A Gap in the Planetesimal Disc Around HD 107146 and Asymmetric Warm Dust Emission Revealed by ALMA

Total Page:16

File Type:pdf, Size:1020Kb

A Gap in the Planetesimal Disc Around HD 107146 and Asymmetric Warm Dust Emission Revealed by ALMA MNRAS 000,1{19 (2015) Preprint 4 July 2018 Compiled using MNRAS LATEX style file v3.0 A gap in the planetesimal disc around HD 107146 and asymmetric warm dust emission revealed by ALMA S. Marino,1?, J. Carpenter,2 M. C. Wyatt1, M. Booth3, S. Casassus4;5, V. Faramaz6, V. Guzman2, A. M. Hughes7, A. Isella8, G. M. Kennedy9, L. Matr`a10, L. Ricci11 and S. Corder2;12. 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 2Joint ALMA Observatory (JAO), Alonso de Cordova 3107 Vitacura - Santiago de Chile, Chile 3Astrophysikalisches Institut und Universit¨atssternwarte, Friedrich-Schiller-Universit¨at Jena, Schillerg¨aßchen 2-3, 07745 Jena, Germany 4 ` Departamento de AstronomiIAa,, Universidad de Chile, Casilla 36-D, Santiago, Chile 5Millennium Nucleus ^aAIJProtoplanetary˘ Disks^aA˘I,_ Chile 6Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove drive, Pasadena CA 91109, USA. 7Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459, USA 8Department of Physics and Astronomy, Rice University, 6100 Main Street, MS-108, Houston, Texas 77005, USA 9Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK 10Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 11Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91130, USA 12National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT While detecting low mass exoplanets at tens of au is beyond current instrumenta- tion, debris discs provide a unique opportunity to study the outer regions of planetary systems. Here we report new ALMA observations of the 80-200 Myr old Solar ana- logue HD 107146 that reveal the radial structure of its exo-Kuiper belt at wavelengths of 1.1 and 0.86 mm. We find that the planetesimal disc is broad, extending from 40 to 140 au, and it is characterised by a circular gap extending from 60 to 100 au in which the continuum emission drops by about 50%. We also report the non-detection of the CO J=3-2 emission line, confirming that there is not enough gas to affect the dust distribution. To date, HD 107146 is the only gas-poor system showing multiple rings in the distribution of millimeter sized particles. These rings suggest a similar distribution of the planetesimals producing small dust grains that could be explained invoking the presence of one or more perturbing planets. Because the disk appears axisymmetric, such planets should be on circular orbits. By comparing N-body sim- ulations with the observed visibilities we find that to explain the radial extent and depth of the gap, it would require the presence of multiple low mass planets or a single planet that migrated through the disc. Interior to HD 107146's exo-Kuiper belt we find extended emission with a peak at ∼ 20 au and consistent with the inner warm arXiv:1805.01915v2 [astro-ph.EP] 3 Jul 2018 belt that was previously predicted based on 22µm excess as in many other systems. This warm belt is the first to be imaged, although unexpectedly suggesting that it is asymmetric. This could be due to a large belt eccentricity or due to clumpy structure produced by resonant trapping with an additional inner planet. Key words: circumstellar matter - planetary systems - planets and satellites: dy- namical evolution and stability - techniques: interferometric - methods: numerical - stars: individual: HD 107146. 1 INTRODUCTION While exoplanet campaigns have discovered thousands of ? E-mail: [email protected] close in planets in the last decade, at separations greater © 2015 The Authors 2 S. Marino et al. than 10 au it has only been possible to detect a few gas gi- et al. 2011) and HD 131835 (Feldt et al. 2017). However, ants, mainly through direct imaging 1 (Marois et al. 2008; alternative scenarios without planets that could also repro- Lagrange et al. 2009; Rameau et al. 2013). Protoplane- duce the observed structure have not been ruled out yet tary disc observations, on the other hand, have shown that in these systems. For example, multiple ring structures can enough mass in both dust and gas to form massive planets arise from gas-dust interactions if gas and dust densities are resides at large stellocentric distances (see review by An- similar (Lyra & Kuchner 2013; Richert et al. 2017), which drews 2015). In addition, the detection of cold dusty debris might explain HD 131835's rings since large amounts of CO discs at tens of au shows that planetesimals can and do form gas (likely primordial origin) have been found in this sys- at tens and hundreds of au in extrasolar systems (e.g. Su tem (Mo´or et al. 2017). Moreover, the double ring structure et al. 2006; Hillenbrand et al. 2008; Wyatt 2008; Carpenter around HD 92945 and HD 131835 has only been identified in et al. 2009; Eiroa et al. 2013; Absil et al. 2013; Matthews scattered light images, tracing small dust grains whose dis- et al. 2014a; Thureau et al. 2014; Montesinos et al. 2016; tribution can be highly affected by radiation forces (Burns Hughes et al. 2018), although the exact planetesimal belt et al. 1979), therefore not necessarily tracing the distribution formation mechanism is a matter of debate (e.g. Matr`aet al. of planetesimals (e.g. Wyatt 2006). 2018a). Only HD 107146, an ∼ 80 − 200 Myr old G2V star It is natural then to wonder how far out can planets (Williams et al. 2004, and references therein) at a dis- form? In situ formation of the imaged distant gas giants is tance of 27:5 ± 0:3 pc (Gaia Collaboration et al. 2016a,b), challenging as the growth timescale of their cores can easily has a double debris ring structure tentatively identified take longer than the protoplanetary gas-rich phase (Pollack at longer wavelengths thanks to the Atacama Large Mil- et al. 1996; Rafikov 2004; Levison et al. 2010). Gravitational limeter/submillimeter Array (ALMA, Ricci et al. 2015a). instability was thought to be the only potential pathway At these wavelengths observations trace mm-sized dust for towards in-situ formation at tens of au (Boss 1997; Boley which radiation forces are negligible, therefore indicating 2009), but the revisited growth timescale of embryos through that the double ring structure is imprinted in the planetesi- pebble accretion could be fast enough to form ice giants or mal distribution as well. Moreover, these observations ruled the core of gas giants during the disc lifetime (Johansen out the presence of gas at densities high enough to be re- & Lacerda 2010; Ormel & Klahr 2010; Lambrechts & Jo- sponsible for such structure. The debris disc surrounding hansen 2012; Morbidelli & Nesvorny 2012; Bitsch et al. 2015; HD 107146 was first discovered by its infrared (IR) excess Johansen & Lambrechts 2017). Alternatively, the observed using IRAS data (Silverstone 2000), but it was not until re- giant planets at tens of au may have formed closer in and cently that the disc was resolved by the Hubble Space Tele- evolved to their current orbits by migrating outward (Crida scope (HST) in scattered light, revealing a nearly face on disc et al. 2009), as could be the case for HR 8799 with four gas with a surface brightness peak at 120 au and extending out giants in mean motion resonances (Marois et al. 2008, 2010) to ∼ 160 au (Ardila et al. 2004; Ertel et al. 2011; Schneider surrounded by an outer debris disc (Su et al. 2009; Matthews et al. 2014). Despite HST's high resolution, limitations in et al. 2014b; Booth et al. 2016), or may have been scattered subtracting the stellar emission or a smooth distribution of from closer in onto a highly eccentric orbit (Ford & Rasio small dust likely kept the double ring structure hidden. Us- 2008; Chatterjee et al. 2008; Juri´c& Tremaine 2008), as has ing ALMA's unprecedented sensitivity and resolution, Ricci been suggested for Fomalhaut b (Kalas et al. 2008, 2013; et al.(2015a) showed that this broad disc extended from Faramaz et al. 2015). On the other hand, after the disper- about 30 to 150 au, but that it had a decrease in the dust sal of gas and dust, planetesimals could continue growing to density at intermediate radii, which could correspond to a form icy planets at tens of au over 100 Myr timescales; how- gap produced by a planet of a few Earth masses clearing its ever, numerical studies show that once a Pluto size object orbit at 80 au through scattering. Finally, analysis of Spitzer is formed at 30-150 au within a disc of planetesimals, these spectroscopic and photometric data revealed the presence of are inevitably stirred, stopping growth and the formation of an extra unresolved warm dust component in the system, higher mass planets through oligarchic growth (Kenyon & at a temperature of ∼120 K and thus inferred to be located Bromley 2002, 2008, 2010). Thus, it is not yet clear how far between 5-15 au from the star (Morales et al. 2011; Kennedy from their stars planets can form. Moreover, the discovery & Wyatt 2014). of vast amounts of gas (possibly primordial) in systems with Despite the tentative evidence of planets producing low, debris-like levels of dust (so-called \hybrid discs", e.g. these gaps around their orbits, neither the HD 107146 Mo´or et al. 2017) has opened the possibility for long lived ALMA observations, nor the scattered light observations of gaseous discs that could facilitate the formation of both ice HD 92945 and HD 131835, ruled out alternative scenarios in and gas giant planets at tens of au.
Recommended publications
  • 1986 DA and 1986 EB: IRON OBJECTS in NEAR-Eakm ORBITS; J.C
    LPSC XVIII 349 1986 DA AND 1986 EB: IRON OBJECTS IN NEAR-EAKm ORBITS; J.C. Gra- die, Planetary Geosciences Division, Hawaii Institute of Geophysics, University of Hawaii, Bonolalu, HI 96822 and E.F. Tede sco, Jet Propulsion Laboratory, Pasadena, CA 91109. The estimated 1,500 asteroids, with diameters larger than a few hun- dred meters, which cross or closely approach the Earth' s orbit are divided into three orbital classes: the Aten asteroids with semi-maj or axes less than 1 AU and which cross the Earth's orbit near aphelia, the Apollo asteroids with semi-major axes greater than or equal to 1 AU and with per- ihelia greater than 1.17 AU, and the Amor asteroids with perihelia between 1.17 and 1.3 AU (1). These asteroids which have orbits stable against col- 8 lision with or ejection by a planet on the order of lo7 to 10 years must be derived from either extinct cometary naclei (2) or the asteroid belt (C f. 1). These near-Earth asteroids are important for several diverse reasons: they represent a group of obj ect s from which at least some of the meteor- ites arc derived, they may harbor extinct cometary nuclei thought to con- tain some of the most primitive and, perhaps, pristine material in the solar system, occasionally collide with the Earth, and are among the most accessible objects in the solar system. Study of the physical properties of the Earth-approaching asteroids is constrained by the generally long time between close approaches and poorly known orbits.
    [Show full text]
  • NASA Chat: Asteroid 1998 QE2 to Sail Past Earth Expert Dr. Bill Cooke May 30, 2013 ______
    NASA Chat: Asteroid 1998 QE2 to Sail Past Earth Expert Dr. Bill Cooke May 30, 2013 _____________________________________________________________________________________ Moderator_Brooke: Welcome everyone! We're just about to start the chat, so please go ahead and send in your questions. Thanks for being here -- now let's talk asteroids! RSEW: Hello Bill_Cooke: We're here! Do you have a question? Moderator_Brooke: All right, here we go...Bill, over to you. tyler_hussey : I was wondering if people in New Hampshire will be able to view this asteroid pass by, and if so, what is the length it will be visible, what direction, and how close to the horizon? Bill_Cooke; Hi Tyler. You need a telescope to see the QE2 asteroid, and of course, it needs to be dark. It's visible there in N.H. with a small telescope about 10:30 p.m. local time. It will be in the constellation Hydra and be about eleventh magnitude. tyler_hussey: I was wondering if people in New Hampshire will be able to view this asteroid pass by, and if so, what is the length it will be visible, what direction, and how close to the horizon? Bill_Cooke: Unless you are Asia or Europe, you will not be able to see the asteroid at close approach. However, you can see it tonight around 10:30 pm local time with a small telescope. It will be in the constellation of Hydra. Moderator_Brooke: You can also find more information about QE2 at this link: http://www.nasa.gov/mission_pages/asteroids/news/asteroid20130530.html guest100: where did this asteroid come from Bill_Cooke: The asteroid 1998 QE2 is an amor asteroid which means it approaches Earth from the outside.
    [Show full text]
  • Multi-Wavelength Modeling of the Spatially Resolved Debris Disk of HD 107146
    A&A 533, A132 (2011) Astronomy DOI: 10.1051/0004-6361/201015910 & c ESO 2011 Astrophysics Multi-wavelength modeling of the spatially resolved debris disk of HD 107146 S. Ertel1,S.Wolf1, S. Metchev2,G.Schneider3,J.M.Carpenter4,M.R.Meyer5, L. A. Hillenbrand4, and M. D. Silverstone6 1 Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany e-mail: [email protected] 2 Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800, USA 3 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 4 Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA 5 Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Straße 27, 8093 Zürich, Switzerland 6 Department of Physics & Astronomy, University of Alabama, 326 Gallalee, Tuscaloosa, AL 35487-0324, USA Received 12 October 2010 / Accepted 1 July 2011 ABSTRACT Aims. We aim to constrain the location, composition, and dynamical state of planetesimal populations and dust around the young, sun-like (G2 V) star HD 107146. Methods. We consider coronagraphic observations obtained with the Advanced Camera for Surveys (HST/ACS) onboard the Hubble Space Telescope (HST) in broad V (λc ≈ 0.6 μm) and broad I (λc ≈ 0.8 μm) filters, a resolved 1.3 mm map obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA), Spitzer/IRS low resolution spectra in the range of 7.6 μm to 37.0 μm, and the spectral energy distribution (SED) of the object at wavelengths ranging from 3.5 μmto3.1 mm.
    [Show full text]
  • 1. Some of the Definitions of the Different Types of Objects in the Solar
    1. Some of the definitions of the different types of objects in has the greatest orbital inclination (orbit at the the solar system overlap. Which one of the greatest angle to that of Earth)? following pairs does not overlap? That is, if an A) Mercury object can be described by one of the labels, it B) Mars cannot be described by the other. C) Jupiter A) dwarf planet and asteroid D) Pluto B) dwarf planet and Kuiper belt object C) satellite and Kuiper belt object D) meteoroid and planet 10. Of the following objects in the solar system, which one has the greatest orbital eccentricity and therefore the most elliptical orbit? 2. Which one of the following is a small solar system body? A) Mercury A) Rhea, a moon of Saturn B) Mars B) Pluto C) Earth C) Ceres (an asteroid) D) Pluto D) Mathilde (an asteroid) 11. What is the largest moon of the dwarf planet Pluto 3. Which of the following objects was discovered in the called? twentieth century? A) Chiron A) Pluto B) Callisto B) Uranus C) Charon C) Neptune D) Triton D) Ceres 12. If you were standing on Pluto, how often would you see 4. Pluto was discovered in the satellite Charon rise above the horizon each A) 1930. day? B) 1846. A) once each 6-hour day as Pluto rotates on its axis C) 1609. B) twice each 6-hour day because Charon is in a retrograde D) 1781. orbit C) once every 2 days because Charon orbits in the same direction Pluto rotates but more slowly 5.
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • Arxiv:0705.4290V2 [Astro-Ph] 23 Aug 2007
    DRAFT VERSION NOVEMBER 11, 2018 Preprint typeset using LATEX style emulateapj v. 08/13/06 THE GEMINI DEEP PLANET SURVEY – GDPS∗ DAVID LAFRENIÈREA,RENÉ DOYONA , CHRISTIAN MAROISB ,DANIEL NADEAUA, BEN R. OPPENHEIMERC,PATRICK F. ROCHED , FRANÇOIS RIGAUTE, JAMES R. GRAHAMF ,RAY JAYAWARDHANAG,DOUG JOHNSTONEH,PAUL G. KALASF ,BRUCE MACINTOSHB, RENÉ RACINEA Draft version November 11, 2018 ABSTRACT We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around nearby young stars. The observations were obtained with the Altair adaptive optics system at the Gemini North telescope and angular differential imaging was used to suppress the speckle noise of the central star. Detection limits for the 85 stars observed are presented, along with a list of all faint point sources detected around them. Typically, the observations are sensitive to angular separations beyond 0.5′′ with 5σ contrast sensitivities in magnitude difference at 1.6 µm of 9.5 at 0.5′′, 12.9 at 1′′, 15.0 at 2′′, and 16.5 at 5′′. For the typical target of the survey, a 100 Myr old K0 star located 22 pc from the Sun, the observations are sensitive enough to detect planets more massive than 2 MJup with a projected separation in the range 40–200 AU. Depending on the age, spectral type, and distance of the target stars, the detection limit can be as low as 1 MJup. Second epoch observations of 48 stars with candidates (out of 54) have confirmed that all candidates are∼ unrelated background stars. A detailed statistical analysis of the survey results, yielding upper limits on the fractions of stars with giant planet or low mass brown dwarf companions, is presented.
    [Show full text]
  • “Target Selection for a HAIV Flight Demo Mission,” IAA-PDC13-04
    Planetary Defense Conference 2013 IAA-PDC13-04-08 Target Selection for a Hypervelocity Asteroid Intercept Vehicle Flight Validation Mission Sam Wagnera,1,∗, Bong Wieb,2, Brent W. Barbeec,3 aIowa State University, 2271 Howe Hall, Room 2348, Ames, IA 50011-2271, USA bIowa State University, 2271 Howe Hall, Room 2325, Ames, IA 50011-2271, USA cNASA/GSFC, Code 595, 8800 Greenbelt Road, Greenbelt, MD, 20771, USA, 301.286.1837 Abstract Asteroids and comets have collided with the Earth in the past and will do so again in the future. Throughout Earth’s history these collisions have played a significant role in shaping Earth’s biological and geological histories. The planetary defense community has been examining a variety of options for mitigating the impact threat of asteroids and comets that approach or cross Earth’s orbit, known as near-Earth objects (NEOs). This paper discusses the preliminary study results of selecting small (100-m class) NEO targets and mission design trade-offs for flight validating some key planetary defense technologies. In particular, this paper focuses on a planetary defense demo mission for validating the effectiveness of a Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, currently being investigated by the Asteroid Deflection Research Center (ADRC) for a NIAC (NASA Advanced Innovative Concepts) Phase 2 project. Introduction Geological evidence shows that asteroids and comets have collided with the Earth in the past and will do so in the future. Such collisions have played an important role in shaping the Earth’s biological and geological histories. Many researchers in the planetary defense community have examined a variety of options for mitigating the impact threat of Earth approaching or crossing asteroids and comets, known as near-Earth objects (NEOs).
    [Show full text]
  • Optical Counterparts of ROSAT X-Ray Sources in Two Selected Fields at Low
    Astronomy & Astrophysics manuscript no. sbg˙comsge˙ed c ESO 2018 October 16, 2018 Optical counterparts of ROSAT X-ray sources in two selected fields at low vs. high Galactic latitudes J. Greiner1, G.A. Richter2 1 Max-Planck-Institut f¨ur extraterrestrische Physik, 85740 Garching, Germany 2 Sternwarte Sonneberg, 96515 Sonneberg, Germany Received 14 October 2013 / Accepted 12 August 2014 ABSTRACT Context. The optical identification of large number of X-ray sources such as those from the ROSAT All-Sky Survey is challenging with conventional spectroscopic follow-up observations. Aims. We investigate two ROSAT All-Sky Survey fields of size 10◦× 10◦ each, one at galactic latitude b = 83◦ (26 Com), the other at b = –5◦ (γ Sge), in order to optically identify the majority of sources. Methods. We used optical variability, among other more standard methods, as a means of identifying a large number of ROSAT All- Sky Survey sources. All objects fainter than about 12 mag and brighter than about 17 mag, in or near the error circle of the ROSAT positions, were tested for optical variability on hundreds of archival plates of the Sonneberg field patrol. Results. The present paper contains probable optical identifications of altogether 256 of the 370 ROSAT sources analysed. In partic- ular, we found 126 AGN (some of them may be misclassified CVs), 17 likely clusters of galaxies, 16 eruptive double stars (mostly CVs), 43 chromospherically active stars, 65 stars brighter than about 13 mag, 7 UV Cet stars, 3 semiregular resp. slow irregular variable stars of late spectral type, 2 DA white dwarfs, 1 Am star, 1 supernova remnant and 1 planetary nebula.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles.
    [Show full text]
  • Planetary Defense Space System Design, MAE 342, Princeton University Robert Stengel
    2/12/20 Planetary Defense Space System Design, MAE 342, Princeton University Robert Stengel § Asteroids and Comets § Spacecraft § Detection, Impact Prediction, and Warning § Options for Minimizing the Hazard § The 2020 UA Project Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 What We Want to Avoid 2 2 1 2/12/20 Asteroids and Comets DO Hit Planets [Comet Schumacher-Levy 9 (1994)] • Trapped in orbit around Jupiter ~1929 • Periapsis within “The Roche Limit” • Fragmented by tidal forces from 1992 encounter with Jupiter 3 3 Asteroid Paths Posing Hazard to Earth 4 4 2 2/12/20 Potentially Hazardous Object/Asteroid (PHO/A) Toutatis Physical Characteristics PHA Characteristics (2013) § Dimensions: 5 x 2 x 2 km § Diameter > 140 m § Mass = 5 x 1013 kg § Passes within 7.6 x 106 § Period = 4 yr km of Earth (0.08 AU) § Aphelion = 4.1 AU § > 1,650 PHAs (2016) § Perihelion = 0.94 AU 5 5 Comets Leave Trails of Rocks and Gravel That Become Meteorites on Encountering Earth’s Atmosphere • Tempel- Temple-Tuttle Tuttle – Period ~ 33 yr – Leonid Meteor Showers each Summer Tempel- • Swift-Tuttle Tuttle Orbit – Period ~ 133 yr – Perseid Meteor Leonid Showers each Summer Meteor Perseid Meteor 6 6 3 2/12/20 Known Asteroid “Impacts”, 2000 - 2013 7 7 Chelyabinsk Meteor, Feb 15, 2013 Chelyabinsk Flight Path, 2013 • No warning, approach from Sun • 500 kT airburst explosion at altitude of 30 km • Velocity ~ 19 km/s (wrt atmosphere), 30 km/s (V∞) • Diameter ~ 20 m • Mass ~ 12,000-13,000
    [Show full text]
  • An Innovative Solution to NASA's NEO Impact Threat Mitigation Grand
    Final Technical Report of a NIAC Phase 2 Study December 9, 2014 NASA Grant and Cooperative Agreement Number: NNX12AQ60G NIAC Phase 2 Study Period: 09/10/2012 – 09/09/2014 An Innovative Solution to NASA’s NEO Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development PI: Dr. Bong Wie, Vance Coffman Endowed Chair Professor Asteroid Deflection Research Center Department of Aerospace Engineering Iowa State University, Ames, IA 50011 email: [email protected] (515) 294-3124 Co-I: Brent Barbee, Flight Dynamics Engineer Navigation and Mission Design Branch (Code 595) NASA Goddard Space Flight Center Greenbelt, MD 20771 email: [email protected] (301) 286-1837 Graduate Research Assistants: Alan Pitz (M.S. 2012), Brian Kaplinger (Ph.D. 2013), Matt Hawkins (Ph.D. 2013), Tim Winkler (M.S. 2013), Pavithra Premaratne (M.S. 2014), Sam Wagner (Ph.D. 2014), George Vardaxis, Joshua Lyzhoft, and Ben Zimmerman NIAC Program Executive: Dr. John (Jay) Falker NIAC Program Manager: Jason Derleth NIAC Senior Science Advisor: Dr. Ronald Turner NIAC Strategic Partnerships Manager: Katherine Reilly Contents 1 Hypervelocity Asteroid Intercept Vehicle (HAIV) Mission Concept 2 1.1 Introduction ...................................... 2 1.2 Overview of the HAIV Mission Concept ....................... 6 1.3 Enabling Space Technologies for the HAIV Mission . 12 1.3.1 Two-Body HAIV Configuration Design Tradeoffs . 12 1.3.2 Terminal Guidance Sensors/Algorithms . 13 1.3.3 Thermal Protection and Shield Issues . 14 1.3.4 Nuclear Fuzing Mechanisms ......................... 15 2 Planetary Defense Flight Validation (PDFV) Mission Design 17 2.1 The Need for a PDFV Mission ............................ 17 2.2 Preliminary PDFV Mission Design by the MDL of NASA GSFC .
    [Show full text]
  • Jjmonl 1612.Pmd
    alactic Observer GJohn J. McCarthy Observatory Volume 9, No. 12 December 2016 Water - the elusive elixir of life in the cosmos - Is it even closer than we thought? The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Allison Tom Heydenburg Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Route Mike Chiarella Roger Moore Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Doug Delisle Marc Polansky Cecilia Detrich Joe Privitera Dirk Feather Monty Robson Randy Fender Don Ross Randy Finden Gene Schilling John Gebauer Katie Shusdock Elaine Green Paul Woodell Tina Hartzell Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT"............................... 3 COMMONLY USED TERMS .............................................. 17 TAURUS-LITTROW .......................................................... 3 EARTH-SUN LAGRANGE POINTS & JAMES WEBB TELESCOPE 17 OVER THE TOP ............................................................... 4 REFERENCES ON DISTANCES ........................................
    [Show full text]