKA-LEBRECHT, U. FEIGE, H. MAYER,* AND J. WECKESSER ...... .............. 138-144 Regulation ofPolarMorphogenesis in Caulobactercrescentus. AKIo FUKUDA,* MAKOTO ASADA, SHIGEO KOYASU, HIDEYA YOSHIDA, KATSUYUKI YAGINUMA, AND YOSHI OKADA ..... ............ 559-572 Isolation and Electron Microscopic Observations of Intracyto- plasmic Inclusions Containing Chlamydia psittaci. AKIRA MATSUMOTO ............................................. 605-612 Isolation and Properties ofPiil from Spores ofBacillus cereus. JOHN P. DEsROSIER AND J. CANO LARA* ....... .................. 613-619 General Microbiology Lectin, a Possible Basis for Symbiosis Between Bacteria and Sponges. WERNER E. G. MULLER,* RUDOLF K. ZAHN, BRANDO KURELEC, CEDOMIL Lucu, ISABEL MULLER, AND GERD UHLENBRUCK ............................................ 548-558 Quantitation of Bacillus subtilis L-Form Growth Parameters in Batch Culture. RICHARD W. GILPIN,* SUZANNE K. PATTER- SON, AND RALPH A. KNIGHT ............................... 651-653 Plant Microbiology Elaboration of Cellulose Fibrils by Agrobacterium tumefaciens Dur- ing Attachment to Carrot Cells. ANN G. MATTHYSSE,* KATH- RYN V. HOLMES, AND ROBIN H. G. GURLITZ ..... ............ 583-595 Genetics and Molecular Biology Methyl-Accepting Chemotaxis Protein III and Transducer Gene trg. GERALD L. HAZELBAUER,* PETER ENGSTROM, AND SHI- GEAKI HARAYAMA .................. ... ... 43-49 Stringent Response of Bacillus stearothermophilus: Evidence for the Existence of Two Distinct Guanosine 3',5'-Polyphosphate Synthetases. SUSANNE FEHR AND DIETMAR RICHTER* ...... 68-73 Plasmid Transfer and Genetic Recombination by Protoplast Fusion in Staphylococci. F. GOTz, S. AHRNE, AND M. LINDBERG* ... 74-81 Naturally Occurring Macrolide-Lincosamide-Streptogramin B Re- sistance in Bacillus licheniformis. A. DOCHERTY, G. GRANDI, R. GRANDI, T. J. GRYCZAN, A. G.
    [Show full text]
  • Bacteria Podcast.Pages
    podcasts Encyclopedia of Life eol.org Bacteria Podcast and Scientist Interview Bacillus subtilis Roberto Kolter of Harvard explains the relationship between one bacterium, Bacillus subtilis, and the majestic trees outside his office windows at Harvard Medical School. There’s a lot going on, down among the roots. Transcript Ari: From the Encyclopedia of Life, this is One Species at a Time. I’m Ari Daniel Shapiro. Over the last few years, we’ve created more than 60 episodes for this series. But there’s one group we’ve neglected – the bacteria. Kolter: The most spectacular aspect of life on the planet Earth is the stuff we don’t see! Ari: Roberto Kolter is a bacteria fanatic. He’s a microbiologist, after all. Ari: Kolter lifts the blinds of one of his office windows at the Harvard Medical School. He looks outside, and he says everything he sees – depends on bacteria. The people bundled up on the street below rely on the bacteria in their guts to digest their food. There’s the dirt… Kolter: A lot of that soil is actually produced by bacterial activity. Ari: Even the trees dotting the landscape. Kolter: Without the microbes, none of those trees would make it. Ari: And it’s this last point – that most plants really benefit from a remarkable relationship with bacteria – that Kolter’s especially interested in. To explain, let’s focus on a particular bacteria – a tiny rod-shaped cell called Bacillus subtilis. This little guy is everywhere on the planet. Kolter: Glaciers in Alaska, deserts in Africa, swamps in South America – just to mention a few.
    [Show full text]
  • Thesis Submitted for the Degree of Doctor of Philosophy
    University of Bath PHD An investigation into the strength and thickness of biofouling deposits to optimise chemical, water and energy use in industrial process cleaning Peck, Oliver Award date: 2017 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 An investigation into the strength and thickness of biofouling deposits to optimise chemical, water and energy use in industrial process cleaning Oliver Philip Wayland Peck A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Chemical Engineering March 2017 COPYRIGHT Attention is drawn to the fact that copyright of this thesis/portfolio rests with the author and copyright of any previously published materials included may rest with third parties.
    [Show full text]
  • Perspectives
    Copyright Ó 2009 by the Genetics Society of America DOI: 10.1534/genetics.109.110007 Perspectives Anecdotal, Historical and Critical Commentaries on Genetics Letting Escherichia coli Teach Me About Genome Engineering James A. Shapiro1 Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Science, Chicago, Illinois 60637 ABSTRACT A career of following unplanned observations has serendipitously led to a deep appreciation of the capacity that bacterial cells have for restructuring their genomes in a biologically responsive manner. Routine characterization of spontaneous mutations in the gal operon guided the discovery that bacteria transpose DNA segments into new genome sites. A failed project to fuse l sequences to a lacZ reporter ultimately made it possible to demonstrate how readily Escherichia coli generated rearrangements necessary for in vivo cloning of chromosomal fragments into phage genomes. Thinking about the molecular mechanism of IS1 and phage Mu-transposition unexpectedly clarified how transposable elements mediate large-scale rearrangements of the bacterial genome. Following up on lab lore about long delays needed to obtain Mu-mediated lacZ protein fusions revealed a striking connection between physiological stress and activation of DNA rearrangement functions. Examining the fate of Mudlac DNA in sectored colonies showed that these same functions are subject to developmental control, like controlling elements in maize. All these experiences confirmed Barbara McClintock’s view that cells frequently respond to stimuli by restructuring their genomes and provided novel insights into the natural genetic engineering processes involved in evolution. HIS article is the reminiscence of a bacterial genet- The worlds of transcriptional regulation beyond simple T icist studying the processes of mutation and DNA repressor–operator models, signal transduction, chro- rearrangements.
    [Show full text]
  • Roberto Kolter Knowing I’M One of the Points,” He Says
    CAREERS Dodd chose to shift his research focus elsewhere. “I sometimes found it weird to be in the lab,” he says. He was one of TURNING POINT several patients who had the mutation, yet no symptoms, and so had MRI scans in their lab. “It was weird to see a bar graph, Roberto Kolter knowing I’m one of the points,” he says. The research could be emotionally taxing. “It would feel odd to work on, for example, Roberto Kolter set up his microbiology a mouse with the same genetic mutation laboratory at Harvard Medical School in as me, and wonder if I would respond Boston, Massachusetts, in 1983. Postdocs EINAT SEGEV EINAT similarly,” he says. But he did want to keep worldwide hope to join his lab because of his working on the heart, so he is now a postdoc career-targeted training philosophy, but with studying the cardiac effects of diabetes, a rare exceptions, he brings in only those who disease that his grandfather had. already have a fellowship. SPOTLIGHT SCARS Why do you accept postdocs only if they have The emotional toll can be especially intense their own funding? when media attention forces the scientist I focus on those whom I believe have a fan- into the public eye. Wartman felt the land- tastic chance of getting their own funding as a scape shift after a high-profile piece about principal investigator. I think it’s unfair for me him appeared in the New York Times in 2012. to interview those who have very little chance He is happy that patients find his personal of getting their own funding, considering how perspective helpful, but regrets that the deci- competitive the academic job market is and sion to share his story no longer rests with how important it is to show independence.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Bacterial motility on abiotic surfaces Permalink https://escholarship.org/uc/item/87j0h2w3 Author Gibiansky, Maxsim Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Los Angeles Bacterial motility on abiotic surfaces A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioengineering by Maxsim L. Gibiansky 2013 c Copyright by Maxsim L. Gibiansky 2013 Abstract of the Dissertation Bacterial motility on abiotic surfaces by Maxsim L. Gibiansky Doctor of Philosophy in Bioengineering University of California, Los Angeles, 2013 Professor Gerard C. L. Wong, Chair Bacterial biofilms are structured microbial communities which are widespread both in nature and in clinical settings. When organized into a biofilm, bacteria are extremely resistant to many forms of stress, including a greatly heightened antibiotic resistance. In the early stages of biofilm formation on an abiotic sur- face, many bacteria make use of their motility to explore the surface, finding areas of high nutrition or other bacteria to form microcolonies. They use motility ap- pendages, including flagella and type IV pili (TFP), to navigate the near-surface environment and to attach to the surface. Bacterial motility has previously been studied on a large scale, describing collective motility modes involving large ag- gregates of cells such as swarming and twitching. This dissertation provides an in-depth look at bacterial motility at the single-cell level, focusing on Pseudomonas aeruginosa and Myxococcus xanthus, two commonly-studied organisms; in addi- tion, it describes particle tracking algorithms and methodology used to analyze single-bacterium behaviors from flow cell microscopy video.
    [Show full text]
  • Susan Gottesman, Phd National Institutes of Health
    Boston Bacterial Meeting 2017 Crystal structure of Hfq in a complex with sRNA, Keynote speaker: RNA binding interfaces highlighted. Modeled using PDB: 4V2S Susan Gottesman, PhD National Institutes of Health Generously sponsored by: 2017 Boston Bacterial Meeting - Schedule and Introduction Thursday June 15 12:00 pm Registration 12:45 pm Opening Remarks I: Bacterial communities Chair: Matthew Ramsey Stephanie High-throughput analysis of targeted mutant libraries reveals new 1:00 pm Shames Legionella pneumophila effector virulence phenotypes Microbial hitchhiking promotes dispersal and colonization of new niches 1:20 pm Tahoura Samad by staphylococci Interactions between species introduce spurious associations in 1:40 pm Rajita Menon microbiome studies: evidence from inflammatory bowel disease The upper respiratory tract commensal Dolosigranulum pigrum inhibits 2:00 pm Silvio Brugger Staphylococcus aureus 2:20 pm Coffee Break II: Morphogenesis Chair: Eddie Geisinger Determining how bacteria regulate their rate of growth at the single- 2:50 pm Yingjie Sun molecule and single-cell levels by super-resolution microscopy Metabolic control of cell morphogenesis: perturbed TCA cycle halts 3:10 pm Irnov Irnov peptidoglycan biosynthesis Membrane remodeling at the division septum by the bacterial actin 3:30 pm Joseph Conti homolog FtsA 3:50 pm Kristin Little A cell envelope stress response system keeps cells in shape 4:10 pm Poster Session I - Science Center (#1-32, 60-66) III: Treatment strategies Chair: Alex Kostic Sebastien 5:30 pm BRACE for resistance:
    [Show full text]
  • Appendix A: Chronology M.J
    International Dimensions of Ethics Education in Science and Engineering Case Study Series: Asilomar Conference on Laboratory Precautions Appendix A: Chronology M.J. Peterson Version 1, June 2010 Key Green major developments in scientists’ collective discussions of recombinant DNA research Blue national government regulations of recombinant DNA research Purple international standards relevant to conduct of recombinant DNA research 1950 Further studies confirm double helix structure of DNA 1953 Apr. James Watson and Francis Crick, The Double Helix: A Personal Account of the Discovery of the Structure of DNA, proposing double helix structure of DNA published by Nature. 1960 continued research opens up possibility of creating recombinant DNA (rDNA) by combining genetic material from different organisms to produce offspring with desired traits. 1968-1971 gradual tightening of lab safety standards among researchers working with viruses. This case was created by the International Dimensions of Ethics Education in Science and Engineering (IDEESE) Project at the University of Massachusetts Amherst with support from the National Science Foundation under grant number 0734887. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. More information about the IDEESE and copies of its modules can be found at http://www.umass.edu/sts/ethics. This case should be cited as: M.J. Peterson. 2010. “Asilomar Conference on Laboratory Precautions When Conducting Recombinant DNA Research.” International Dimensions of Ethics Education in Science and Engineering. Available www.umass.edu/sts/ethics. © 2010 IDEESE Project Appendix A 1969 Dec. Science publishes letter from Jim Shapiro, Jon Beckwith, and Larry Eron of Harvard announcing isolation of a bacterial germ, highlighting it as a first step towards genetic engineering, and warning against government misuse of science.
    [Show full text]
  • 18.5 N&V Feature Greenbe#822F58
    18.5 N&V Feature Greenbe#822F58 12/5/06 6:34 PM Page 300 Vol 441|18 May 2006 NEWS & VIEWS FEATURE MICROBIAL SCIENCES The superficial life of microbes Roberto Kolter and E. Peter Greenberg The social activities and organization of bacteria are crucial to their ecological success. But it is only in recent years that we have begun to study these secret societies. Most surfaces on this planet teem with micro- and establish a sedentary yet remarkably liquid cultures, which produce homogeneous bial life, creating ecosystems of diverse organ- diverse community (Fig. 1a). These are com- populations of genetically identical cells, isms that flourish in slimy beds of their own munities in the sense that we humans organize growth in biofilms generates a large amount of making. The plaque encrusting our teeth, the ourselves into communities with division of genetic diversity 2. How can a single cell, with a slippery coating on river stones, the gunge labour — as the surface-associated population single genetic complement, give rise to a clogging up water pipes or infected wounds: grows, the biofilm becomes increasingly biofilm population in which the individual cells these are just a few examples of the microbial sophisticated in its activities, with individual are genetically different from one another? The ‘biofilms’ that form anywhere there is a surface cells taking on specific tasks. As a result, simplest explanation may be that in any biofilm, with a little moisture and some nutrients. biofilms can develop intricate architectures; individual cells are stuck in the same place, Although microbes by and large live in such striking mushroom-like structures can bloom attached to their neighbours and the slime that biofilm communities, most of our understand- on submerged surfaces, and aerial projections surrounds them, so their access to nutrients will ing of their physiology stems from experiments sprout from surfaces exposed to the air vary as gradients form within the biofilms using liquid cultures of dispersed, free-swim- (Fig.
    [Show full text]