United States Patent Office Patented Sept

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Sept 3,274,035 United States Patent Office Patented Sept. 20, 1966 2 Example I 3,274,035 METALEC COMPOSTON FOR PRODUCTION OF Ingredients: Percent by weight HYGROSCOPEC SMOKE Lithium carbonate ---------------------- 19.34 Lohr A. Barkardt and William G. Finnegan, China Lake, Hexachloroethane ----------------------- 20.66 Calif., assignors to the United States of America as Aluminum ----------------------------- 20.50 represented by the Secretary of the Navy Potassium perchlorate ------------------- 39.50 No Drawing. Fied June 5, 1964, Ser. No. 375,402 This composition burns completely and leaves no resi 4 (Caims. (C. 49-40) due, i.e., all the reaction products are volatilized. The The invention herein described may be manufactured 0. percentages of lithium carbonate and hexachloroethane and used by or for the Government of the United States may vary from the values stated so long as their mutual of America for governmental purposes without the pay proportions remain the same. ment of any royalties thereon or therefor. The ingredients are blended and compression molded This invention relates to new compositions for pyro into appropriate containers. technic production of hygroscopic Smokes. Example II Many compositions and methods are known to the art for producing smokes for concealment purposes as well Ingredients: Percent by weight as cloud seeding. A variety of haloid compositions have Lithium carbonate ----------------------- 16.9 been made which are said to produce hygroscopic Smoke. Hexachloroethane ------------------------ 18.1 They consist essentially of an admixture of an oxidant, 20 Aluminum ------------------------------ 22.3 a fuel, a halogen donor and a halogen receptor. Other Potassium perchlorate -------------------- 42.7 substances, which dispersed, have cloud nucleating char The above composition was mixed and pressed into acteristics include the well-known iodides, silver, lead, a cylinder one-inch diameter, one-half inch long with a and copper, cupro-oxide, copper sulphide, copper selenide, one-fourth inch hole. This cylinder was ignited using mercury telluride, vanadium pentoxide, silver Sulphide, 25 a loose packed mixture of 2.42% lithium carbonate, silver nitrate, silver oxide and cadmium telluride. The 2.58% hexachloroethane, 32.5% aluminum and 62.50% pyrotechnic generation of zinc, aluminum and magne potassium perchlorate in the hole as an igniter. The sium chlorides by the reaction of these metals in pow composition burned, leaving no residue and producing dered form with carbon tetrachloride and hexachloro a white Smoke cloud. The solid matter in the cloud was ethane with other additives for the production of Smokes 30 Sampled using a cold metal plate and the solid products for concealment purposes is well-known. These mate Were identified as aluminum oxide (Al2O3), potassium rials have fairly low hygroscopicities. Since dispersion chloride (KCl) and lithium chloride (LiCl). The solid of many of the above-mentioned cloud nucleating mate product was quite hygroscopic and absorbed water from rials is accomplished by use of concentrated solutions the atmosphere, although the relative humidity at the in spray-type devices, the total effectiveness is reduced. 35 time was probably below 5%. The present invention provides compositions which show The decomposition of this new composition may be as good capability of forming nuclei for cloud seeding represented by the following unbalanced equation: as any of the compositions used heretofore, and is sim A ple and easy to obtain. LiCO3 + C2Cls -- Al -- KClO --> It is therefore an object of this invention to provide 40 LiCl -- KCl -- Al2O3 -- CO2 -- CO a composition which produces hygroscopic smoke for Obviously many modifications and variations of the use in influencing the weather. present invention are possible in the light of the above Another object is to provide a material which can be teachings. It is therefore to be understood that within used for clearance of fog from large areas such as air the scope of the appended claims the invention may be craft runways. 45 practiced otherwise than as specifically described. Yet another object is to produce a hygroscopic smoke What is claimed is: for inducing precipitation from warm clouds. 1. The composition which produces hygroscopic smoke Other objects, features and many of the attendant ad comprising an admixture of the following ingredients: vantages of this invention will become readily appreciated Ingredients: Percent by weight as the same become better understood by reference to 50 the following detailed description: Lithium carbonate ---------------------- 19.34. The present invention is for a composition which upon Hexachloroethane ----------------------- 20,66 combustion yields hygroscopic smoke. It comprises a Aluminum ----------------------------- 20.50 carbonate selected from the group consisting of lithium, Potassium perchlorate ------------------- 39.50 sodium, potassium, cesium, rubidium, calcium, magne 55 2. The composition which produces hygroscopic smoke sium, strontium and barium carbonates and mixtures comprising an admixture of the following ingredients: thereof; a light metal selected from the group consist Aluminum ing of aluminum, magnesium, zinc and zirconium and Potassium perchlorate mixtures thereof; and an inorganic oxidizer selected from Lithium carbonate the group consisting of nitrates and perchlorates of so 60 Hexachloroethane; dium, lithium, potassium, calcium, barium and strontium; the percentage of said ingredients being such that and a polyhalogen compound selected from the group upon combustion of said composition a stoichi consisting of hexachloroethane and octachloropropane. ometric reaction occurs. The percentages used must be such that stoichiometric 3. A composition which produces hygroscopic smoke reactions occur and complete volatilization of the com 65 comprising the following components: bustion products is obtained. Components Parts by weight The following examples better illustrate this invention Pyrotechnic mixture ----------------------- 1.5 but should not be considered as limiting. Smoke generating mixture ----------------- 1. m 3,274,035 3 4. said pyrotechnic mixture consisting essentially of alu- References Cited by the Examiner minum and potassium perchlorate; and UNITED STATES PATENTS said smoke generating mixture consisting essentially of lithium carbonate and hexachloroethane. 2,939,780 5/1960 Brock -------------- 149-40 4. A composition which produces hygroscopic smoke 5 2,995,526 8/1961 De Ment ---------- 149-40 X comprising the following ingredients: a carbonate selected from the group consisting of so- OTHER REFERENCES dium, potassium, cesium, rubidium, calcium, magne- Bebie: Manual of Explosives, Military Pyrotechnics sium, strontium and barium carbonates and mixtures and Chemical Warfare Agents, Macmillan Co., New York, a lightthereof; metal selected from the group consisting- of mag l0 N.Y., page 79. nesium, zinc, aluminum and zirconium and mixtures References Cited by the Applicant thereof; UNITED STATES PATENTS an inorganic oxidizer selected from the group consist ing of sodium perchlorate, lithium perchlorate, po- 15 2,756,097 7/1954 Brandau et al. tassium perchlorate, calcium perchlorate, barium 2,775,515 12/1956 Magram. perchlorate, strontium perchlorate and the corre- 2,895,679 7/1959 Elton. sponding nitrates, and mixtures thereof; 2,934,275 4/1960 Ball. a polyhalogen compound selected from the group con- 2,993,648 7/1961 Blackwell. sisting of hexachloroethane and octachloropropane; 20 the percentages of said ingredients being such that upon 3,056,556 10/1962 Sanger et al. combustionaction occurs. of the composition a stoichiometric re- BENJAMIN R. PADGETT, Primary11 Ms. Examiner.Fr. 1 r. .
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Hazardous Material Inventory Statement
    City of Brooklyn Park FIRE DEPARTMENT 5200 - 85th Avenue North Brooklyn Park MN 55443 Phone: (763)493-8020 Fax: (763) 493-8391 Hazardous Materials Inventory Statement Users Guide A separate inventory statement shall be provided for each building. An amended inventory statement shall be provided within 30 days of the storage of any hazardous materials or plastics that changes or adds a hazard class or which is sufficient in quantity to cause an increase in the quantity which exceeds 5 percent for any hazard class. The hazardous materials inventory statement shall list by hazard class categories. Each grouping shall provide the following information for each hazardous material listed for that group including a total quantity for each group of hazard class. 1. Hazard class. (See attached Hazardous Materials Categories Listing) 2. Common or trade name. 3. Chemical Abstract Service Number (CAS number) found in 29 Code of Federal Regulations (C.F.R.). 4. Whether the material is pure or a mixture, and whether the material is a solid, liquid or gas 5. Maximum aggregate quantity stored at any one time. 6. Maximum aggregate quantity In-Use (Open to atmosphere) at any one time. 7. Maximum aggregate quantity In-Use (Closed to atmosphere) at any one time. 8. Storage conditions related to the storage type, high-pile, encapsulated, non-encapsulated. Attached is a listing of categories that all materials need to be organized to. Definitions of these categories are also attached for your use. At the end of this packet are blank forms for completing this project. For questions regarding Hazardous Materials Inventory Statement contact the Fire Department at 763-493-8020.
    [Show full text]
  • Towards Better Understanding of C60 Organosols†
    PCCP View Article Online PAPER View Journal | View Issue Towards better understanding of C60 organosols† a a a Cite this: Phys. Chem. Chem. Phys., Nikolay O. Mchedlov-Petrossyan,* Nika N. Kamneva, Younis T. M. Al-Shuuchi, b c d e 2016, 18,2517 Andriy I. Marynin, Olexii S. Zozulia, Alexander P. Kryshtal, Vladimir K. Klochkov and Sergey V. Shekhovtsova It is of common knowledge that fullerenes form colloids in polar solvents. However, the coagulation via electrolytes and the origin of the negative charge of species are still unexplored. Using a ‘radical À scavenger’ and electrospray ionization spectroscopy (ESI), we proved the formation of ion-radical C60 2À 2À and its (probable) transformation into C60 or (C60)2 . The coagulation of C60 organosols by NaClO4 and other perchlorates and nitrates in acetonitrile and its mixture with benzene obeys the Schulze– Hardy rule. At higher Ca(ClO4)2 and La(ClO4)3 concentrations, instead of coagulation, stable re-charged Received 7th November 2015, colloidal particles appeared, up to a zeta-potential of +(20–42) mV, as compared with À(33–35) mV of Accepted 7th December 2015 the initial organosols. The influence of both HClO4 and CF3SO3H was similar. This phenomenon is attrib- DOI: 10.1039/c5cp06806a uted to poor solvation of inorganic cations in cationo- and protophobic acetonitrile, which was proven using [2.2.2] cryptand. Further increasing the concentration of Ca(ClO4)2 led again to coagulation, thus www.rsc.org/pccp demonstrating a novel type of ‘coagulation zones’. 1. Introduction believe that
    [Show full text]
  • Experimental Deformation of Polyphase Rock Analogues
    GEOLOGICA ULTRAJECTINA Mededelingen van de Faculteit Aardwetenschappen der Universiteit Utrecht No. 110 Experimental deformation of polyphase rock analogues PAUL DIRK BONS Experinlelltal defornlation of polyphase rock analogues Experimentele deformatie van polyfase gesteente-analogen (met een samenvatting in het Nederlands) PROEFSCHRIFT TER VERKRllGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT UTRECHT OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF. DR l.A. VAN GINKEL, INGEVOLGE HET BESLUIT VAN HET COLLEGE VAN DECANEN IN HET OPENBAAR TE VERDEDIGEN OP WOENSDAG 22 SEPTEMBER 1993 DES OCHTENDS TE 10.30 UUR DOOR PAUL DIRK BONS GEBOREN OP 20 FEBRUARI 1964 TE SYDNEY, AUSTRALIE PROMOTOREN: PROF. DR S.H. WHITE (FACULTEIT AARDWETENSCHAPPEN, UNIVERSITEIT UTRECHT) PROF. DR C.W. PASSCHIER (lNSTITUT FUR GEOWISSENSCHAFTEN, JOHANNES GUTENBERG-UNIVERSITAT, MAINZ, BONDSREPUBLIEK DUITSLAND) CO-PROMOTOREN: DR J.L. URAl (SHELL RESEARCH B.V., RIJSWIJK) DR M.W. JESSELL (DEPARTMENT OF EARTH SCIENCES, MONASH UNIVERSITY, CLAYTON, AUSTRALIE) Dit proefschrift werd mogelijk gemaakt met financiele steun van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (N.W.O.), c.q. de Stichting Aardwetenschappelijk Onderzoek Nederland (A.W.O.N.), projectnummer 751-353­ 021 CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG Bons, Paul Dirk Experimental deformation of polyphase rock analogues / Paul Dirk Bons. - Utrecht: Faculteit Aardwetenschappen der Universiteit Utrecht. ­ (Geologica Ultraiectina, ISSN 0072-1026; no. 110) Proefschrift Universiteit Utrecht. - Met lit. opg. - Met samenvatting in het Nederlands. ISBN 90-71577-64-3. Trefw.: deformatie / polyfase materialen / gesteente-analogen. Some questions on polyphase materials: How many strawberries, how large in the "charlotte auxfraises"? How to characterise their distribution? How should one put the pears (aspect ratio, distribution ..
    [Show full text]
  • Layered Iron Vanadate As a High-Capacity Cathode Material for Nonaqueous Calcium-Ion Batteries
    batteries Article Layered Iron Vanadate as a High-Capacity Cathode Material for Nonaqueous Calcium-Ion Batteries Munseok S. Chae 1 , Dedy Setiawan 1, Hyojeong J. Kim 1 and Seung-Tae Hong 1,2,* 1 Department of Energy Science and Engineering, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu 42988, Korea; [email protected] (M.S.C.); [email protected] (D.S.); [email protected] (H.J.K.) 2 Energy Science and Engineering Research Center, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu 42988, Korea * Correspondence: [email protected]; Tel.: +82-53-785-6415 Abstract: Calcium-ion batteries represent a promising alternative to the current lithium-ion batteries. Nevertheless, calcium-ion intercalating materials in nonaqueous electrolytes are scarce, probably due to the difficulties in finding suitable host materials. Considering that research into calcium-ion batteries is in its infancy, discovering and characterizing new host materials would be critical to further development. Here, we demonstrate FeV3O9·1.2H2O as a high-performance calcium-ion battery cathode material that delivers a reversible discharge capacity of 303 mAh g−1 with a good cycling stability and an average discharge voltage of ~2.6 V (vs. Ca/Ca2+). The material was synthesized via a facile co-precipitation method. Its reversible capacity is the highest among calcium- ion battery materials, and it is the first example of a material with a capacity much larger than that of conventional lithium-ion battery cathode materials. Bulk intercalation of calcium into the host lattice contributed predominantly to the total capacity at a lower rate, but became comparable to that due to Citation: Chae, M.S.; Setiawan, D.; surface adsorption at a higher rate.
    [Show full text]
  • Maine Remedial Action Guidelines (Rags) for Contaminated Sites
    Maine Department of Environmental Protection Remedial Action Guidelines for Contaminated Sites (RAGs) Effective Date: May 1, 2021 Approved by: ___________________________ Date: April 27, 2021 David Burns, Director Bureau of Remediation & Waste Management Executive Summary MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION 17 State House Station | Augusta, Maine 04333-0017 www.maine.gov/dep Maine Department of Environmental Protection Remedial Action Guidelines for Contaminated Sites Contents 1 Disclaimer ...................................................................................................................... 1 2 Introduction and Purpose ............................................................................................... 1 2.1 Purpose ......................................................................................................................................... 1 2.2 Consistency with Superfund Risk Assessment .............................................................................. 1 2.3 When to Use RAGs and When to Develop a Site-Specific Risk Assessment ................................. 1 3 Applicability ................................................................................................................... 2 3.1 Applicable Programs & DEP Approval Process ............................................................................. 2 3.1.1 Uncontrolled Hazardous Substance Sites ............................................................................. 2 3.1.2 Voluntary Response Action Program
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • United States Patent Office Patented Aug
    y 2,847,481 United States Patent Office Patented Aug. 12, 1958 2 invention produces a mixture of these isomers from which the desired CsCl isomer may be separately re 2,847,481 covered in substantially pure form. Apparently, the PRODUCTION OF OCTACHELOROMETHYLENE preparation of octachloromethylenecyclopentene has CYCLOPENTENE been of only academic interest as no attempt has been made to obtain the material by an economic process Aylmer H. Maude and David S. Rosenberg, Niagara suitable for commercial manufacture. Falls, N.Y., assignors to Hooker Electrochemical Com Octachloromethylenecyclopentene is a valuable chem pany, Niagara Falls, N.Y., a corporation of New York ical intermediate, useful in the synthesis of various other No Drawing. Application August 9, 1954 0 chemicals having diverse uses in the commercial arts. Serial No. 448,736 For example, it may be used as the starting material for making perchlorofulvene by reacting it with aluminum 5 Claims. (CI. 260-648) shavings in the presence of freshly sublimed aluminum chloride in ether solution for a period of about 12 hours This invention is concerned with the production of 5 (see Roedig, Ann. 569, 161-183, (1950)). Also, various unsaturated cyclic chlorocarbons having the empirical ketones may be made from octachloromethylenecyclo formula CsCl and more particularly to the production pentene by reaction with sulfuric acid. of octachloromethylenecyclopentene. The process of It is the object of this invention to provide a method the present invention involves introducing a mixture for the production of octachloromethylenecyclopentene of a C chlorohydrocarbon containing at least three 20 by an economic process which has a direct and simple chlorine atoms and chlorine into a reaction Zone con procedure and which is readily adaptable to commercial taining a porous surface active catalyst maintained at operation.
    [Show full text]
  • Fedex Ground Hazardous Materials Shipping Guide Is Intended to Simplify Title 49 CFR
    FedEx Ground Package Systems Inc. is committed to the safe transportation of hazardous materials. It is very important that each person engaged in the transportation of hazardous materials has the proper training and is thoroughly familiar with the Title 49CFR (Code of Federal Regulations) and/or USPS Publication 52. This guide is intended only to assist you in your preparation of hazardous materials shipped via FedEx Ground Package Systems Inc. It is the shipper’s responsibility to ensure each hazardous material package is in compliance with applicable Department of Transportation (D.O.T.) regulations and FedEx Ground Package Systems Inc. requirements. Failure to comply with these regulations and requirements may subject the shipper and carrier to fines and penalties. Improperly prepared hazmat packages or documentation may be subject to an additional charge(s) due to the unexpected hanlding associated with these shipments. Due to the changing nature of D.O.T. regulations and other information, it is impossible to guarantee absolute accuracy of the material contained in this guide. FedEx Ground Package Systems Inc., therefore, cannot assume any responsibility for omissions, errors, misprinting, or ambiguity contained within this guide and shall not be held liable in any degree for any loss or injury caused by such omission or error presented in this publication. Shippers should consult the most current version of the hazardous material regulations. Training is mandatory for those shipping hazardous materials, including limited quantity and other exceptions. The www.shipsafeshipsmart.com battery and hazmat training programs offer shippers an economical source of basic ground battery and/or hazardous materials shipping as well as addressing FedEx Ground specific issues.
    [Show full text]
  • Crystallinity Changes and Phase Transitions of Selected Pharmaceutical Solids with Processing
    CRYSTALLINITY CHANGES AND PHASE TRANSITIONS OF SELECTED PHARMACEUTICAL SOLIDS WITH PROCESSING by MARION W.Y. WONG B.Sc. (Pharm), The University of British Columbia, 1988 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF’ PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Faàulty of Pharmaceutical Sciences Division of Pharmaceutics and Biopharmaceutics We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 1993 © Marion W.Y. Wong, 1993 _______________________ In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives, It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. (Signature) Department of The University of British Columbia Vancouver, Canada Date jt7’ / DE-6 (2/88) 11 ABSTRACT The solid state properties of drugs and pharmaceutical excipients can be significantly affected by processing (e.g. grinding, tabletting, heating and additive incorporation) and reflect structural changes within a solid. Such changes may involve alterations in both the chemical and physical nature of the crystal structure (e.g. hydrates), complete rearrangements of the same chemical components in three-dimensional space (e.g. polymorphs), or more subtle changes which involve neither the chemical composition nor the space lattice. These more subtle changes do not involve phase changes and are referred to as changes in the degree of crystallinity, X.
    [Show full text]
  • Semicon Cupla Seal Material Selection Table
    Seal Material Selection Table (For reference) For seal parts in the Cupla (the important parts that prevent leaking to the outside), it is important to select the most appropriate seal material to suit the property and temperature of the fluid. It is so important that wrong selection may not only completely malfunction the Cupla but also cause an unexpected accident. *The rubber material must be selected and specified by the user. Seal Material Seal Material Seal Material Fluids Fluids Fluids Fluoro Fluoro Fluoro rubber rubber rubber rubber rubber rubber Ethylene- Ethylene- Ethylene- propylene propylene propylene Perfluoroelastomer Perfluoroelastomer Perfluoroelastomer A Acetaldehyde ─ ○ ◎ B Bromine water ◎ ─ D Dichlorophenol ◎ ─ Acetic anhydride ─ ○ ◎ Butadiene ○ △ Diethanolamine ─ ○ Acetone ─ ◎ ◎ Butane ◎ ─ Diethylene glycol ◎ ◎ Acetonitrile ─ ○ Butane (liquid) ◎ ─ E Ethanol ◎ ◎ ◎ Acetophenone ─ ◎ ◎ Butane (2.2-, 3-dimethyl) ◎ ─ Ethyl acetate ─ ○ Acetylacetone ─ ◎ ◎ Butanol (Butyl alcohol) ◎ ○ Ethyl alcohol ◎ ◎ ◎ Acetyl chloride ◎ ─ Butyl acetate ─ ○ ○ Ethyl benzene ◎ ─ ◎ Air (50˚C) ◎ ◎ ◎ Butyl stearate ◎ ─ Ethyl cellulose ─ ○ Aluminium bromide (65˚C) ◎ ◎ Butylene ◎ ─ Ethyl chloride ◎ ◎ Aluminium chloride (65˚C) ◎ ◎ Butyraldehyde ─ ○ ○ Ethylene glycol ◎ ◎ ◎ Aluminium nitrate (65˚C) ─ ◎ C Calcium acetate ─ ◎ Ethylene trichloride ◎ ─ Aluminium sulfate (65˚C) ◎ ◎ Calcium acetate (65˚C) ─ ◎ F Fluorine (dry ) ─ ─ ○ Amine ─ ○ ○ Calcium carbide ─ ─ Formaldehyde ─ ─ Ammonia (anhydrous) ─ ◎ Calcium carbonate ─ ─ Furfural ─ ○ ◎ Ammonia (cool)
    [Show full text]