Simulation of Critical Nozzle Flow Considering Real Gas Effects
Flomeko 2000 - IMEKO TC9 Conference Salvador, Bahia, BRAZIL 4-8 June, 2000 SIMULATION OF CRITICAL NOZZLE FLOW CONSIDERING REAL GAS EFFECTS P. Schley1, E. von Lavante2, D. Zeitz2, M. Jaeschke1, H. Dietrich3 and B. Nath3 1 Elster Produktion GmbH, Steinernstrasse 19-21, D-55252 Mainz-Kastel, Germany 2 Institute of Turbomachinery, University of Essen, D-45127 Essen, Germany 3 Ruhrgas AG, Halterner Strasse 125, D-46284 Dorsten, Germany Abstract: Critical nozzle flow is predicted for high pressure natural gas by way of numerical simulation. The CFD-program used was developed for simulating two- dimensional and axially symmetric, viscous flow. The thermodynamic properties significantly affecting nozzle flow of high pressure natural gas were computed using the AGA8-DC92 equation of state. To verify the present theoretical results, mass flow measurements of natural gas were made using the Pigsar high-pressure test rig. A comparison between theoretical and experimental results is presented for one test case. Keywords: Critical Flow Factor, Critical Nozzle, Discharge Coefficient, Natural Gas, Numerical Simulation, Real Gas 1 INTRODUCTION Critical nozzles are widely used as a reference standard in gas flow measurements. Apart from a high reproducibility of measurements, main benefits include easy handling and short adjustment times. The mass flow of the gas as described in ISO 9300 [1] involves the critical flow factor, C*, which depends on the thermodynamic properties of the gas, and the discharge coefficient, CD, determined mainly by nozzle geometry. For pure substances or air, there are relatively simple computation methods ([1],[2]) for computing the C* and CD, providing very accurate results. In the case of natural gas, the mass flow is not only a function of pressure and temperature, but also of the composition, making a theoretical description far more difficult.
[Show full text]