Introduction to Microwave Systems

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Microwave Systems c14IntroToMicrowaveSystems Pozar September 26, 2011 18:40 Chapter Fourteen Introduction to Microwave Systems A microwave system consists of passive and active microwave components arranged to perform a useful function. Probably the two most important examples are microwave com- munication systems and microwave radar systems, but there are many others. In this chapter we will discuss the basic operation of several types of microwave systems to give a general overview of the application of microwave technology, and to show how the subjects of earlier chapters fit into the overall scheme of complete microwave systems. An important component in any radar or wireless communication system is the antenna, so we will first discuss some of the basic properties of antennas. Then we treat wireless commu- nication, radar, and radiometry systems as important applications of RF and microwave tech- nology. We also briefly discuss propagation effects, biological effects, and other miscellaneous applications. All of these topics are of sufficient depth that many books have been written for each. Our purpose here is to introduce these topics as a way of placing the earlier material in this book in the larger context of practical system applications. The interested reader is referred to the references at the end of the chapter for more complete treatments. 14.1 SYSTEM ASPECTS OF ANTENNAS In this section we describe some of the basic characteristics of antennas that will be needed for our study of microwave communications, radar, and remote sensing systems. We are interested here not in the detailed electromagnetic theory of antenna operation, but rather in the systems aspect of the operation of an antenna in terms of its radiation patterns, di- rectivity, gain, efficiency, and noise characteristics. References [1] and [2] can be reviewed for a more in-depth treatment of the fascinating subject of antenna theory and design. Figure 14.1 shows some of the different types of antennas that have been developed for commercial wireless systems. 658 c14IntroToMicrowaveSystems Pozar September 26, 2011 18:40 14.1 System Aspects of Antennas 659 FIGURE 14.1 Photograph of various millimeter wave antennas. Clockwise from top: a high-gain 38 GHz reflector antenna with radome, a prime-focus parabolic antenna, a corru- gated conical horn antenna, a 38 GHz planar microstrip array, a pyramidal horn antenna with a Gunn diode module, and a multibeam reflector antenna. A transmitting antenna can be viewed as a device that converts a guided electromag- netic wave on a transmission line into a plane wave propagating in free space. Thus, one side of an antenna appears as an electrical circuit element, while the other side provides an interface with a propagating plane wave. Antennas are inherently bidirectional, in that they can be used for both transmit and receive functions. Figure 14.2 illustrates the basic FIGURE 14.2 Basic operation of transmitting and receiving antennas. c14IntroToMicrowaveSystems Pozar September 26, 2011 18:40 660 Chapter 14: Introduction to Microwave Systems operation of transmitting and receiving antennas. The transmitter can be modeled as a Thevenin source consisting of a voltage generator and series impedance, delivering a power Pt to the transmitting antenna. A transmitting antenna radiates a spherical wave that, at large distances, approximates a plane wave over a localized area. A receiving antenna in- tercepts a portion of an incident plane wave, and delivers a receive power Pr to the receiver load impedance. A wide variety of antennas have been developed for different applications, as summa- rized in the following categories: r Wire antennas include dipoles, monopoles, loops, sleeve dipoles, Yagi–Uda arrays, and related structures. Wire antennas generally have low gains, and are most often used at lower frequencies (HF to UHF). They have the advantages of light weight, r low cost, and simple design. Aperture antennas include open-ended waveguides, rectangular or circular horns, reflectors, lenses, and reflectarrays. Aperture antennas are most commonly used at r microwave and millimeter wave frequencies, and have moderate to high gains. Printed antennas include printed slots, printed dipoles, and microstrip patch an- tennas. These antennas can be made with photolithographic methods, with both radiating elements and associated feed circuitry fabricated on dielectric substrates. Printed antennas are most often used at microwave and millimeter wave frequencies, r and can be easily arrayed for high gain. Array antennas consist of a regular arrangement of antenna elements with a feed network. Pattern characteristics such as beam pointing angle and sidelobe levels can be controlled by adjusting the amplitude and phase excitation of the array elements. An important type of array antenna is the phased array, in which variable-phase shifters are used to electronically scan the main beam of the antenna. Fields and Power Radiated by an Antenna While we do not require detailed solutions to Maxwell’s equations for our purposes, we do need to be familiar with the far-zone electromagnetic fields radiated by an antenna. Con- sider an antenna located at the origin of a spherical coordinate system. At large distances, where the localized near-zone fields are negligible, the radiated electric field of an arbitrary antenna can be expressed as − jk0r ¯ ˆ ˆ e E(r,θ,φ)= θ Fθ (θ, φ) + φFφ(θ, φ) V/m,(14.1) r where E¯ is the electric field vector, θˆ and φˆ are unit vectors in the spherical coordinate system, r is the radial distance from the origin, and k0 = 2π/λ is the free-space propaga- tion constant, with wavelength λ = c/f . Also defined in (14.1) are the pattern functions, Fθ (θ, φ) and Fφ(θ, φ). The interpretation of (14.1) is that this electric field propagates in − the radial direction with a phase variation of e jk0r and an amplitude variation with dis- tance of 1/r. The electric field may be polarized in either the θˆ or φˆ direction, but not in the radial direction, since this is a TEM wave. The magnetic fields associated with the electric field of (14.1) can be found from (1.76) as Eθ Hφ = , (14.2a) η0 −Eφ Hθ = , (14.2b) η0 c14IntroToMicrowaveSystems Pozar September 26, 2011 18:40 14.1 System Aspects of Antennas 661 where η0 = 377 , the wave impedance of free-space. Note that the magnetic field vector is also polarized only in the transverse directions. The Poynting vector for this wave is given by (1.90) as ∗ S¯ = E¯ × H¯ W/m2,(14.3) and the time-average Poynting vector is 1 1 ∗ S¯ = Re {S¯}= Re {E¯ × H¯ } W/m2.(14.4) avg 2 2 We mentioned earlier that at large distances the near fields of an antenna are negli- gible, and that the radiated electric field can be written as in (14.1). We can give a more precise meaning to this concept by defining the far-field distance as the distance where the spherical wave front radiated by an antenna becomes a close approximation to the ideal planar phase front of a plane wave. This approximation applies over the radiating aperture of the antenna, and so it depends on the maximum dimension of the antenna. If we call this maximum dimension D, then the far-field distance is defined as 2D2 R = ( . ) ff λ m. 14 5 This result is derived from the condition that the actual spherical wave front radiated by the antenna departs less than π/8 = 22.5◦ from a true plane wave front over the maximum extent of the antenna. For electrically small antennas, such as short dipoles and small loops, this result may give a far-field distance that is too small; in this case, a minimum value of Rff = 2λ should be used. EXAMPLE 14.1 FAR-FIELD DISTANCE OF AN ANTENNA A parabolic reflector antenna used for reception with the direct broadcast sys- tem (DBS) is 18 inches in diameter and operates at 12.4 GHz. Find the far-field distance for this antenna. Solution The operating wavelength at 12.4 GHz is c 3 × 108 λ = = = 2.42 cm. f 12.4 × 109 The far-field distance is found from (14.5), after converting 18 inches to 0.457 m: 2D2 2(0.457)2 R = = = 17.3m. ff λ 0.0242 The actual distance from a DBS satellite to Earth is about 36,000 km, so it is safe to say that the receive antenna is in the far-field of the transmitting antenna. ■ Next, define the radiation intensity of the radiated electromagnetic field as 2 2 ¯ r ˆ ∗ ˆ ˆ ∗ ˆ U(θ, φ) = r |S |= Re Eθ θ × Hφ φ + Eφφ × Hθ θ avg 2 2 r 2 2 1 2 2 = |Eθ | +|Eφ| = |Fθ | +|Fφ| W, (14.6) 2η0 2η0 c14IntroToMicrowaveSystems Pozar September 26, 2011 18:40 662 Chapter 14: Introduction to Microwave Systems where (14.1), (14.2), and (14.4) were used. The units of the radiation intensity are watts, or watts per unit solid angle, since the radial dependence has been removed. The radiation intensity gives the variation in radiated power versus position around the antenna. We can find the total power radiated by the antenna by integrating the Poynting vector over the surface of a sphere of radius r that encloses the antenna. This is equivalent to integrating the radiation intensity over a unit sphere: 2π π 2π π ¯ 2 Prad = Savg ·ˆrr sin θdθdφ = U(θ, φ) sin θdθdφ. (14.7) φ=0 θ=0 φ=0 θ=0 Antenna Pattern Characteristics The radiation pattern of an antenna is a plot of the magnitude of the far-zone field strength versus position around the antenna, at a fixed distance from the antenna.
Recommended publications
  • Radio Communications in the Digital Age
    Radio Communications In the Digital Age Volume 1 HF TECHNOLOGY Edition 2 First Edition: September 1996 Second Edition: October 2005 © Harris Corporation 2005 All rights reserved Library of Congress Catalog Card Number: 96-94476 Harris Corporation, RF Communications Division Radio Communications in the Digital Age Volume One: HF Technology, Edition 2 Printed in USA © 10/05 R.O. 10K B1006A All Harris RF Communications products and systems included herein are registered trademarks of the Harris Corporation. TABLE OF CONTENTS INTRODUCTION...............................................................................1 CHAPTER 1 PRINCIPLES OF RADIO COMMUNICATIONS .....................................6 CHAPTER 2 THE IONOSPHERE AND HF RADIO PROPAGATION..........................16 CHAPTER 3 ELEMENTS IN AN HF RADIO ..........................................................24 CHAPTER 4 NOISE AND INTERFERENCE............................................................36 CHAPTER 5 HF MODEMS .................................................................................40 CHAPTER 6 AUTOMATIC LINK ESTABLISHMENT (ALE) TECHNOLOGY...............48 CHAPTER 7 DIGITAL VOICE ..............................................................................55 CHAPTER 8 DATA SYSTEMS .............................................................................59 CHAPTER 9 SECURING COMMUNICATIONS.....................................................71 CHAPTER 10 FUTURE DIRECTIONS .....................................................................77 APPENDIX A STANDARDS
    [Show full text]
  • History of Radio Broadcasting in Montana
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1963 History of radio broadcasting in Montana Ron P. Richards The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Richards, Ron P., "History of radio broadcasting in Montana" (1963). Graduate Student Theses, Dissertations, & Professional Papers. 5869. https://scholarworks.umt.edu/etd/5869 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE HISTORY OF RADIO BROADCASTING IN MONTANA ty RON P. RICHARDS B. A. in Journalism Montana State University, 1959 Presented in partial fulfillment of the requirements for the degree of Master of Arts in Journalism MONTANA STATE UNIVERSITY 1963 Approved by: Chairman, Board of Examiners Dean, Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number; EP36670 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oiuartation PVUithing UMI EP36670 Published by ProQuest LLC (2013).
    [Show full text]
  • En 303 345 V1.1.0 (2015-07)
    Draft ETSI EN 303 345 V1.1.0 (2015-07) HARMONISED EUROPEAN STANDARD Radio Broadcast Receivers; Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU 2 Draft ETSI EN 303 345 V1.1.0 (2015-07) Reference DEN/ERM-TG17-15 Keywords broadcast, digital, radio, receiver ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Maintenance of Remote Communication Facility (Rcf)
    ORDER rlll,, J MAINTENANCE OF REMOTE commucf~TIoN FACILITY (RCF) EQUIPMENTS OCTOBER 16, 1989 U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION AbMINISTRATION Distribution: Selected Airway Facilities Field Initiated By: ASM- 156 and Regional Offices, ZAF-600 10/16/89 6580.5 FOREWORD 1. PURPOSE. direction authorized by the Systems Maintenance Service. This handbook provides guidance and prescribes techni- Referenceslocated in the chapters of this handbook entitled cal standardsand tolerances,and proceduresapplicable to the Standardsand Tolerances,Periodic Maintenance, and Main- maintenance and inspection of remote communication tenance Procedures shall indicate to the user whether this facility (RCF) equipment. It also provides information on handbook and/or the equipment instruction books shall be special methodsand techniquesthat will enablemaintenance consulted for a particular standard,key inspection element or personnel to achieve optimum performancefrom the equip- performance parameter, performance check, maintenance ment. This information augmentsinformation available in in- task, or maintenanceprocedure. struction books and other handbooks, and complements b. Order 6032.1A, Modifications to Ground Facilities, Order 6000.15A, General Maintenance Handbook for Air- Systems,and Equipment in the National Airspace System, way Facilities. contains comprehensivepolicy and direction concerning the development, authorization, implementation, and recording 2. DISTRIBUTION. of modifications to facilities, systems,andequipment in com- This directive is distributed to selectedoffices and services missioned status. It supersedesall instructions published in within Washington headquarters,the FAA Technical Center, earlier editions of maintenance technical handbooksand re- the Mike Monroney Aeronautical Center, regional Airway lated directives . Facilities divisions, and Airway Facilities field offices having the following facilities/equipment: AFSS, ARTCC, ATCT, 6. FORMS LISTING. EARTS, FSS, MAPS, RAPCO, TRACO, IFST, RCAG, RCO, RTR, and SSO.
    [Show full text]
  • High Frequency (HF)
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1990-06 High Frequency (HF) radio signal amplitude characteristics, HF receiver site performance criteria, and expanding the dynamic range of HF digital new energy receivers by strong signal elimination Lott, Gus K., Jr. Monterey, California: Naval Postgraduate School http://hdl.handle.net/10945/34806 NPS62-90-006 NAVAL POSTGRADUATE SCHOOL Monterey, ,California DISSERTATION HIGH FREQUENCY (HF) RADIO SIGNAL AMPLITUDE CHARACTERISTICS, HF RECEIVER SITE PERFORMANCE CRITERIA, and EXPANDING THE DYNAMIC RANGE OF HF DIGITAL NEW ENERGY RECEIVERS BY STRONG SIGNAL ELIMINATION by Gus K. lott, Jr. June 1990 Dissertation Supervisor: Stephen Jauregui !)1!tmlmtmOlt tlMm!rJ to tJ.s. eave"ilIE'il Jlcg6iielw olil, 10 piolecl ailicallecl",olog't dU'ie 18S8. Btl,s, refttteste fer litis dOCdiii6i,1 i'lust be ,ele"ed to Sapeihil6iiddiil, 80de «Me, "aial Postg;aduulG Sclleel, MOli'CIG" S,e, 98918 &988 SF 8o'iUiid'ids" PM::; 'zt6lI44,Spawd"d t4aoal \\'&u 'al a a,Sloi,1S eai"i,al'~. 'Nsslal.;gtePl. Be 29S&B &198 .isthe 9aleMBe leclu,sicaf ,.,FO'iciaKe" 6alite., ea,.idiO'. Statio", AlexB •• d.is, VA. !!!eN 8'4!. ,;M.41148 'fl'is dUcO,.Mill W'ilai.,s aliilical data wlrose expo,l is idst,icted by tli6 Arlil! Eurse" SSPItial "at FRIis ee, 1:I.9.e. gec. ii'S1 sl. seq.) 01 tlls Exr;01l ftle!lIi"isllatioli Act 0' 19i'9, as 1tI'I'I0"e!ee!, "Filill ell, W.S.€'I ,0,,,,, 1i!4Q1, III: IIlIiI. 'o'iolatioils of ltrese expo,lla;;s ale subject to 960616 an.iudl pSiiaities.
    [Show full text]
  • Prof. K Radhakrishna Rao Lecture 2 Role of Analog Signal Processing
    Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 2 Role of Analog Signal Processing in Electronic Products – Part 1 1 Structure of an electronic product 2 Electronic Products o Process analog signals and digital data o This involve transmission and reception of signals and data o It is generally necessary to code signal and data to transmit over channels o Transmission can be over wires or wireless o Processing and storage are efficient in digital form o Several human interface technologies are available 3 Products considered o Radio Receiver o Modem o Cell Phone o ECG 4 Radio Receiver o AM Receiver o FM Receiver 5 Radio waves are classified as o Low frequency (LF): 30 kHz – 300 kHz, o Medium frequency (MF): 300 kHz – 3 MHz, o High frequency (HF): 3 MHz – 30 MHz, o Very high frequency (VHF): 30 MHz – 300 MHz, o Ultra high frequency (UHF): 300 MHz – 3 GHz, o Super high frequency (SHF): 3 GHz – 30 GHz, o Extremely high frequency (EHF): 30 GHz to 300 GHz. 6 Radio broadcasting o one-way wireless transmission over radio waves to reach a wide audience o takes place in MF (300 kHz – 3 MHz), HF (3 MHz – 30 MHz) and VHF (30 MHz – 300 MHz) regions 7 Major modes of radio broadcasting o Sine wave (single tone) represented by Vtp sin(ωφ+ ) PM (Analog) where φ = phase in radians PSK (Digital) QPSK( Digital) FM (Analog) ω = frequency in rad/sec FSK (Digital) AM, DSB (Analog) V = peak magnitude in volts p ASK (Digital) 8 AM broadcasting o Amplitude of the carrier signal is varied in response to the amplitude of the signal to be transmitted o Amplitude modulation is done by a unit called mixer (nothing but a multiplier) which produces an output output=+( Vpc V pm sinωω m t )sin c t Vpm where ωm is the modulating frequency = m is known as the Vpc ω is the carrier frequency c modulation index.
    [Show full text]
  • Performance Analysis of MIMO Spatial Multiplexing Using Different Antenna Configurations and Modulation Technique in Rician Channel Hardeep Singh, Lavish Kansal
    International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 34 ISSN 2229-5518 Performance Analysis of MIMO Spatial Multiplexing using different Antenna Configurations and Modulation Technique in Rician Channel Hardeep Singh, Lavish Kansal Abstract— MIMO systems which employs multiple antennas at the transmitter as well as at the receiver side is the key technique to be employed in next generation wireless communication systems. MIMO systems provide various benefits such as Spatial Diversity, Spatial Multiplexing to improve the system performance. In this paper the MIMO SM system is analysed for different antenna configurations (2×2, 3×3, 4×4) in Rician channel. The performance of the MIMO SM system is investigated for higher order modulation schemes (M-PSK, M-QAM) and Zero Forcing equalizer is employed at the receiving side. The simulation results points that if antenna configurations are shifted from 2×2 to 3×3 configuration, an improvement of 0 to 2.9 db in SNR is being noted and an improvement of 0 to 2.9 db is visualized if antenna configurations are changed from 3×3 to 4×4 configuration. Index Terms— Multiple Input Multiple Output (MIMO), Zero Forcing (ZF), Spatial Multiplexing (SM), M-ary Phase Shift Keying (M-PSK) M-ary Quadrature Amplitude Modulation (M-QAM), Bit Error Rate (BER), Signal to Noise Ratio (SNR). —————————— —————————— 1 INTRODUCTION IMO (Multiple Input Multiple Output) systems employ higher extend, but the benefits of beamforming technique are multiple antennas at both the ends of a communication limited in such environments. Mlink. The MIMO systems provide various applications In order to obtain channel state information at receiving side, such as beamforming (increasing the average SNR at receiver the pilot bits are sent along with the transmitted sequence to side), Spatial Diversity (to achieve good BER at low SNR), Spa- estimate the channel state.
    [Show full text]
  • Analysis of Dual-Channel Broadcast Antennas
    Analysis of Dual-Channel Broadcast Antennas Myron D. Fanton, PE Electronics Research, Inc. Abstract—The design concept is discussed for slotted UHF antennas to be located on the side of the tower, then the coverage needs of that allows the combining of a high power NTSC channel with an the station must be reviewed prior to making a decision on the adjacent DTV channel assignment using a single transmission line antenna type. Slotted antenna designs have been used and antenna. extensively for directional side mounted antennas and for extremely high power (200 kW NTSC) side mounted omni- Index Terms—Antenna Array, Slot Antennas, Antenna Bandwidth. directional antennas. I. INTRODUCTION 1.10 or UHF channels in the United States, slotted antenna 1.09 designs are typically used [1]. A primary factor in their use F 1.08 has been the ability to make the support structure of the antenna an integral part of the transmitting components. Because the 1.07 frequencies assigned to UHF allow the use of relatively small 1.06 antenna elements, the removal of part of the pipe wall to create 1.05 slots was possible with only a minimal impact an its structural VSWR integrity. This resulted in an antenna with low wind-load 1.04 characteristics and was relatively economical to fabricate. 1.03 As television markets expanded, demographics changed 1.02 and competitive pressures fostered the need for UHF stations to increase their coverage. This required higher effective radiated 1.01 1.00 powers (ERP). And as higher power transmitters came to 572 574 576 578 580 582 584 market, other benefits unique to the slotted antenna design Frequency (MHz) became evident: exceptional reliability even at extremely high Figure 1: Dual Channel Antenna VSWR input power levels and more precise control over the shaping of the elevation pattern.
    [Show full text]
  • Importance of Microwave Antenna in Communication System
    ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (A High Impact Factor, Monthly, Peer Reviewed Journal) Website: www.ijareeie.com Vol. 7, Issue 2, February 2018 Importance of Microwave Antenna in Communication System Shailesh Patwa1, Shubham Yadav2, Mohammad Saqib3 UG Student [BE], Dept. of ECE, Medicaps Institute of Technology and Management College, Indore, Madhya Pradesh, India1 UG Student [BE], Dept. of ECE, Medicaps Institute of Technology and Management College, Indore, Madhya Pradesh, India2 UG Student [BE], Dept. of ECE, Medicaps Institute of Technology and Management College, Indore, Madhya Pradesh, India3 ABSTRACT: This paper provide various types of information about microwave antenna in communication system. Antenna plays a crucial role in this communication system, which is used to transmit and receive the data. The classification of the antenna is based on the specifications like frequency, polarization, radiation, etc. In this we will observe some important point about microwave antenna in communication network, relay stations, transmission system, interconnection cable and inter-operations performing as an integrated whole. KEYWORDS: Microwave Antenna, Types of Antenna, Properties of Antenna, Applications of Antenna. I. INTRODUCTION The main purpose of this research to help people know many things about microwave antenna use in communication system. Microwaves are widely used for point-to-point communications because their small wavelength allows conveniently-sized antennas to direct them in narrow beams, which can be pointed directly at the receiving antenna. This allows nearby microwave equipment to use the same frequencies without interfering with each other, as lower frequency radio waves do.
    [Show full text]
  • Kidsdictionary.Pdf
    Access Charges: This is a fee charged by local phone companies for use of their networks. Amplitude Modulation (AM) that's the "AM" Band on your Radio: A signaling method that varies the amplitude of the carrier frequencies to send information. The carrier frequency would be like 910 (kHz) AM on your AM dial. Your radio antenna receives this signal and then decodes it and plays the song. Analog Signal: A signaling method that modifies the frequency by amplifying the strength of the signal or varying the frequency of a radio transmission to convey information. Bandwidth The amount of data passing through a connection over a given time. It is usually measured in bps (bits-per- second) or Mbps. Broadband Broadband refers to telecommunication in which a wide band of frequencies is available to transmit information. More services can be provided through broadband in the same way as more lanes on a highway allow more cars to travel on it at the same time. Broadcast To transmit (a radio or television program) for public or general use. In other words, send out or communicate, especially by radio or television. Cable A strong, large-diameter, heavy steel or fiber rope. The word history of cable derives from Middle English, from Old North French, from Late Latin capulum, lasso, from Latin capere, meaning to seize. Calling Party Pays A billing method in which a wireless phone caller pays only for making calls and not for receiving them. The standard American billing system requires wireless phone customers to pay for all calls made and received on a wireless phone.
    [Show full text]
  • Audio Level Equalization of Television Sound, Broadcast FM and National Weather Service FM Radio Signals
    Europaisches Patentamt European Patent Office © Publication number: 0 512 374 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 92107242.7 int. CI 5= H04N 5/60, H04B 1/16 @ Date of filing: 28.04.92 © Priority: 06.05.91 US 695803 F-92400 Courbevoie(FR) @ Date of publication of application: @ Inventor: Kim, Yong Hyun 11.11.92 Bulletin 92/46 Blk 127, Pasir Ris St.11, 04-395 Singapore 1851(SG) © Designated Contracting States: DE FR GB IT 0 Representative: Einsel, Robert, Dipl.-lng. © Applicant: THOMSON CONSUMER Deutsche Thomson-Brandt GmbH Patent- ELECTRONICS S.A. und Lizenzabteilung Gottinger Chaussee 76 9, Place des Vosges, La Defense 5 W-3000 Hannover 91 (DE) © Audio level equalization of television sound, broadcast FM and national weather service FM radio signals. © A television receiver includes a single tuner (102) for tuning both television channels and broadcast FM stations. The tuner (102) serves as the first conversion stage of a double conversion FM receiver, a separate mixer-oscillator (180) converts the FM radio sound IF to 4.5 MHz for processing in the television receiver's sound channel. A single discriminator circuit (130) is employed for tuning FM radio signals having a first deviation, such as broadcast FM radio signals, and FM signals having a second deviation (i.e., the television sound signals), and FM radio signals having a third deviation, such as signals of an information service, such as in the United States, the National Weather Service. Circuitry (136,137) for amplifying the output signal of the discriminator circuit exhibits a first gain, and a first volume control range when amplifying FM signals having the first deviation, exhibits a second gain and the first volume control range, when amplifying FM signals having the second deviation, and exhibits a second gain, and a second volume control range when amplifying FM signals having the third deviation.
    [Show full text]
  • 1.Basic Principle of Microwave
    ST-48 DESCRIPTION SHORT : 2 DAYS MICROWAVE AND UHF (DIGITAL) CONTENTS 1. Basic Principle of Microwave 2. Need to digital Microwave and advantages of microwave 3. Pulse code modulation. 4. Modulation techniques 5. Radio equipment – Block diagram explanation (NEC-Make ) 6. Primary and higher order Mux 7 Fading , noise and jitter 8 Space and frequency diversity 9 Microwave Tower 10 Microwave Earthing - importance and measurement 11 Power supply arrangements 12 Periodical arrangements 13 End to end alignment 14 Digital UHF equipment – functioning 15 18 GHZ microwave system used for block working 2 1. BASIC PRINCIPLE OF MICROWAVE Microwave essentially means very short wave . The microwave frequency spectrum is usually taken to extended form 1 GHZ to 30 GHZ.The main reason why we have to go in for microwave frequency for communication is that lower frequency band are congested and demand for point to point communication Continue to increase. The propagation of the microwave takes place in spacewave in view of the high gain and directivity in the form of a beam and is similar to that of light . 2. NEED TO DIGITAL MICROWAVE The modern communication is towards digital transmission to digitize the analog signals PCM techniques are used . Digital techniques are widely becoming popular for application in switching and multiplexing , thus necessecitating the use of a new transmission means on radio for the medium and high capacities both for long haul application and junction working of interexchanges, in urban areas . Thus an extremely rapid transition from analog to digital radio system at present used in Indian Rly . ADVANTAGE OF DIGITAL MICROWAVE Radio links for direct transmission of PCM signals at standard bit rates of 2,8,34 and 140 MB/ Sec.Facilities found by using digital microwave are mentioned below :- a) Radio repeaters being of re-generative type will give an error free output and there is no accumulation of noise from hop to hop.
    [Show full text]