Yellow Perch and Barotrauma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heat Stroke Heat Exhaustion
Environmental Injuries Co lin G. Ka ide, MD , FACEP, FAAEM, UHM Associate Professor of Emergency Medicine Board-Certified Specialist in Hyperbaric Medicine Specialist in Wound Care The Ohio State University Wexner Medical Center The Most Dangerous Drug Combination… Accidental Testosterone Hypothermia and Alcohol! The most likely victims… Photo: Ralf Roletschek 1 Definition of Blizzard Hypothermia of Subnormal T° when the body is unable to generate sufficient heat to sustain normal functions Core Temperature < 95°F 1979 (35°C) Most Important Temperatures Thermoregulation 95°F (35° C) Hyper/Goofy The body uses a Poikilothermic shell to maintain a Homeothermic core 90°F (32°C) Shivering Stops Maintains core T° w/in 1.8°F(1°C) 80°F (26. 5°C) Vfib, Coma Hypothalamus Skin 65°F (18°C) Asystole Constant T° 96.896.8-- 100.4° F 2 Thermoregulation The 2 most important factors Only 3 Causes! Shivering (10x increase) Decreased Heat Production Initiated by low skin temperature Increased Heat Loss Warming the skin can abolish Impaired Thermoregulation shivering! Peripheral vasoconstriction Sequesters heat Predisposing Predisposing Factors Factors Decreased Production Increased Loss –Endocrine problems Radiation Evaporation • Thyroid Conduction* • Adrenal Axis Convection** –Malnutrition *Depends on conducting material **Depends on wind velocity –Neuromuscular disease 3 Predisposing Systemic Responses CNS Factors T°< 90°F (34°C) Impaired Regulation Hyperactivity, excitability, recklessness CNS injury T°< 80°F (27°C) Hypothalamic injuries Loss of voluntary -
Analysis of Accidents and Sickness of Divers and Scuba Divers at the Training Centre for Divesr and Scuba Divers of the Polish Army
POLISH HYPERBARIC RESEARCH 2(71)2020 Journal of Polish Hyperbaric Medicine and Technology Society ANALYSIS OF ACCIDENTS AND SICKNESS OF DIVERS AND SCUBA DIVERS AT THE TRAINING CENTRE FOR DIVESR AND SCUBA DIVERS OF THE POLISH ARMY Władysław Wolański Polish Army Diver and Diver Training Centre, Naval Psychological Laboratory, Gdynia, Poland ARTICLE INFO PolHypRes 2020 Vol. 71 Issue 2 pp. 75 – 78 ISSN: 1734-7009 eISSN: 2084-0535 DOI: 10.2478/phr-2020-0013 Pages: 14, figures: 0, tables: 0 page www of the periodical: www.phr.net.pl Publisher Polish Hyperbaric Medicine and Technology Society 2020 Vol. 71 Issue 2 INTRODUCTION The first group of diseases occurs as a result of mechanical action directly on the body of the diver. Among The prerequisite for the prevention of diving- them are: ear and paranasal sinus barotrauma, pulmonary related sicknesses and accidents is strict compliance with barotrauma, crushing. both technical and medical regulations during diving In the second group we most often encounter the training and work [3,4]. consequences of the toxic effects of gaseous components of A very important issue is good knowledge of the air on the human body. This group includes decompression work of a diver and the anticipation of possible dangers by sickness, oxygen poisoning, nitrogen poisoning, CO2 the personnel participating in the dive [1]. The Military poisoning, carbon monoxide (CO) poisoning. Maritime Medical Committee (WKML) determines When analysing the causes of diving sicknesses whether or not an individual is healthy enough to dive, and accidents at the Diver and Scuba Diver Training Centre granting those who meet the required standards a medical of the Polish Army, certain groups of additional factors certificate that is valid for one year [1,2]. -
Dysbarism - Barotrauma
DYSBARISM - BAROTRAUMA Introduction Dysbarism is the term given to medical complications of exposure to gases at higher than normal atmospheric pressure. It includes barotrauma, decompression illness and nitrogen narcosis. Barotrauma occurs as a consequence of excessive expansion or contraction of gas within enclosed body cavities. Barotrauma principally affects the: 1. Lungs (most importantly): Lung barotrauma may result in: ● Gas embolism ● Pneumomediastinum ● Pneumothorax. 2. Eyes 3. Middle / Inner ear 4. Sinuses 5. Teeth / mandible 6. GIT (rarely) Any illness that develops during or post div.ing must be considered to be diving- related until proven otherwise. Any patient with neurological symptoms in particular needs urgent referral to a specialist in hyperbaric medicine. See also separate document on Dysbarism - Decompression Illness (in Environmental folder). Terminology The term dysbarism encompasses: ● Decompression illness And ● Barotrauma And ● Nitrogen narcosis Decompression illness (DCI) includes: 1. Decompression sickness (DCS) (or in lay terms, the “bends”): ● Type I DCS: ♥ Involves the joints or skin only ● Type II DCS: ♥ Involves all other pain, neurological injury, vestibular and pulmonary symptoms. 2. Arterial gas embolism (AGE): ● Due to pulmonary barotrauma releasing air into the circulation. Epidemiology Diving is generally a safe undertaking. Serious decompression incidents occur approximately only in 1 in 10,000 dives. However, because of high participation rates, there are about 200 - 300 cases of significant decompression illness requiring treatment in Australia each year. It is estimated that 10 times this number of divers experience less severe illness after diving. Physics Boyle’s Law: The air pressure at sea level is 1 atmosphere absolute (ATA). Alternative units used for 1 ATA include: ● 101.3 kPa (SI units) ● 1.013 Bar ● 10 meters of sea water (MSW) ● 760 mm of mercury (mm Hg) ● 14.7 pounds per square inch (PSI) For every 10 meters a diver descends in seawater, the pressure increases by 1 ATA. -
O2 Secretion in the Eye and Swimbladder of Fishes
1641 The Journal of Experimental Biology 209, 1641-1652 Published by The Company of Biologists 2007 doi:10.1242/jeb.003319 Historical reconstructions of evolving physiological complexity: O2 secretion in the eye and swimbladder of fishes Michael Berenbrink School of Biological Sciences, The University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK e-mail: [email protected] Accepted 12 March 2007 Summary The ability of some fishes to inflate their compressible value of haemoglobin. These changes predisposed teleost swimbladder with almost pure oxygen to maintain neutral fishes for the later evolution of swimbladder oxygen buoyancy, even against the high hydrostatic pressure secretion, which occurred at least four times independently several thousand metres below the water surface, has and can be associated with increased auditory sensitivity fascinated physiologists for more than 200·years. This and invasion of the deep sea in some groups. It is proposed review shows how evolutionary reconstruction of the that the increasing availability of molecular phylogenetic components of such a complex physiological system on a trees for evolutionary reconstructions may be as important phylogenetic tree can generate new and important insights for understanding physiological diversity in the post- into the origin of complex phenotypes that are difficult to genomic era as the increase of genomic sequence obtain with a purely mechanistic approach alone. Thus, it information in single model species. is shown that oxygen secretion first evolved in the eyes of fishes, presumably for improved oxygen supply to an Glossary available online at avascular, metabolically active retina. Evolution of this http://jeb.biologists.org/cgi/content/full/210/9/1641/DC1 system was facilitated by prior changes in the pH dependence of oxygen-binding characteristics of Key words: oxygen secretion, Root effect, rete mirabile, choroid, haemoglobin (the Root effect) and in the specific buffer swimbladder, phylogenetic reconstruction. -
Pulmonary Barotrauma During Hypoxia in a Diver While Underwater
POLISH HYPERBARIC RESEARCH 2(71)2020 Journal of Polish Hyperbaric Medicine and Technology Society PULMONARY BAROTRAUMA DURING HYPOXIA IN A DIVER WHILE UNDERWATER Brunon Kierznikowicz, Władysław Wolański, Romuald Olszański Institute of Maritime and Tropical Medicine of the Military Medical Academy, Gdynia, Poland ABSTRACT The article describes a diver performing a dive at small depths in a dry suit, breathing from a single-stage apparatus placed on his back. As a result of training deficiencies, the diver began breathing from inside the suit, which led to hypoxia and subsequent uncontrolled ascent. Upon returning to the surface, the diver developed neurological symptoms based on which a diagnosis of pulmonary barotrauma was made. The diver was successfully treated with therapeutic recompression-decompression. Keywords: diving, accident, hypoxia, pulmonary barotrauma. ARTICLE INFO PolHypRes 2020 Vol. 71 Issue 2 pp. 45 – 50 ISSN: 1734-7009 eISSN: 2084-0535 Casuistic (case description) article DOI: 10.2478/phr-2020-0009 Pages: 6, figures: 0, tables: 1 Originally published in the Naval Health Service Yearbook 1977-1978 page www of the periodical: www.phr.net.pl Acceptance for print in PHR: 27.10.2019 r. Publisher Polish Hyperbaric Medicine and Technology Society 2020 Vol. 71 Issue 2 INTRODUCTION that he suddenly experienced an "impact" from an increased amount of air flowing into his lungs during In recent years, we can observe a continuous inhalation. Fearing a lung injury, he immediately pulled the dynamic development of diving technology. At the same mouthpiece out of his mouth and started breathing air time, the spectrum of works carried out by scuba divers for from inside the suit for about 2 minutes. -
Notes on the Swim-Bladder Physiology of Cod (Gadus Morhua) Investigated from the Underwater Laboratory "Helgoland"
Helgol~inder wiss. Meeresunters. 29, 460-463 (1977) Notes on the swim-bladder physiology of cod (Gadus morhua) investigated from the underwater laboratory "Helgoland" G. SUNDNES, B. GULLIKSEN ~X~ J. MORK Biological stasjon; Trondheim, Norway ABSTRACT: In situ sampling of gas from cod swim-bladders took place during a fortnight's saturation mission with the underwater laboratory "Helgoland" in May-June I975. These samples were compared to those done by the conventional method of transporting the fish to the surface for sampling. Based upon these in-situ measurements, the mean O2-concentration was 55.7 °/0 in buoyant cod at 15 m depth. Repeated sampling of the same fish showed a change in gas composition. Compared to the conventional method of transporting fish for sampling to the surface, in-situ sampling gave results with less variation, and indicated that surface-sampling does not give the correct gas composition of buoyant fish at depth of catch. INTRODUCTION Physiological investigations of fish swim-bladder have usually been performed near the surface, i.e. at about one atmosphere pressure. It means that fish were usually brought to the surface from their natural habitat of high water pressure to reduced pressure before experiments were performed and samples taken. Even in experiments with fish in pressure chambers, the gas samples of the swim-bladder were taken at one atmosphere pressure. Gas sampIes from fish at the depth of buoyancy have rarely been reported. The development of the underwater laboratory has given marine biologists a better opportunity to work under hydrostatic pressure whereby fish are kept under "natural" experimental conditions. -
The Secretion of Oxygen Into the Swim-Bladder of Fish III
CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central The Secretion of Oxygen into the Swim-Bladder of Fish III. The role of carbon dioxide JONATHAN B. WITTENBERG, MARY J. SCHWEND, and BEATRICE A. WITTENBERG From the Department of Physiology, Albert Einstein College of Medicine, Yeshiva University, New York, and the Marine Biological Laboratory, Woods Hole, Massachusetts ABSTRACT The secretion of carbon dioxide accompanying the secretion of oxygen into the swim-bladder of the bluefish is examined in order to distinguish among several theories which have been proposed to describe the operation of the rete mirabile, a vascular countercurrent exchange organ. Carbon dioxide may comprise 27 per cent of the gas secreted, corresponding to a partial pres- sure of 275 mm Hg. This is greater than the partial pressure that would be generated by acidifying arterial blood (about 55 mm Hg). The rate of secretion is very much greater than the probable rate of metabolic formation of carbon dioxide in the gas-secreting complex. It is approximately equivalent to the probable rate of glycolytic generation of lactic acid in the gas gland. It is con- cluded that carbon dioxide brought into the swim-bladder is liberated from blood by the addition of lactic acid. The rete mirabile must act to multiply the primary partial pressure of carbon dioxide produced by acidification of the blood. The function of the rete mirabile as a countercutrent multiplier has been proposed by Kuhn, W., Ramel, A., Kuhn, H. J., and Marti, E., Experientia, 1963, 19, 497. Our findings provide strong support for their theory. -
Review of Human Physiology in the Underwater Environment
Available online at www.ijmrhs.com cal R edi ese M ar of c l h a & n r H u e o a J l l t h International Journal of Medical Research & a S n ISSN No: 2319-5886 o c i t i Health Sciences, 2019, 8(8): 117-121 e a n n c r e e t s n I • • IJ M R H S Review of Human Physiology in the Underwater Environment Oktiyas Muzaky Luthfi1,2* 1 Marine Science University of Brawijaya, Malang, Indonesia 2 Fisheries Diving School, University of Brawijaya, Malang, Indonesia *Corresponding e-mail: [email protected] ABSTRACT Since before centuries, human tries hard to explore underwater and in 1940’s human-introduced an important and revolutionary gear i.e. scuba that allowed human-made long interaction in the underwater world. Since diving using pressure gas under pressure environment, it should be considered to remember gas law (Boyle’s law). The gas law gives a clear understanding of physiological consequences related to diving diseases such as barotrauma or condition in which tissue or organ is damage due to gas pressure. The organ which has direct effect related to compression and expansion of gas were lungs, ear, and sinus. These organs were common and potentially fatigue injury for a diver. In this article we shall review the history of scuba diving, physical stress caused underwater environment, physiology adaptation of lung, ear, and sinus, and diving disease. Keywords: Barotrauma, Boyle’s law, Scuba, Barine, Physical stress INTRODUCTION The underwater world is a place where many people dream to explore it. -
Placental Transfusion for Asphyxiated Infants
UC Davis UC Davis Previously Published Works Title Placental Transfusion for Asphyxiated Infants. Permalink https://escholarship.org/uc/item/9c95r3js Authors Katheria, Anup C Rich, Wade D Bava, Sunita et al. Publication Date 2019 DOI 10.3389/fped.2019.00473 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEW published: 20 November 2019 doi: 10.3389/fped.2019.00473 Placental Transfusion for Asphyxiated Infants Anup C. Katheria 1*, Wade D. Rich 1, Sunita Bava 2 and Satyan Lakshminrusimha 3 1 Sharp Mary Birch Hospital for Women & Newborns, San Diego, CA, United States, 2 Independent Researcher, San Diego, CA, United States, 3 Department of Pediatrics, University of California, Davis, Davis, CA, United States The current recommendation for umbilical cord management of non-vigorous infants (limp, pale, and not breathing) who need resuscitation at birth is to immediately clamp the umbilical cord. This recommendation is due in part to insufficient evidence for delayed cord clamping (DCC) or umbilical cord milking (UCM). These methods may provide a neuroprotective mechanism that also facilitates cardiovascular transition for non-vigorous infants at birth. Keywords: placental transfusion, cord milking, delayed cord clamping, newborn, asphyxia BACKGROUND An estimated one million newborns worldwide suffer from perinatal asphyxia which lead them to being at risk for developing hypoxic-ischemic encephalopathy (HIE) due to inadequate blood flow and oxygen delivery to the neonatal brain and other vital organs such as the heart and kidneys. The incidence of HIE is 1–3/1,000 term births in high-income countries but is 15–20 times greater in low to middle-income countries. -
Worksheets and Post-Lab Activities for “Floating Fishes”
Worksheets and post-lab activities for “Floating Fishes” Possible lesson outlines of this modular activity: This is the lesson as currently written. It begins with the physics of buoyancy before transitioning to fish biology and how it’s related to fisheries Activity Time required 1 Introduction and background 50 min 2 Boat Sinking Lab 50 min 3 Fish Buoyancy 50 min 4 Fishing expedition 50 min An alternative is to start with the fishing expedition in order to emphasize the ecological aspects. Activity Time required 1 Introduction and background 50 min 2 Fishing expedition 50 min 3 Boat Sinking Lab 50 min 4 Fish Buoyancy 50 min If an instructor is short on time and wishes to emphasize the interaction between biology and physics, they can omit the fisheries background. This could be completed within a 3-hr lab period. To save 50 minutes, one can also omit the boat sinking lab. Activity Time required 1 Introduction (omit information about overfishing) 30 min 2 Boat Sinking Lab 50 min 3 Fish Buoyancy 50 min Page 1 of 10 Worksheets and post-lab activities for “Floating Fishes” Sample Worksheet for Day 2: Boat Sinking Lab 1) Add marbles to your boat one by one. What is happening to your boat as you add more marbles?__Students will find that the marbles all roll to one side ______ How many marbles did it take to sink your boat? ______ answers will vary ______________ 2) Take out the marbles and add the first divider to your boat. Add one marble at a time to just one side of your boat. -
Title: Recognizing Barotrauma As an Unexpected Complication of High Flow Nasal Cannula
Title: Recognizing barotrauma as an unexpected complication of high flow nasal cannula Introduction: Spontaneous pneumomediastinum (SPM) is a rare condition defined as free air in the mediastinum without an apparent trauma. It is commonly associated with barotrauma in asthma and COPD patients. High flow nasal cannula (HFNC) has been routinely used for hypoxemic respiratory failure. We present a case of the development of SPM with extensive subcutaneous emphysema with the use of HFNC for hypoxic respiratory failure. Case Presentation: 78 year old Caucasian female with history of interstitial pulmonary fibrosis and COPD was discharged to LTACH after prolonged hospitalization for influenza-A infection complicated by acute on chronic respiratory failure. She was started on supplemental oxygen using HFNC that was progressively increased to 60 liters/min with 100% FiO2 for persistent hypoxia. Over the next four days, she was noted to have worsening facial and neck swelling with progressive dyspnea leading to transfer to the hospital. CT scan of chest noted for extensive pneumomediastinum involving the middle and anterior mediastinum with extensive subcutaneous emphysema throughout the anterior and moderately posterior chest wall extending to lower neck. Lung parenchyma revealed underlying interstitial with patchy airspace disease without evident pneumothorax. She was started on 100% FIO2 with non- rebreather mask. For symptomatic relief, Cardiothoracic surgery performed bilateral anterior chest blowhole incisions and application of negative vacuum-assisted closure on anterior chest with dramatic improvement in subcutaneous emphysema and facial swelling with persistent pneumomediastinum. Patent’s pneumomediastinum and respiratory failure persisted with high oxygen requirement with non- rebreather mask. Due to underlying advanced lung disease and persistent respiratory failure , patient’s family opted for palliative management with comfort measure and patient was transferred to hospice care. -
Observations on the Physiology of the Swim Bladder in Cyprinoid Fishes by H
OBSERVATIONS ON THE PHYSIOLOGY OF THE SWIM BLADDER IN CYPRINOID FISHES BY H. M. EVANS AND G. C. C. DAMANT. (Received 2.6th February 1928.) (With Five Text-figures.) THE swim bladder of fishes is primarily a hydrostatic organ and with rare exceptions contains or tends to contain the exact quantity of gas which is necessary to make the specific gravity of the whole fish equal to that of the water in which it is swimming, so that it can rest in mid-water tending neither to rise nor sink: this normal con- dition is called neutral buoyancy. Since gas is compressible and water is not, any increase of external or atmospheric pressure by acting through the non-rigid body walls will reduce the volume of gas in the swim bladder and cause the fish to sink in the water (condition of negative buoyancy). This condition can also be produced by aspirating some of the gas from the swim bladder or by attaching a small weight to the fish. When in a state of negative buoyancy produced by any of these treatments (provided that the interference has not been excessive), the fish will compensate (i.e. restore its neutral buoyancy) by introducing additional gas into its swim bladder. In fish with closed swim bladders (Physoclisti) it has long been known that this additional gas is mainly oxygen and is secreted into the swim bladder by organs known as red bodies or gas glands. Such organs are absent in many fishes whose swim bladders are furnished with ducts communicating with the exterior, and experiments which have been published on the method by which such fish compen- sate are inconclusive.