Development of Bio-Based Phenol Formaldehyde Resol Resins Using Mountain Pine Beetle Infested Lodgepole Pine Barks

Total Page:16

File Type:pdf, Size:1020Kb

Development of Bio-Based Phenol Formaldehyde Resol Resins Using Mountain Pine Beetle Infested Lodgepole Pine Barks Development of Bio-based Phenol Formaldehyde Resol Resins Using Mountain Pine Beetle Infested Lodgepole Pine Barks by Yong Zhao A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Faculty of Forestry University of Toronto © Copyright by Yong Zhao 2013 Development of Bio-based Phenol Formaldehyde Resol Resins Using Mountain Pine Beetle Infested Lodgepole Pine Barks Yong Zhao Doctor of Philosophy Faculty of Forestry University of Toronto 2013 Abstract Phenol formaldehyde (PF) resol resins have long been used widely as wood adhesives due to their excellent bonding performance, water resistance and durability. With the growing concern for fossil fuel depletion and climate change, there is a strong interest in exploring renewable biomass materials as substitutes for petroleum-based feedstock. Bark, rich in phenolic compounds, has demonstrated potential to partially substitute phenol in synthesizing bio-based PF resins. In this study, acid-catalyzed phenol liquefaction and alkaline extraction were used to convert mountain pine beetle (MPB; Dendroctonus ponderosae) infested lodgepole pine (Pinus contorta) barks to phenol substitutes, liquefied bark and bark extractives. Two types of bio-based phenol formaldehyde (PF) resol resins, namely liquefied bark-PF resin and bark extractive-PF resins, were then synthesized and characterized. It was found that acid-catalyzed phenol liquefaction and alkaline extraction were effective conversion methods to obtain phenol substitute with the maximum yield of 85% and 68%, respectively. The bio-based PF resol resins had higher molecular weights, higher ii polydispersity indices, shorter gel times, and faster curing rates than the lab synthesized control PF resin without the bark components. Based on the lap-shear tests, the bio-based PF resol resins exhibited comparable wet and dry bonding strength to lab PF resin and commercial PF resin. The post-curing thermal stability of the bio-based PF resins was similar to the lab control PF resin. The liquid-state 13C nuclear magnetic resonance (NMR) study revealed significant influences on the resin structures by the inclusion of the bark components. Methylene ether bridges, which were absent in the lab PF resin, were found in the bio-based PF resins. The bark components favored the formation of para-ortho methylene linkages in the bio- based bark extractive-PF resins. The liquefied bark-PF resin showed a higher ratio of para-para/ortho-para methylene link (-CH2-), a higher unsubstituted/substituted hydrogen (-H/-CH2OH) ratio and a higher methylol/methylene (-CH2OH/-CH2-) ratio than the bark extractive-PF resin. Both tannin components of bark alkaline extractives and phenolated barks contributed to the acceleration of the curing rate of the bio-based resins. This research demonstrated the promise of the bio-based PF resins containing either bark alkaline extractives or liquefied barks as environmentally friendly alternatives to PF adhesives derived solely from fossil fuel based phenol and proposed a novel higher value- added application of the largely available barks from the mountain pine beetle-infested lodgepole pine trees. iii Acknowledgements First and foremost, I would like to express my sincere and profound gratitude to my supervisor, Prof. Ning Yan, for her outstanding and exceptional mentorship. With her inspirational guidance and encouragement, generous support and constant trust and patience, Prof. Yan brought me to the interesting and promising research areas, taught me how to do the research and helped me grow as a scientist. Her ever-lasting dedication to research, endless pursuit of excellence and rigorous working ethnic set up a perfect role model for those want to pursue their career in the academic area like me. I was extremely lucky to be her student and to work with her. Thanks to Prof. Yan, I had a fruitful and joyful PhD student life. I would also like to give my heartfelt appreciations to my co-supervisor, Mr. Martin W. Feng, a senior research scientist, at FPInnovations-Wood Products Division, for his invaluable guidance, support, and encouragement during the course of my PhD study. I have benefited greatly from his advices. I am very grateful to my supervisory committee, Prof. Paul Cooper, Prof. Bruce McKague, and Prof. Mohini Sain for their insightful suggestions and recommendations for my thesis study. I would like to extend my thanks to Dr. Tim Burrow for his help with the NMR measurements and discussions; Dr. Arturo Rodriguez for the FTIR training and help; Dr. Robert Jeng for the MALDI-TOF training; Dr. Syed Abthagir Pitchai Mydeen for his kind, generous and consistent help on the TGA and DSC instruments and other lab work. Mr. Tony Ung for his kind technical support on using the hot press and lab-shear test. Mr. Gireesh Gupta and Dr. Zheng Chen for their generous support and useful discussions. Assistances by other lab members of Prof. Yan’s group at the Faculty of Forestry, University of Toronto are highly appreciated. I would also like to especially thank Jiang Tang, Mingli Sun, Lei Shen, Feng He, Sheng Dai, Haizheng Zhong, Xuping Sun, Jingjing Li, Nan (Crystal) Wu, Jieming Chen, Xiao Han, Jing Wang, Myungjae Lee, Andrew Avsec, Lip Liew, Susan Frye, Luke Hall, Ethan iv McBride, Dana Collins, Brooke Lehman, Adam Palmer, Adam Martin. Their friendship and encouragement are invaluable and important to me. They made my life at the University of Toronto so enjoyable and memorable. I like to express my sincere thanks to my master thesis supervisor and some old friends in China, including, Prof. Benhua Fei, Prof. Songlin Yi, Prof. Xiaoxu Wang, Prof. Zhaohui Wang, Prof. Wenhua Lu, Prof. Haiqing Ren, Prof. Xia Lang, Prof. Yubo Chai, Ms. Dongkun Wang, Ms. Ying Liu, Ms. Yanhui Huang, Ms. Shuqin Zhang, Mr. Xiaoyu Lu, Mr. Zhenyu Wu and Mr. Xiaodong Zhou for their constant support and encouragement. Special thanks are given to my best friend, Yubo Chai, I am deeply indebt to him for all his help. Despite being far away, their constant support made my life in Canada much easier. I cannot imagine what my life would have been without their help. I will remember their kindness forever. I would like to extend my utmost gratitude to my parents, my aunts and uncles, and my cousins as well as my other relatives. Their unconditional love, support and encouragement made all my accomplishments possible. To them, I dedicate this thesis. v Table of contents Abstract ............................................................................................................................... ii Acknowledgements ............................................................................................................ iv List of Tables ....................................................................................................................... x List of Figures .................................................................................................................... xi List of Acronyms ............................................................................................................. xvi Chapter 1 Introduction ......................................................................................................... 1 1.1 Motivation and Significance ...................................................................................... 1 1.2 Scope ......................................................................................................................... 3 1.3 Hypotheses ................................................................................................................. 3 1.4 Objectives .................................................................................................................. 4 1.5 Thesis overview ......................................................................................................... 5 Chapter 2 Literature review ................................................................................................. 7 2.1 Bark ........................................................................................................................... 7 2.2 Chemical composition ............................................................................................... 7 2.3 Bark phenolic compounds ......................................................................................... 8 2.3.1 Lignin .................................................................................................................. 8 2.3.2 Tannins ............................................................................................................... 9 2.4 Reactivity of bark phenolic compounds towards formaldehyde ............................. 11 2.4.1 Reactivity of lignin towards formaldehyde ...................................................... 11 2.4.2 Reactivity of tannins ......................................................................................... 12 2.5 Extraction and adhesive application of phenolic compounds from bark ................. 14 2.5.1 Motivation of using renewable biomass as the feedstock ................................ 14 2.5.2 Extraction of phenolic compounds from bark for phenolic resin synthesis ..... 15 2.5.3 Adhesive application of bark phenolic compounds .......................................... 20 2.6 Mountain pine beetle infested lodgepole pine ......................................................... 25 vi 2.7 Conclusions ............................................................................................................
Recommended publications
  • Polar Semivolatile Organic Compounds in Biomass-Burning Emissions and Their Chemical Transformations During Aging in an Oxidation flow Reactor
    Atmos. Chem. Phys., 20, 8227–8250, 2020 https://doi.org/10.5194/acp-20-8227-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor Deep Sengupta, Vera Samburova, Chiranjivi Bhattarai, Adam C. Watts, Hans Moosmüller, and Andrey Y. Khlystov Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA Correspondence: Vera Samburova ([email protected]) Received: 20 December 2019 – Discussion started: 23 January 2020 Revised: 7 May 2020 – Accepted: 18 May 2020 – Published: 16 July 2020 Abstract. Semivolatile organic compounds (SVOCs) emit- 350 g mol−1 decreased after OFR aging, while abundances ted from open biomass burning (BB) can contribute to chem- of low-MW compounds (e.g., hexanoic acid) increased. This ical and physical properties of atmospheric aerosols and indicated a significant extent of fragmentation reactions in also may cause adverse health effects. The polar fraction of the OFR. Methoxyphenols decreased after OFR aging, while SVOCs is a prominent part of BB organic aerosols, and thus a significant increase (3.7 to 8.6 times) in the abundance of it is important to characterize the chemical composition and dicarboxylic acids emission factors (EFs), especially maleic reactivity of this fraction. In this study, globally and region- acid (10 to 60 times), was observed. EFs for fresh and ratios ally important representative fuels (Alaskan peat, Moscow from fresh-to-aged BB samples reported in this study can be peat, Pskov peat, eucalyptus, Malaysian peat, and Malaysian used to perform source apportionment and predict processes agricultural peat) were burned under controlled conditions occurring during atmospheric transport.
    [Show full text]
  • Resin Acids in Rosin (Colophony) Solder Flux Fume Laboratory Method Using Gas Chromatography
    Health and Safety Executive Resin acids in rosin (colophony) solder flux fume Laboratory method using gas chromatography Scope 1 This method describes the measurement of time-weighted average concentrations of rosin (also known as colophony) based solder flux fume collected onto membrane filters with analysis of the resin acid components, after derivatisation, by gas chromatography (GC). Summary 2 A measured volume of air is drawn through a membrane filter mounted in a sampling head close to the breathing zone. The filter is solvent desorbed, the resin acids derivatised and then quantified using GC with a flame ionisation detector (FID). If confirmation of the resin acid components’ identities is required, samples may also be analysed by GC with a mass spectrometer (MS) detector. However, MS is not recommended for quantitative analysis as, unlike an FID, the MS detector gives different response factors for the various resin acids. The use of alternative methods not included in the MDHS series is acceptable provided they can demonstrate the accuracy and reliability appropriate to the application. Recommended sampling 3 For long-term exposures: Maximum sampling time: 8 hours; Sampling rate: 1–2 l-1min; Sampled volume: up to 960 litres. For short-term exposures: Sampling time: 15 mins; Sampling rate: 2 lmin-1; Sampled volume: 30 litres. Prerequisites 4 Users of this method will need to be familiar with the content of MDHS14.1 Safety 5 Users of this method should be familiar with normal laboratory practice and MDHS83/3 carry out a suitable risk assessment. It is the user’s responsibility to establish appropriate health and safety practices and to ensure compliance with regulatory requirements.
    [Show full text]
  • Mountain Pine Beetle-Attacked Lodgepole Pine for Pulp and Papermaking
    Operational extractives management from- mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Working Paper 2007-15 Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5 (250) 363-0600 • cfs.nrcan.gc.ca/regions/pfc Natural Resources Ressources naturelles Canada Canada Canadian Forest Service canadien Service des forêts Operational extractives management from mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Initiative W orking Paper 2007œ15 Paprican 3800 W esbrook Mall Vancouver, B.C. V6S 2L9 Mountain Pine Beetle Initiative PO # 8.43 Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 W est Burnside Road Victoria, British Columbia V8Z 1M5 Canada 2007 ≤ Her Majesty the Queen in Right of Canada 2007 Printed in Canada Library and Archives Canada Cataloguing in Publication Allen, Larry Operational extractives m anagem ent from m ountain pine beetle-attached lodgepole pine from pulp and paperm aking / Larry Allen and Vic Uloth. (Mountain Pine Beetle Initiative working paper 2007-15) "Mountain Pine Beetle Initiative, Canadian Forest Service". "MPBI Project # 8.43". "Paprican". Includes bibliographical references: p. Includes abstract in French. ISBN 978-0-662-46480-8 Cat. no.: Fo143-3/2007-15E 1. Pulping--British Colum bia--Quality control. 2. Pulping--Alberta--Quality control. 3. Paper m ills-- Econom ic aspects--British Colum bia. 4. Pulp m ills--Econom ic aspects--Alberta. 5. Lodgepole pine--Diseases and pests–Econom ic aspects. 6. Mountain pine beetle--Econom ic aspects.
    [Show full text]
  • The Paraguayan Chaco and Its Possible Future: Discussion Author(S): H
    The Paraguayan Chaco and Its Possible Future: Discussion Author(s): H. E., Maurice de Bunsen, R. B. Cunninghame Graham, A. Ewbank, J. W. Evans and W. Barbrooke Grubb Source: The Geographical Journal, Vol. 54, No. 3 (Sep., 1919), pp. 171-178 Published by: geographicalj Stable URL: http://www.jstor.org/stable/1780057 Accessed: 21-06-2016 12:21 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Wiley, The Royal Geographical Society (with the Institute of British Geographers) are collaborating with JSTOR to digitize, preserve and extend access to The Geographical Journal This content downloaded from 128.223.86.31 on Tue, 21 Jun 2016 12:21:30 UTC All use subject to http://about.jstor.org/terms THE PARAGUAYAN CHACO AND ITS POSSIBLE FUTURE 171 already accessible. The lands in their present condition, provided that water could be secured, are estimated to carry safely five hundred cattle per Paraguayan league, and if this province could be developed in this way the total value represented would be immense. Fencing is an easy matter, as posts are abundant and almost always near at hand. The Indians make capital cow-boys and expert fencers. The wood industry at present consists chiefly in the export of tanning from the quebracho tree, but the exploitation of these forests depends entirely upon the means of conveyance.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.248,158 B2 Brown Et Al
    USOO92481.58B2 (12) United States Patent (10) Patent No.: US 9.248,158 B2 BrOWn et al. (45) Date of Patent: Feb. 2, 2016 (54) HERBAL SUPPLEMENTS AND METHODS OF 2008/022O101 A1* 9, 2008 Buchwald-Werner ... A23L 1,293 USE THEREOF 424,728 2008/0268024 A1* 10, 2008 Rull Prous et al. ........... 424/439 (71) Applicant: KBS Research, LLC, Plano, TX (US) 2010, 0008887 A1 1/2010 Nakamoto et al. (72) Inventors: Kenneth Brown, Plano, TX (US); FOREIGN PATENT DOCUMENTS Brandi M. Scott, Plano, TX (US) FR 2770228 A1 * 4, 1999 WO 2012131728 A2 10, 2012 (73) Assignee: KBS RESEARCH, LLC, Plano, TX (US) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this Zotte et al., Dietary inclusion of tannin extract from red quebracho patent is extended or adjusted under 35 trees (Schinopsis spp.) in the rabbit meat production, 2009, Ital J U.S.C. 154(b) by 0 days. Anim Sci., 8:784-786.* Becker, K., et al. “Effects of dietary tannic acid and quebracho tannin on growth performance and metabolic rates of common carp (21) Appl. No.: 14/072,502 (Cyprinus carpio L.), Aquaculture, May 15, 1999, vol. 175, Issues Filed: Nov. 5, 2013 3-4, pp. 327-335. (22) Durmic, Z. et al. “Bioactive plants and plant products: Effects on Prior Publication Data animal function, health and welfare'. Animal Feed Science and Tech (65) nology, Sep. 21, 2012, vol. 176, Issues 1-4, pp. 150-162. US 2014/01.41108A1 May 22, 2014 Search Report and Written Opinion mailed Jan. 29, 2014, in corre sponding International Patent Application No.
    [Show full text]
  • WO 2017/203429 Al 30 November 2017 (30.11.2017) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/203429 Al 30 November 2017 (30.11.2017) W !P O PCT (51) International Patent Classification: TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, A61K36/87 (2006.01) A61K8/00 (2006.01) KM, ML, MR, NE, SN, TD, TG). (21) International Application Number: Published: PCT/IB2017/053035 — with international search report (Art. 21(3)) (22) International Filing Date: 23 May 2017 (23.05.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: P201630673 24 May 2016 (24.05.2016) ES (71) Applicants: UNIVERSITAT POLITECNICA DE CATALUNYA [ES/ES]; Jordi Girona, 3 1, 08034 Barcelona (ES). CONSORCI ESCOLA TECNICA D'IGUALADA [ES/ES]; Av. Pla de la Massa, 8, 08700 Igualada (ES). (72) Inventors: ANNA, Bacardit Dalmases; Av. Vilanova, 55, 2, 08700 Igualada (ES). LUIS, Olle Otero; C. Joan Lla- cuna Carbonell, 1, 08700 Igualada (ES). SILVIA, Sorolla Casellas; Av. Balmes, 14, ler. la., 08700 Igualada (ES). CONCEPCI0, Casas Sole; C. Pierola, 5, escala A, 3er. 2a., 08700 Igualada (ES). (74) Agent: VIDAL, Maria Merce; C. Consell de Cent, 322, 08007 Barcelona (ES). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • United States Patent \ .J Patented Oct
    2,907,738 United States Patent \ .j Patented Oct. 3, 1959 1 2 dibasic acids would also give polymerization in which the natural resin acid ester becomes an intimate part ‘ 2,907,738 of the ?nal polymer chemical composition. Such esteri ‘MIXED RESIN ACID ESTERS OF 4,4-BIS(47 ?cation reactions involving the phenolic hydroxyl groups HYDROXYARYL) PENTANOIC ACID 01 would conveniently be carried out by heating with a mix ture of the dibasic acid and acetic anhydride. Sylvan 0. Greenlee, Racine, Wis., assignor to The hydroxyaryl—substituted aliphatic acids contem~ S. C. Johnson & Son, Inc., Racine, Wis. plated for use in preparing the desired resinous poly No Drawing. Application June 30,1955 hydric phenols have two hydroxyphenyl groups attached ‘ Serial No.‘ 519,279’ 10 to a single carbon atom. The preparation of these sub~ stituted acids may be most conveniently carried out by 9 Claims. (Cl. 260-24)‘ condensing a keto-acid with the desired phenol. Expe rience in the preparation of bisphenols and related com pounds indicates that the carbonyl group of the keto This invention relates to new compositions which are 15 acid must be located next to a terminal carbon atom in ‘mixed esters of‘polyhydric alcohols, natural resin,acids, order to obtain satisfactory yields. A terminal carbon and hydroxyaryl-substituted aliphatic acids. atom as used herein refers to primary carbon atoms An object of this invention is to produce new com other ‘than the carboxyl carbon atom of the keto-acid. positions from natural resin acids, polyhydric alcohols Prior applications, Serial Nos. 464,607 and 489,300, and hydroxyaryl-substituted aliphatic acids which are 20 ?led October 25, 1954, and February 18, 1955, respec~ valuable as intermediates in the production of other more tively, disclose a number of illustrative compounds suit complex compositions.
    [Show full text]
  • Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-Gc Analysis
    ORIGINAL RESEARCH published: 25 January 2016 doi: 10.3389/fenrg.2016.00002 Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis Anne E. Harman-Ware1* , Robert Sykes1 , Gary F. Peter2 and Mark Davis1 1 National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA, 2 School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from Edited by: the pine samples were quantified, using standard curves, and included the monoter- Subba Rao Chaganti, University of Windsor, Canada penes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included Reviewed by: caryophyllene, humulene, and α-bisabolene. Diterpenoid resin acids were quantified in Yu-Shen Cheng, derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabi- National Yunlin University of Science and Technology, Taiwan etic, abietic, and neoabietic acids.
    [Show full text]
  • A Review of Wood Biomass-Based Fatty Acidsand Rosin Acids Use In
    polymers Review A Review of Wood Biomass-Based Fatty Acids and Rosin Acids Use in Polymeric Materials Laima Vevere *, Anda Fridrihsone , Mikelis Kirpluks and Ugis Cabulis Polymer Department, Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006 Riga, Latvia; [email protected] (A.F.); [email protected] (M.K.); [email protected] (U.C.) * Correspondence: [email protected]; Tel.: +371-28869638 Received: 26 October 2020; Accepted: 14 November 2020; Published: 16 November 2020 Abstract: In recent decades, vegetable oils as a potential replacement for petrochemical materials have been extensively studied. Tall oil (crude tall oil, distilled tall oil, tall oil fatty acids, and rosin acids) is a good source to be turned into polymeric materials. Unlike vegetable oils, tall oil is considered as lignocellulosic plant biomass waste and is considered to be the second-generation raw material, thus it is not competing with the food and feed chain. The main purpose of this review article is to identify in what kind of polymeric materials wood biomass-based fatty acids and rosin acids have been applied and their impact on the properties. Keywords: crude tall oil; tall oil; fatty acids; rosin acids; polymer materials 1. Introduction The success of plastics as a commodity has been significant and polymer materials are a part of everyday life. The advantages of polymers over other materials can be attributed to their adjustable properties, low cost and ease of processing. Worldwide, the manufacturing of polymers grows every year, reaching almost 360 million tonnes in 2018 [1]. In the light of environmental challenges of the 21st century, the development of novel low-cost and scalable monomers from renewable resources is essential.
    [Show full text]
  • Tall Oil Production and Processing
    TALL OIL PRODUCTION AND PROCESSING Tall oil is a mixture of mainly acidic compounds found, like turpentine, in pine trees and obtained as a by-product of the pulp and paper industry. It is used as a resin in many different industries, including mining, paper manufacture, paint manufacture and synthetic rubber manufacture. It is extracted at the pulp and paper mill, and undergoes the first two processing steps there. Step 1 - Extraction of tall oil soap The "black liquor" from the paper making process is concentrated and left to settle. The top layer is known as "tall oil soap", and is skimmed off. The rest is recycled for further use in paper making. Step2 - Production of crude tall oil The tall oil soap is reacted with acid to form crude tall oil. The following reaction occurs: + + R—COONa + H3O → R—COOH + H2O + Na The acids formed from this reaction, along with small quantities of other compounds of similar volatility, make up the crude tall oil. All crude tall oil produced in New Zealand is then sent to a plant in Mt. Maunganui to complete processing. Step 3 - Crude tall oil distillation The oil is distilled into five components with different boiling points: heads (which boils first), then fatty acids, distilled tall oil (a mixture of fatty and resin acids), resin acids (collectively known as rosin) and pitch (the residue). All of these can be used in various industries as is, but some of the rosin is also further processed on site. Step 4 - Production of rosin paper size "Paper size" is the substance that stops all paper from behaving like blotting paper.
    [Show full text]
  • Intake of Water Containing Condensed Tannin by Cattle and Sheep Scott L
    Rangeland Ecol Manage 61:354–358 | May 2008 Research Note Intake of Water Containing Condensed Tannin by Cattle and Sheep Scott L. Kronberg Author is Animal Scientist, US Department of Agriculture–Agricultural Research Service, Northern Great Plains Research Laboratory, Mandan, ND 58554, USA. Abstract Ingestion of small amounts of condensed tannin (CT) by ruminants can prevent bloat, improve nitrogen retention, and reduce excretion of urea, a precursor of ammonia and the greenhouse gas nitrous oxide. Because grasses and many forbs don’t contain CT, it is desirable to find a reliable way to have ruminant livestock ingest small amounts of CT when they consume high-quality forage. Putting CT in their drinking water may be a reliable approach, but only if all animals drink enough to meet their requirements for water. Therefore, objectives of this study were to determine the amount of variation in intake of water containing different amounts of CT when this was the only water available, and if cattle and sheep would drink water with CT in it if offered tap water simultaneously. Animals were penned or pastured individually, fed twice daily (first cattle and sheep trial) or grazed (second cattle trial) and had ad libitum access to tannin water, tap water, or both. Liquid intake was measured daily. Steers drank tannin solutions (mean daily intake 49.7–58.3 kg), but variation in intake among steers was higher than for tap water (SD were 44%–58% greater for the two most concentrated tannin solutions). At the highest concentration of tannin, steers ingested 2.3% of their daily feed intake in CT.
    [Show full text]
  • Fear Or Report Name. Pdf
    S==dz 3 fate The electronic version of this file/report should have the file name: Type of document . S jte Number . Year-Month . File J'ea.2- Fear or Report name. pdf I , .pdf example: letter. Year-Month. File Year-Year . pdf worY-fhn. R\0... 905-004. /989- 02-01· Cloiu re-z>), 41*18 4- VOLZ .pdf . example:, report . Site Number . Year-Month . Report Name . pdf · · - Project Site numbers ·will be proceeded by the following:. Municipal Brownfields -' B . Superfund - HW Spills - SP ER:P-E VCP -V BCP-C 1 Engineering Report 1 1 PALMER STREET LANDFILL 1 CLOSURE/POST-CLOSURE PLAN (EPA ID NYD002126910) 1 VOLUME 11 : APPENDICES 1 Y 1 2 1 Moench Tanning Company 1 Diision of Brown Group, Inc. Gowanda, New York J 1 1 October 4. 1985 Revised November 1987 Revised February 1989 1 Revised August 1989 Project No. 0605-12-1 1 IRNI ENVIRONMENTAL ENGINEERS, SCIENTISTS & PLANNERS 1 1 1 =Isr 1 MOENCH TANNING COMPANY PALMER STREET LANDFILL CLOSURE/POST-CLOSURE PLAN 1 TABLE OF CONTENTS 1 VOLUME 1 Page 1 1.0 FACILITY DESCRIPTION ........... 1 1 1 1 1.1 General Description ........... ... 1.1.1 Products Produced ........ 1 1 1.1.2 Site Description ........ 1 2 1 1 2 1.2 Waste Generation ........./. .. 1.2.1 Maximum Hazardous Waste Inventory 1 4 1.3 Landfill Operation ........... 1 5 1 6 1 1.4 Topographic Map ........... .. 1.5 Facility Location Information ...... 1 6 1.5.1 Seismic Standard ........ .. 1 6 1 1.5.2 Floodplain Standard ....... 1 -6 1 7 1.5.3 Demonstration of Compliance ..
    [Show full text]