1996Aj 112. . 105G the Astronomical Journal

Total Page:16

File Type:pdf, Size:1020Kb

1996Aj 112. . 105G the Astronomical Journal 105G . THE ASTRONOMICAL JOURNAL VOLUME 112, NUMBER 1 JULY 1996 112. THE CENTERS OF EARLY-TYPE GALAXIES WITH HST. III. NON-PARAMETRIC RECOVERY OF STELLAR LUMINOSITY DISTRIBUTIONS Karl Gebhardt and Douglas Richstone 1996AJ Department of Astronomy, Dennison Building, University of Michigan, Ann Arbor, Michigan 48109 Electronic mail: [email protected], [email protected] Edward A. Ajhar and Tod R. Lauer Kitt Peak National Observatory, National Optical Astronomy Observatories, P. O. Box 26732, Tucson, Arizona 85726 Yong-Ik Byun and John Kormendy Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822 Alan Dressler The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, California 91101 S. M. Faber and Carl Grillmair UCO/Lick Observatories, Board of Studies in Astronomy and Astrophysics, University of California, Santa Cruz, California 95064 Scott Tremaine Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, M5S 3H8, Canada Received 1995 November 3; revised 1996 March 8 ABSTRACT We have non-parametrically determined the luminosity density profiles and their logarithmic slopes for 42 early-type galaxies observed with HST. Assuming that the isodensity contours are spheroidal, then the luminosity density is uniquely determined from the surface brightness data through the Abel equation. For nearly all the galaxies in our sample, the logarithmic slope of the luminosity density (S = d log v/dlog r) measured at 0.1" (the innermost reliable measurement with the uncorrected HST) is significantly different from zero; i.e., most elliptical galaxies have cusps. There are only two galaxies for which an analytic core (S—>0) cannot be excluded. The distribution of logarithmic slopes at 0.1" appears to be bimodal, confirming the conclusion of Lauer et al [AJ, 110, 2622 (1995)] that early-type galaxies can be divided into two types based on their surface brightness profiles; i.e., those with cuspy cores and those whose steep power-law profiles continue essentially unchanged in to the resolution limit. The peaks in the slope distribution occur 3i S= —0.8 and -1.9. More than half of the galaxies have slopes steeper than -1.0. Taken together with the recent theoretical work of Merritt and Fridman, these results suggest that many (and maybe most) elliptical galaxies are either nearly axisymmetric or spherical near the center, or slowly evolve due to the influence of stochastic orbits. © 1996 American Astronomical Society. 1. INTRODUCTION pending on energy) of the orbits are irregular. This is in sharp contrast with separable triaxial potentials, in which all The mass density distribution for galaxies has important of the orbits are regular (reviewed in de Zeeuw & Franx consequences for the phase space structure of the galaxy 1991). In all of these potentials, the density is well behaved (Gerhard 1987; Hasan & Norman 1990; Lees & Schwarzs- (Taylor series expandable) near the center and, therefore, child 1992; Merritt & Fridman 1995, 1996). In particular, they can be described as having “analytic” cores. Merritt & Fridman (1996) studied the influence of a central Merritt and Fridman’s work strongly suggests that in gen- density cusp on the orbital structure by following orbits in a eral, if the density distribution has a nonzero logarithmic potential with a cusp and building self-consistent models slope near the center, the orbits that pass near the center (i.e., from the orbit library. They have shown that in a triaxial box orbits) will be chaotic. Therefore, if the density distribu- -2 potential with a density varying as p r , which they term tion is triaxial and has d log p/d log r 1/2, or steeper, a “strong cusp,” a fraction 80% of the orbits are irregular, then stochasticity is likely to play a critical role in the struc- that is, they conserve energy but have no other isolating in- ture and evolution of the central regions of the galaxy (Mer- tegrals. This behavior is caused by scattering off the steep ritt & Fridman 1995). The role of a central cusp is less im- inner potential spike. They also showed that if p r-1, portant in the axisymmetric case since orbits do not pass near which they term a “weak cusp,” a fraction 60%-80% (de- the center because they conserve one component of the an- 105 Astron. J. 112 (1), July 1996 0004-6256/96/112(l)/105/9/$6.00 © 1996 Am. Astron. Soc. 105 © American Astronomical Society • Provided by the NASA Astrophysics Data System 105G . 106 GEBHARDT ETAL: EARLY-TYPE GALAXIES. III. 106 112. guiar momentum. Merritt & Fridman’s work emphasizes the a discontinuous mapping from the surface brightness to the important role of high resolution surface brightness distribu- luminosity density near y=0. If the model has y exactly tions in understanding the dynamics of elliptical galaxies and = 0 and a = 2, then the deprojected model will have an ana- spiral bulges. lytic core. For any value of y greater than zero, even by an 1996AJ Lauer et al (1995, Paper I) have presented surface bright- arbitrarily small amount, deprojecting either Eqs. 3 or 4 will ness profiles for early-type galaxies observed with the uncor- lead to an asymptotic value of d log v{r)ld log r at least as rected HST. These can be deprojected to obtain the luminos- steep as —1. However, the radii at which this discontinuity ity density which we assume also represents the mass density occurs are smaller than the HST resolution for most of the profile. The existence of a central massive dark object galaxies in our sample, and this effect will not be as signifi- (MDO) will only increase the central mass concentration, so cant. This point is also illustrated in Figure 8 in Paper I. the luminosity density probably provides a lower limit for This argument suggests that estimates of the density and the mass concentration. Deprojection to obtain the mass den- its derivative at small radii may be suspect in galaxies with sity is formally simple in the case of spherical (or spheroidal) relatively flat inner surface brightness profiles. In view of the symmetry. If the galaxy has a luminosity density v(r), then importance of the density slope in determining dynamics and the surface brightness as a function of projected radius is evolution of the center of the galaxy, and because of the 3 potential sensitivity of some of our earlier conclusions to this v(r)rdr problem, we have recomputed the density and its derivative 1{R) (1) =/,R Vr2-/?2' at 0.1" using non-parametric methods in all of the galaxies reported in Paper I and some additional galaxies (a similar This equation is an Abel integral equation with solution analysis was done on a smaller sample of six galaxies by given by Merritt & Fridman 1995). Various methods to handle Eq. 2 1 C™dl dR have been discussed in the statistics literature and many of 2 2 (2) these are now being introduced to astronomy (Merritt & wir dR ^ -r ' Tremblay 1994, Gebhardt & Fischer 1995). In the present Cast in this way, the solution looks deceptively simple. In case, two obvious choices are a kernel estimator or a smooth- practice any noise in the data is amplified by the construction ing spline fit to the data. We choose the latter method and of v(r), and further amplified by a second differentiation to describe it in some detail below. construct S=d log v(r)/d\og r. In Paper I, we followed the We also rediscuss the question of whether there appear to time honored procedure of fitting a parametric model to the be two classes of objects in this sample, based on the loga- data before deprojecting. The model had the form rithmic slope of the central density. The existence of two a classes continues to appear probable. 2^~ Ib /(Ä) ~ (r/r^)^ 1 + ' (3) 2. DATA This parametric model was fitted to the observed data by a maximum-likelihood technique (Byun et al. 1996, Paper II). The data comprise the surface brightness profiles for the The parametric model can then be inverted numerically us- 45 galaxies in Paper I and 21 galaxies taken from the HST ing Eq. 2 to estimate the stellar density run near the center. archive (presented in Byun et al 1996). All of the measure- While this approach is reasonable and should yield good ments are from the uncorrected HST. The 21 additional gal- estimates of v if the parametric model fits the data well, there axies, originally observed as part of various GO and GTO is some cause for concern in its application. programs, were obtained from the HST archive when they It is easiest to understand this concern by contemplating became publicly available. All images were deconvolved us- Fig. 3 and Eq. 28 of Tremaine et al (1994) (see also Dehnen ing 80 iterations of the the Lucy-Richardson algorithm (Lucy 1993). That paper examined a variety of properties of 1974; Richardson 1972) and the same, high signal-to-noise “77-models,” with density profiles of the form composite PSFs used in Paper I. As in Paper I, we used the _V 1 PSF closest in time to the observation date for each galaxy. Pr,(r) 1 Measurement of surface brightness profiles was described in 477- r’-’a+r) ^' (4) detail in Paper I. The central density slope is not reported for The figure and Eq. 28 show that for 2<rj<?> the central those galaxies which have an AGN, inner dust obscuration, surface brightness is finite (and therefore or central flat-fielding defects. This was 35% of the total d log/(/?)/*/log Æ=0), despite the fact that the central den- initial sample, and we therefore have 42 remaining galaxies sity is infinite and the central value of d log v{r)ld log r var- which are used in the following analysis.
Recommended publications
  • Distribuição De Matéria De Sistemas Estelares Esferoidais: Propriedades Dinâmicas, Intrínsecas E Observáveis
    Universidade Federal do Rio Grande - FURG Instituto de Matemática, Estatística e Física - IMEF Grupo de Astrofísica Teórica e Computacional - GATC Distribuição de Matéria de Sistemas Estelares Esferoidais: Propriedades Dinâmicas, Intrínsecas e Observáveis. Graciana Brum João Rio GrandeRS, 7 de novembro de 2013 Universidade Federal do Rio Grande - FURG Instituto de Matemática, Estatística e Física - IMEF Grupo de Astrofísica Teórica e Computacional - GATC Distribuição de Matéria de Sistemas Estelares Esferoidais: Propriedades Dinâmicas, Intrínsecas e Observáveis. Discente: Graciana Brum João Orientador: Prof. Dr. Fabricio Ferrari Trabalho de Conclusão de Curso apresentado ao curso de Física Bacharelado da Universidade Federal do Rio Grande como requisito parcial para obtenção do tíitulo de bacharel em Física. Rio Grande RS, 7 de novembro de 2013 Sumário 1 Introdução. 4 1.1 Galáxias..........................................5 1.1.1 Galáxias Espirais.................................6 1.1.2 Galáxias Espirais Barradas............................6 1.1.3 Galáxias Irregulares................................7 1.1.4 Galáxias Elípticas.................................7 1.2 Pers de Brilho......................................7 1.3 Fotometria e Massa....................................9 1.3.1 Relação Massa-Luminosidade........................... 11 1.3.2 Distribuição de Brilho supercial......................... 11 1.4 Dinâmica de Galáxias................................... 11 2 Teoria Potencial 13 2.1 Propriedades Dinâmicas, Intrínsecas e Observáveis..................
    [Show full text]
  • Copyright by Marcel Peter Bergmann 2002 the Dissertation Committee for Marcel Peter Bergmann Certifies That This Is the Approved Version of the Following Dissertation
    Copyright by Marcel Peter Bergmann 2002 The Dissertation Committee for Marcel Peter Bergmann certifies that this is the approved version of the following dissertation: Galaxy Evolution: The Relationship Between Structure, Star Formation, and Environment Committee: Gary Hill, Supervisor J. Craig Wheeler, Supervisor Inger Jørgensen Karl Gebhardt Chris Sneden Ralf Bender Galaxy Evolution: The Relationship Between Structure, Star Formation, and Environment by Marcel Peter Bergmann, B.S., M.A. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN December 2002 Dedicated to Peter, Margot, Marianne, and Ernest Bergmann who taught me the equal importance of hard work and creativity in science, and in life. Acknowledgments I enjoyed my time during grad school, and have many people to thank. First and foremost, I am deeply grateful to my advisors Inger Jørgensen and Gary Hill for mentoring me in the ways of research and the forging of a scientific career. Their never-wavering support was invaluable as I struggled through the process of writing papers and this dissertation. I would also like to thank Craig Wheeler, my faculty supervisor, for many good suggestions regarding writing and the job hunt. Karl Gebhardt, though not formally one of my supervisors, has been a great teacher and collaborator since his arrival in Texas two years ago. I look forward to many years of continued collaboration with all of these great scientists. I also discovered during graduate school that I am a social person, and rely greatly on social interaction with others to maintain my spirit and sanity.
    [Show full text]
  • Revealing Hidden Substructures in the $ M {BH} $-$\Sigma $ Diagram
    Draft version November 14, 2019 A Typeset using L TEX twocolumn style in AASTeX63 Revealing Hidden Substructures in the MBH –σ Diagram, and Refining the Bend in the L–σ Relation Nandini Sahu,1,2 Alister W. Graham2 And Benjamin L. Davis2 — 1OzGrav-Swinburne, Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia 2Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia (Accepted 2019 October 22, by The Astrophysical Journal) ABSTRACT Using 145 early- and late-type galaxies (ETGs and LTGs) with directly-measured super-massive black hole masses, MBH , we build upon our previous discoveries that: (i) LTGs, most of which have been 2.16±0.32 alleged to contain a pseudobulge, follow the relation MBH ∝ M∗,sph ; and (ii) the ETG relation 1.27±0.07 1.9±0.2 MBH ∝ M∗,sph is an artifact of ETGs with/without disks following parallel MBH ∝ M∗,sph relations which are offset by an order of magnitude in the MBH -direction. Here, we searched for substructure in the MBH –(central velocity dispersion, σ) diagram using our recently published, multi- component, galaxy decompositions; investigating divisions based on the presence of a depleted stellar core (major dry-merger), a disk (minor wet/dry-merger, gas accretion), or a bar (evolved unstable 5.75±0.34 disk). The S´ersic and core-S´ersic galaxies define two distinct relations: MBH ∝ σ and MBH ∝ 8.64±1.10 σ , with ∆rms|BH = 0.55 and 0.46 dex, respectively. We also report on the consistency with the slopes and bends in the galaxy luminosity (L)–σ relation due to S´ersic and core-S´ersic ETGs, and LTGs which all have S´ersic light-profiles.
    [Show full text]
  • VERGINE (Virgo) Aspetto, Posizione, Composizione
    VERGINE (virgo) Aspetto, posizione, composizione. Questa nota costellazione è la seconda più grande. Al suo interno gli antichi di Roma identificavano Astrea, la divinità della giustizia, a cui veniva associata la vicina costellazione della bilancia. La costellazione zodiacale viene attraversata dal Sole durante il 23 settembre. Al suo interno troviamo un interessante ammasso di galassie, questi si estendono fino ala Coma Berenices. Questo ammasso dista circa 65 milioni di a.l. e ospita fino a 3000 galassie. alfa Virginis (Spica), mag. 1.0, è una stella bianco-azzurra distante 260 a.l. È una binaria a eclissi che varia di circo 1/10 di magnitudine con un periodo di 4 giorni. beta Vir, mag. 3.6, una stella gialla distante 33 a.l. gamma Vir (Porrima), distante 36 a.l., è una celebre stella doppia. Nel suo insieme appare come una stella di mag. 2.8, ma con un piccolo telescopio sono visibili le due componenti bianco-gialle, entrambe di mag. 3.6, che orbitano l’una intorno all’altra con un periodo di 172 anni. Attualmente si stanno avvicinando; intorno al 2000 per separarle ci vorrà un telescopio da 75 mm; intorno al 2008 saranno troppo vicine per poter essere separate con un telescopio per dilettanti. delta Vir, mag. 3.4, è una gigante rossa distante 180 a.l. epsilon Vir (Vindemiatrix), mag. 2.8, è una gigante gialla distante 100 a.l. theta Vir, distante 140 a.l., è una stella doppia, visibile con un piccolo telescopio, con componenti bianco-azzurre di mag. 4.4 e 8.6.
    [Show full text]
  • X-Ray Luminosities for a Magnitude-Limited Sample of Early-Type Galaxies from the ROSAT All-Sky Survey
    Mon. Not. R. Astron. Soc. 302, 209±221 (1999) X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey J. Beuing,1* S. DoÈbereiner,2 H. BoÈhringer2 and R. Bender1 1UniversitaÈts-Sternwarte MuÈnchen, Scheinerstrasse 1, D-81679 MuÈnchen, Germany 2Max-Planck-Institut fuÈr Extraterrestrische Physik, D-85740 Garching bei MuÈnchen, Germany Accepted 1998 August 3. Received 1998 June 1; in original form 1997 December 30 Downloaded from https://academic.oup.com/mnras/article/302/2/209/968033 by guest on 30 September 2021 ABSTRACT For a magnitude-limited optical sample (BT # 13:5 mag) of early-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upper limits in the range from 1036 to 1044 erg s1. For most of the galaxies no X-ray data have been available until now. On the basis of this sample with its full sky coverage, we ®nd no galaxy with an unusually low ¯ux from discrete emitters. Below log LB < 9:2L( the X-ray emission is compatible with being entirely due to discrete sources. Above log LB < 11:2L( no galaxy with only discrete emission is found. We further con®rm earlier ®ndings that Lx is strongly correlated with LB. Over the entire data range the slope is found to be 2:23 60:12. We also ®nd a luminosity dependence of this correlation. Below 1 log Lx 40:5 erg s it is consistent with a slope of 1, as expected from discrete emission.
    [Show full text]
  • Download This Article in PDF Format
    A&A 439, 487–496 (2005) Astronomy DOI: 10.1051/0004-6361:20042529 & c ESO 2005 Astrophysics Are radio galaxies and quiescent galaxies different? Results from the analysis of HST brightness profiles, H. R. de Ruiter1,2,P.Parma2, A. Capetti3,R.Fanti4,2, R. Morganti5, and L. Santantonio6 1 INAF – Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy 2 INAF – Istituto di Radioastronomia, via Gobetti 101, 40129 Bologna, Italy 3 INAF – Osservatorio Astronomico di Torino, Strada Osservatorio 25, 10025 Pino Torinese, Italy 4 Istituto di Fisica, Università degli Studi di Bologna, via Irnerio 46, 40126 Bologna, Italy 5 Netherlands Foundation for Research in Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands 6 Università degli Studi di Torino, via Giuria 1, 10125 Torino, Italy Received 14 December 2004 / Accepted 12 April 2005 Abstract. We present a study of the optical brightness profiles of early type galaxies, using a number of samples of radio galax- ies and optically selected elliptical galaxies. For the radio galaxy samples – B2 of Fanaroff-Riley type I and 3C of Fanaroff-Riley type II – we determined a number of parameters that describe a “Nuker-law” profile, which were compared with those already known for the optically selected objects. We find that radio active galaxies are always of the “core” type (i.e. an inner Nuker law slope γ<0.3). However, there are core-type galaxies which harbor no significant radio source and which are indistinguishable from the radio active galaxies. We do not find any radio detected galaxy with a power law profile (γ>0.5).
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • X-Ray Constraints on the Local Supermassive Black Hole
    Draft version November 11, 2018 A Preprint typeset using LTEX style emulateapj v. 5/2/11 X-RAY CONSTRAINTS ON THE LOCAL SUPERMASSIVE BLACK HOLE OCCUPATION FRACTION Brendan P. Miller,1,2 Elena Gallo,1 Jenny E. Greene,3 Brandon C. Kelly,4 Tommaso Treu,4 Jong-Hak Woo5, & Vivienne Baldassare1 Draft version November 11, 2018 ABSTRACT Distinct seed formation mechanisms are imprinted upon the fraction of dwarf galaxies currently containing a central supermassive black hole. Seeding by Pop III remnants is expected to produce a higher occupation fraction than is generated with direct gas collapse precursors. Chandra observations of nearby early-type galaxies can directly detect even low-level supermassive black hole activity, and the active fraction immediately provides a firm lower limit to the occupation fraction. Here, we use the volume-limited AMUSE surveys of ∼200 optically-selected early-type galaxies to characterize simultaneously, for the first time, the occupation fraction and the scaling of LX with Mstar, accounting for intrinsic scatter, measurement uncertainties, and X-ray limits. For early-type galaxies with Mstar < 10 10 M⊙, we obtain a lower limit to the occupation fraction of >20% (at 95% confidence), but full occupation cannot be excluded. The preferred dependence of log LX upon log Mstar has a slope of ∼0.7–0.8, consistent with the “downsizing” trend previously identified from the AMUSE dataset, and a uniform Eddington efficiency is disfavored at ∼2σ. We provide guidelines for the future precision with which these parameters may be refined with larger or more sensitive samples. Subject headings: black hole physics — galaxies: nuclei 1.
    [Show full text]
  • Exploring the Star Formation History of Elliptical Galaxies Rogers, Ben; Ferreras, Ignacio; Peletier, Reynier F.; Silk, Joseph
    University of Groningen Exploring the Star Formation History of Elliptical Galaxies Rogers, Ben; Ferreras, Ignacio; Peletier, Reynier F.; Silk, Joseph Published in: Monthly Notices of the Royal Astronomical Society DOI: 10.1111/j.1365-2966.2009.15892.x IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2010 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Rogers, B., Ferreras, I., Peletier, R. F., & Silk, J. (2010). Exploring the Star Formation History of Elliptical Galaxies: Beyond Simple Stellar Populations with a New Estimator of Line Strengths. Monthly Notices of the Royal Astronomical Society, 402(1), 447-460. https://doi.org/10.1111/j.1365-2966.2009.15892.x Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • The AIMSS Project – I. Bridging the Star Cluster–Galaxy Divide †‡§¶
    MNRAS 443, 1151–1172 (2014) doi:10.1093/mnras/stu1186 ? The AIMSS Project – I. Bridging the star cluster–galaxy divide †‡§¶ Mark A. Norris,1,2k Sheila J. Kannappan,2 Duncan A. Forbes,3 Aaron J. Romanowsky,4,5 Jean P. Brodie,5 Favio Raul´ Faifer,6,7 Avon Huxor,8 Claudia Maraston,9 Amanda J. Moffett,2 Samantha J. Penny,10 Vincenzo Pota,3 Anal´ıa Smith-Castelli,6,7 Jay Strader,11 David Bradley,2 Kathleen D. Eckert,2 Dora Fohring,12,13 JoEllen McBride,2 David V. Stark2 and Ovidiu Vaduvescu12 Downloaded from https://academic.oup.com/mnras/article-abstract/443/2/1151/1058316 by guest on 04 September 2019 Affiliations are listed at the end of the paper Accepted 2014 June 16. Received 2014 May 13; in original form 2014 January 27 ABSTRACT We describe the structural and kinematic properties of the first compact stellar systems dis- covered by the Archive of Intermediate Mass Stellar Systems project. These spectroscopically 6 confirmed objects have sizes (∼6 < Re [pc] < 500) and masses (∼2 × 10 < M∗/M¯ < 6 × 109) spanning the range of massive globular clusters, ultracompact dwarfs (UCDs) and compact elliptical galaxies (cEs), completely filling the gap between star clusters and galax- ies. Several objects are close analogues to the prototypical cE, M32. These objects, which are more massive than previously discovered UCDs of the same size, further call into question the existence of a tight mass–size trend for compact stellar systems, while simultaneously strengthening the case for a universal ‘zone of avoidance’ for dynamically hot stellar systems in the mass–size plane.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]