Scientific Name Common Name Achyrachaena Mollis Blow Wives Acmispon Glaber Var
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Artemisia Californica Less
I. SPECIES Artemisia californica Less. [Updated 2017] NRCS CODE: Subtribe: Artemisiinae ARCA11 Tribe: Anthemideae (FEIS CODE: Family: Asteraceae ARCAL) Order: Asterales Subclass: Asteridae Class: Magnoliopsida flowering heads spring growth seedling, March 2009 juvenile plant photos A. Montalvo flowering plant, November 2005 mature plant with flower buds August 2010 A. Subspecific taxa None. Artemisia californica Less. var. insularis (Rydb.) Munz is now recognized as Artemisia nesiotica P.H. Raven (Jepson eFlora 2017). B. Synonyms Artemisia abrotanoides Nuttall; A. fischeriana Besser; A. foliosa Nuttall; Crossostephium californicum (Lessing) Rydberg (FNA 2017). C. Common name California sagebrush. The common name refers to its strong, sage-like aroma and endemism to California and Baja California. Other names include: coastal sage, coast sage, coast sagebrush (Painter 2016). D. Taxonomic relationships The FNA (2017) places this species in subgenus Artemisia . The molecular phylogeny of the genus has improved the understanding of relationships among the many species of Artemisia and has, at times, placed the species in subgenus Tridentadae; morphology of the inflorescences and flowers alone does not place this species with its closest relatives (Watson et al. 2002). The detailed phylogeny is not completely resolved (Hayat et al. 2009). E. Related taxa in region There are 18 species and a total of 31 taxa (including infrataxa) of Artemisia in southern California, all of which differ clearly from A. californica in habitat affinity, structure, or both (Munz 1974, Jepson eFlora 2017). Within subgenus Artemisia (as per FNA 2017), A. nesiotica from the Channel Islands is the most similar and was once considered part of A. californica ; it can be distinguished by its wider leaves with flat leaf margins (not rolled under). -
Vascular Plants at Fort Ross State Historic Park
19005 Coast Highway One, Jenner, CA 95450 ■ 707.847.3437 ■ [email protected] ■ www.fortross.org Title: Vascular Plants at Fort Ross State Historic Park Author(s): Dorothy Scherer Published by: California Native Plant Society i Source: Fort Ross Conservancy Library URL: www.fortross.org Fort Ross Conservancy (FRC) asks that you acknowledge FRC as the source of the content; if you use material from FRC online, we request that you link directly to the URL provided. If you use the content offline, we ask that you credit the source as follows: “Courtesy of Fort Ross Conservancy, www.fortross.org.” Fort Ross Conservancy, a 501(c)(3) and California State Park cooperating association, connects people to the history and beauty of Fort Ross and Salt Point State Parks. © Fort Ross Conservancy, 19005 Coast Highway One, Jenner, CA 95450, 707-847-3437 .~ ) VASCULAR PLANTS of FORT ROSS STATE HISTORIC PARK SONOMA COUNTY A PLANT COMMUNITIES PROJECT DOROTHY KING YOUNG CHAPTER CALIFORNIA NATIVE PLANT SOCIETY DOROTHY SCHERER, CHAIRPERSON DECEMBER 30, 1999 ) Vascular Plants of Fort Ross State Historic Park August 18, 2000 Family Botanical Name Common Name Plant Habitat Listed/ Community Comments Ferns & Fern Allies: Azollaceae/Mosquito Fern Azo/la filiculoides Mosquito Fern wp Blechnaceae/Deer Fern Blechnum spicant Deer Fern RV mp,sp Woodwardia fimbriata Giant Chain Fern RV wp Oennstaedtiaceae/Bracken Fern Pleridium aquilinum var. pubescens Bracken, Brake CG,CC,CF mh T Oryopteridaceae/Wood Fern Athyrium filix-femina var. cyclosorum Western lady Fern RV sp,wp Dryopteris arguta Coastal Wood Fern OS op,st Dryopteris expansa Spreading Wood Fern RV sp,wp Polystichum munitum Western Sword Fern CF mh,mp Equisetaceae/Horsetail Equisetum arvense Common Horsetail RV ds,mp Equisetum hyemale ssp.affine Common Scouring Rush RV mp,sg Equisetum laevigatum Smooth Scouring Rush mp,sg Equisetum telmateia ssp. -
Piedra Blanca Trail Middle Sespe Creek/Pine Mountain Ridge, Ventura County, California by David L
Vascular Plants of the Piedra Blanca Trail Middle Sespe Creek/Pine Mountain Ridge, Ventura County, California By David L. Magney Botanical Name Common Name Habit Family Acer macrophyllum Bigleaf Maple T Sapindaceae Acmispon ? Lotus AH Fabaceae Acmispon glaber var. glaber Deerweed S Fabaceae Acmispon strigosus var. strigosus Strigose Lotus AH Fabaceae Acourtia microcephala Sacapellote PH Asteraceae Adenostoma fasciculatum Chamise S Rosaceae Agoseris ? Mountain Dandelion PH Asteraceae Alnus rhombifolia White Alder T Betulaceae Amorpha californica False Indigo S Fabaceae Antirrhinum multiflorum Sticky Snapdragon S Veronicaceae Aquilegia formosa Columbine PH Ranunculaceae Arctostaphylos glauca Bigberry Manzanita S Ericaceae Artemisia douglasiana Mugwort S Asteraceae Artemisia tridentata ssp. tridentata Great Basin Sagebrush S Asteraceae Asclepias eriocarpa Woolly Milkweed AH Apocynaceae Astragalus ? Milkvetch AH Fabaceae Avena barbata* Slender Wild Oat AG Poaceae Baccharis salicifolia Mulefat S Asteraceae Boechera arcuata Few-flowered Rock Cress PH Brassicaceae Brickellia californica California Brickellbush S Asteraceae Bromus ? Brome PG Poaceae Bromus madritensis ssp. rubens* Red Brome AG Poaceae Bromus tectorum var. tectorum* Downy Brome AG Poaceae Calocedrus decurrens Incense-cedar T Cupressaceae Calyptridium monandrum Common Calyptridium AH Montiaceae Calystegia malacophylla ssp. cf pedicellata Sierra Morning-glory PH Convolvulaceae Camissonia boothii ssp. decorticans Shreading Evening Primrose AH Onagraceae Camissonia campestris ssp. campestris? Mojave Sun-cup AH Onagraceae Camissoniopsis micrantha Tiny Primrose AH Onagraceae Camissoniopsis pallida ssp. pallida Pale Primrose AH Onagraceae Carex ? Sedge PG Cyperaceae Carex senta Rough Sedge PG Cyperaceae Castilleja ? Indian Paintbrush PH Orobanchaceae Castilleja affinis ssp. affinis Lay-and-Collie's Indian Paintbrush PH Orobanchaceae Castilleja foliolosa Woolly Indian Paintbrush PH Orobanchaceae Castilleja subinclusa ssp. subinclusa Long-leaved Indian Paintbrush PH Orobanchaceae Caulanthus coulteri var. -
The Genetic Structure of Species' Geographic
THE GENETIC STRUCTURE OF SPECIES’ GEOGRAPHIC RANGES: AN EVALUATION USING THE COSTAL DUNE ENDEMIC CAMISSONIOPSIS CHEIRANTHIFOLIA (ONAGRACEAE) By Adriana López Villalobos A thesis submitted to the Department of Biology in conformity with the requirements for the Degree of Doctor of Philosophy Queen’s University Kingston, Ontario Canada June 2017 Copyright © Adriana López-Villalobos, 2017 ABSTRACT The development of molecular techniques has spurred thousands of population genetic studies on a wide variety of plant and animal species. Particularly important, but still relatively rare, are studies that properly test for geographic variation in genetic structure across species’ ranges. This thesis investigates the effects of population density, mating system variation, distance between populations and hybridization on the genetic diversity, differentiation and structure across the range of Camissoniopsis cheiranthifolia (Onagraceae). By combining a transplant experiment with microsatellites, I also provide an empirical test of one of the most poorly resolved questions in evolutionary biology: Why do species exhibit limits to their distributions? I developed 24 species-specific nuclear microsatellites loci (nSSR) and used 13 of these and six variable chloroplast microsatellites (cpSSR) to investigate the genetic consequences of the transition from outcrossing to selfing in C. cheiranthifolia. As predicted, small-flowered, selfing populations had lower nSSR diversity (but not cpSSR) than large-flowered, outcrossing populations but they were not more differentiated. The reduction in diversity was greater than the expected from selfing alone, but could not be accounted for by indirect effects of selfing on population density. Five parapatric nSSR clusters and three groups of cpSSR haplotypes usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. -
Conceptual Design Documentation
Appendix A: Conceptual Design Documentation APPENDIX A Conceptual Design Documentation June 2019 A-1 APPENDIX A: CONCEPTUAL DESIGN DOCUMENTATION The environmental analyses in the NEPA and CEQA documents for the proposed improvements at Oceano County Airport (the Airport) are based on conceptual designs prepared to provide a realistic basis for assessing their environmental consequences. 1. Widen runway from 50 to 60 feet 2. Widen Taxiways A, A-1, A-2, A-3, and A-4 from 20 to 25 feet 3. Relocate segmented circle and wind cone 4. Installation of taxiway edge lighting 5. Installation of hold position signage 6. Installation of a new electrical vault and connections 7. Installation of a pollution control facility (wash rack) CIVIL ENGINEERING CALCULATIONS The purpose of this conceptual design effort is to identify the amount of impervious surface, grading (cut and fill) and drainage implications of the projects identified above. The conceptual design calculations detailed in the following figures indicate that Projects 1 and 2, widening the runways and taxiways would increase the total amount of impervious surface on the Airport by 32,016 square feet, or 0.73 acres; a 6.6 percent increase in the Airport’s impervious surface area. Drainage patterns would remain the same as both the runway and taxiways would continue to sheet flow from their centerlines to the edge of pavement and then into open, grassed areas. The existing drainage system is able to accommodate the modest increase in stormwater runoff that would occur, particularly as soil conditions on the Airport are conducive to infiltration. Figure A-1 shows the locations of the seven projects incorporated in the Proposed Action. -
(A) Journals with the Largest Number of Papers Reporting Estimates Of
Supplementary Materials Figure S1. (a) Journals with the largest number of papers reporting estimates of genetic diversity derived from cpDNA markers; (b) Variation in the diversity (Shannon-Wiener index) of the journals publishing studies on cpDNA markers over time. Figure S2. (a) The number of publications containing estimates of genetic diversity obtained using cpDNA markers, in relation to the nationality of the corresponding author; (b) The number of publications on genetic diversity based on cpDNA markers, according to the geographic region focused on by the study. Figure S3. Classification of the angiosperm species investigated in the papers that analyzed genetic diversity using cpDNA markers: (a) Life mode; (b) Habitat specialization; (c) Geographic distribution; (d) Reproductive cycle; (e) Type of flower, and (f) Type of pollinator. Table S1. Plant species identified in the publications containing estimates of genetic diversity obtained from the use of cpDNA sequences as molecular markers. Group Family Species Algae Gigartinaceae Mazzaella laminarioides Angiospermae Typhaceae Typha laxmannii Angiospermae Typhaceae Typha orientalis Angiospermae Typhaceae Typha angustifolia Angiospermae Typhaceae Typha latifolia Angiospermae Araliaceae Eleutherococcus sessiliflowerus Angiospermae Polygonaceae Atraphaxis bracteata Angiospermae Plumbaginaceae Armeria pungens Angiospermae Aristolochiaceae Aristolochia kaempferi Angiospermae Polygonaceae Atraphaxis compacta Angiospermae Apocynaceae Lagochilus macrodontus Angiospermae Polygonaceae Atraphaxis -
Shell Creek Checklist-Apr2012
Checklist of Vascular Plants Shell Creek and Vicinity April 2012 Avenales Wildlife Area, Sinton Ranch, San Luis Obispo County, California PREPARED BY DAVID J. KEIL, BIOLOGICAL SCIENCES DEPARTMENT, CALIFORNIA POLYTECHNIC STATE UNIVERSITY, SAN LUIS OBISPO Scientific name1,2 Common name FAMILY Abronia pogonantha Desert sand-verbena NYCTAGINACEAE Achillea millefolium Yarrow ASTERACEAE Achyrachaena mollis Blow wives ASTERACEAE Acmispon americanus (Lotus purshianus) Spanish-clover FABACEAE Acmispon brachycarpus (Lotus humistratus) Foothill deervetch FABACEAE Acmispon glaber (Lotus scoparius) Deerweed FABACEAE Acmispon strigosus (Lotus strigosus) Strigose deervetch FABACEAE Acmispon wrangelianus California deervetch FABACEAE Acourtia microcephala Sacapelote ASTERACEAE Adenostoma fasciculatum Chamise ROSACEAE Agoseris heterophylla Annual mountain dandelion ASTERACEAE *Amaranthus albus3 Tumble amaranth AMARANTHACEAE *Amaranthus retroflexus Redroot amaranth AMARANTHACEAE Ambrosia acanthicarpa Annual bursage ASTERACEAE Amsinckia menziesii subsp. intermedia Fiddleneck BORAGINACEAE Amsinckia tessellata subsp. gloriosa Fiddleneck BORAGINACEAE Amsinckia tessellata subsp. tessellata Fiddleneck BORAGINACEAE *Anagallis arvensis Scarlet pimpernel MYRSINACEAE Ancistrocarphus filagineus Woolly fishhooks ASTERACEAE Apiastrum angustifolium Apiastrum APIACEAE Arctostaphylos glauca Bigberry manzanita ERICACEAE Artemisia californica California sagebrush ASTERACEAE Artemisia douglasiana Mugwort ASTERACEAE Asclepias fascicularis Milkweed APOCYNACEAE Asclepias vestita -
The Advantages of Traditional Chumash Healing
eCAM 2005;2(1)19–23 doi:10.1093/ecam/neh072 Lecture Series The Advantages of Traditional Chumash Healing James D. Adams Jr1 and Cecilia Garcia2 1Department of Molecular Pharmacology and Toxicology, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, PSC 508, Los Angeles and 2Chumash Healer, Granada Hills, CA, USA Chumash healing has been practiced in California for ~13 000 years. Chumash healers treat their patients with prayer, laughter, dreaming, phytotherapy, aromatherapy, healing ceremonies and other techniques. Healing involves first healing the spirit, then healing the body. Chumash people still main- tain their unique identity. Chumash Healers still practice the ancient healing arts in California. This lecture is a brief introduction to Chumash Healing. Keywords: healing – ethnopharmacology – Chumash Introduction prayer has been shown to be beneficial to the majority of patients (1). Prayer comforts patients. At the very least, prayer Traditional Chumash healing starts with God. The Healer may does no harm and costs nothing. While in hospital, the patient use prayer and fasting to invite God to help with the healing. may feel isolated from family and friends. The spirit may not Fasting is a self-denial that enhances the spirituality of the become well quickly. The approach with standard health care Healer, facilitating communication with God. In fact, all healing is that the body is treated and made well. The spirit should then must involve God. The spirit is always involved in the healing follow and recover as well. However, many patients complain process. The reason for this is that many diseases start with of uncertainty with their healing even after their bodies are the spirit. -
Appendix C Plant and Animal Species Observed
Appendix C Plant and Animal Species Observed This list includes vascular plants, mammals, birds, reptiles, and amphibians observed in the BSA by biologists during various surveys in 2005 and 2006. This list does not include invertebrate species. Invertebrates that would be most commonly encountered on the site would include butterflies, flies, dragonflies, damselflies, beetles, earwigs, grasshoppers, crickets, termites, true bugs, mantids, lacewings, bees, wasps, ants, and spiders. PLANT SPECIES OBSERVED Scientific Name Common Name Invasive Plant Rating CLUB AND SPIKE MOSSES Selaginellaceae Spike moss family Selaginella cinerascens Mesa spikemoss TRUE FERNS Azollaceae Mosquito fern family Azolla filiculoides Pacific mosquito fern Marsileaceae Marsilea family Marsilea vestita Hairy waterclover Pilularia americana American pillwort Pteridaceae Lip fern family Pellaea andromedifolia Coffee fern Pentagramma triangularis Goldenback fern PINOPHYTA GYMNOSPERMS Cupressaceace Cypress family Juniperus californica California juniper DICOT FLOWERING PLANTS Aizoaceae Carpet weed family Carpobrotus edulis* Hottentot-fig HIGH Mesembryanthemum nodiflorum* Slender-leaved ice plant Trianthema portulacastrum Horse-purslane Amaranthaceae Amaranth family Amaranthus albus* Tumbling pigweed Amaranthus palmeri Palmer’s pigweed Amaranthus sp. Pigweed Anacardiaceae Sumac family Malosma laurina Laurel sumac Rhus ovata Sugar bush Rhus trilobata Skunkbush sumac Schinus molle* Peruvian pepper tree LIMITED Schinus terebinthifolius* Brazilian pepper tree LIMITED Mid -
Fort Ord Natural Reserve Plant List
UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC -
Invasive Non-Native: Crofton Weed, Eupatory (Ageratina Adenophora)
Invasive Non-Native: Crofton Weed, Eupatory (Ageratina adenophora) Description: perennial herb or subshrub, woody base, 2-5 ft (.6-1.5m) tall. Opposite leaves 1-4” (3-10cm). Stems: purple, glandular hairy. Flowers: composite, flower head all discoid flowers (no ray flowers) ¼” (6mm) across, clustered in groups, individual flowers 1/16-1/8 ” (<5mm) across, white or pink tinged. Ecology: disturbed areas, wetland/riparian edges, canyons, hillsides. Similar to: no common natives or non-natives. Mule-fat has discoid ray flowers, but thinner leaves. Report sightings to: [email protected] and database at www.Calflora.org Invasive Non-Native: French Broom (Genista monspessulana) Description: large, evergreen, woody shrub up to 9 feet (3m) tall. Leaves: small < ½” (1cm), compound leaflets in groups of three. Flower: small, < ¼” (6mm), yellow, 1-2 per axil. Ecology: occurs in a variety of habitats from disturbed to undisturbed areas, coastal scrub, oak woodlands, riparian corridors and open forests. Similar to (see back): Spanish broom (non-native) large shrub with deciduous leaves and 1” (3cm) yellow flowers. Scotch broom (non- native) large shrub with deciduous leaves and 1” (3cm) yellow flowers. Deerweed (native) short-lived perennial < 2 ft (.6m) tall with smaller yellow-orange-red flowers. Report sightings to: [email protected] and database at www.Calflora.org Spanish broom Plants SIMILAR TO: French broom (Genista monspessulana) Spanish broom (Spartium junceum): (non-native) deciduous shrub that can grow up to 10 ft (3m) tall. Stems: round in cross-section. Flowers: several yellow flowers per axil giving it a denser overall appearance than Scotch broom. ( PLEASE MAP new locations). -
Molecular Phylogeny of Subtribe Artemisiinae (Asteraceae), Including Artemisia and Its Allied and Segregate Genera Linda E
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 9-26-2002 Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E. Watson Miami University, [email protected] Paul E. Bates University of Nebraska-Lincoln, [email protected] Timonthy M. Evans Hope College, [email protected] Matthew M. Unwin Miami University, [email protected] James R. Estes University of Nebraska State Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub Watson, Linda E.; Bates, Paul E.; Evans, Timonthy M.; Unwin, Matthew M.; and Estes, James R., "Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera" (2002). Faculty Publications in the Biological Sciences. 378. http://digitalcommons.unl.edu/bioscifacpub/378 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BMC Evolutionary Biology BioMed Central Research2 BMC2002, Evolutionary article Biology x Open Access Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E Watson*1, Paul L Bates2, Timothy M Evans3,