|||GET||| the Standard Model and Beyond, Second Edition 2Nd Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electron Shape and Structure: a New Vortex Theory
Journal of High Energy Physics, Gravitation and Cosmology, 2020, 6, 340-352 https://www.scirp.org/journal/jhepgc ISSN Online: 2380-4335 ISSN Print: 2380-4327 Electron Shape and Structure: A New Vortex Theory Nader Butto Petah Tikva, Israel How to cite this paper: Butto, N. (2020) Abstract Electron Shape and Structure: A New Vor- tex Theory. Journal of High Energy Phys- Along with all other quantum objects, an electron is partly a wave and partly ics, Gravitation and Cosmology, 6, 340-352. a particle. The corpuscular properties of a particle are demonstrated when it https://doi.org/10.4236/jhepgc.2020.63027 is shown to have a localized position in space along its trajectory at any given Received: May 19, 2020 moment. When an electron looks more like a particle it has no shape, “point Accepted: June 29, 2020 particle”, according to the Standard Model, meaning that it interacts as if it is Published: July 2, 2020 entirely located at a single point in space and does not spread out to fill a Copyright © 2020 by author(s) and three-dimensional volume. Therefore, in the sense of particle-like interac- Scientific Research Publishing Inc. tions, an electron has no shape. In this paper, a new theory is proposed in This work is licensed under the Creative which the electron has a structure and a shape. The central idea is that an Commons Attribution International electron is a frictionless vortex with conserved momentum made out of con- License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ densed vacuum generated in the Big Bang from massless virtual photons that Open Access acquire mass when moving in the vortex at the speed of light. -
Deriving the Properties of Space Time Using the Non-Compressible
Deriving the properties of space time using the non-compressible solutions of the Navier-Stokes Equations Ryan McDuffee∗ (Dated: September 24, 2019) Recent observations of gravitational waves by the Laser Interferometer Gravitational-Wave Ob- servatory (LIGO) has confirmed one of the last outstanding predictions in general relativity and in the process opened up a new frontier in astronomy and astrophysics. Additionally the observation of gravitational waves has also given us the data needed to deduce the physical properties of space time. Bredberg et al have shown in their 2011 paper titled From Navier-Stokes to Einstein, that for every solution of the incompressible Navier-Stokes equation in p + 1 dimensions, there is a uniquely associated dual” solution of the vacuum Einstein equations in p + 2 dimensions. The author shows that the physical properties of space time can be deduced using the recent measurements from the Laser Interferometer Gravitational-Wave Observatory and solutions from the incompressible Navier-Stokes equation. I. INTRODUCTION to calculate a hypothetical viscosity of space time and thus deduce the structure. Albert Einstein first published his theory of general Before moving forward with the analysis, it must be relativity in 1915, a year later he would predict the exis- understood that the Viscosity of space time that the au- tence of gravitational waves [1]. He based this prediction thor is intending to calculate, is an analogues property on his observation that the linearized weak field equa- rather than a literal one. Meaning that rather then try- tions had wave solutions [2][3], these transverse waves ing to estimate the thickness of a fluid like space time, we would be comprised of spatial strain and travel at the intend to show that by calculating the viscosity term in speed of light and would be generated by the time varia- a Navier-Stokes like equation, it is possible to calculate tions of the mass quadrupole moment of the source. -
Search for Pentaquarks
Search for Pentaquarks Volker D. Burkert Jefferson Lab Science and Technology Review, Jefferson Lab, June 14, 2004 Office of Thomas Jefferson National Accelerator Facility Science OUTLINE Hadron Spectroscopy and Pentaquarks Evidence for and against Θ+(1540) and other Pentaquarks Theory response to the Θ+(1540) The experimental program at JLab Summary Office of Thomas Jefferson National Accelerator Facility Science Hadron Spectroscopy 101 − Meson: quark-antiquark pair K s u −1/3 p −2/3 u Baryon: three quarks (valence) +2/3 d −1/3 u Pentaquark: 4 quarks + 1 antiquark +2/3 Each quark has a unique • charge (+2/3 or -1/3) d Θ+ • flavor (u,d,s,c,b,t) −1/3 • color (red, green, blue) u s Hadrons must be colorless +2/3 +1/3 d −1/3 + u The Θ represents a new form of quark +2/3 matter containing a minimum of five quarks. Office of Thomas Jefferson National Accelerator Facility Science Types of Pentaquarks •“Non-exotic” pentaquarks – The antiquark has the same flavor as one of the other quarks – Difficult to distinguish from 3-quark baryons Example: uudss, same quantum numbers as uud Strangeness = 0 + 0 + 0 - 1 + 1 = 0 •“Exotic” pentaquarks – The antiquark has a flavor different from the other 4 quarks – They have quantum numbers different from any 3-quark baryon – Unique identification using experimental conservation laws Example: uudds Strangeness = 0 + 0 + 0 + 0 + 1 = +1 Office of Thomas Jefferson National Accelerator Facility Science Hadron Multiplets K Mesons qq π K ∆- ∆++ Baryons qqq N Σ Ξ Ω─ B+S + Baryons built from qqqqq 2 Θ 1 I3 +1/2 1 -1 -1/2 Ξ-- Ξ+ Office of Thomas Jefferson National Accelerator Facility Science The Anti-decuplet in the χSM D. -
The End of the Constituent Quark Model?
The End of the Constituent Quark Model? F.E. Close Department of Theoretical Physics, University of Oxford, 1 Keble Rd., Oxford, OX1 3NP, United Kingdom; [email protected] Abstract. In this conference summary talk at Hadron03, questions and challenges for Hadron physics of light flavours are outlined. Precision data and recent discoveries are at last exposing the limitations of the naive constituent quark model and also giving hints as to its extension into a more mature description of hadrons. These notes also pay special attention to the positive strangeness baryon Θ+(1540) and include a pedagogic discussion of wavefunctions in the pentaquark picture, their relation with the Skyrme model and related issues of phenomenology. Introduction My brief was to concentrate on light hadrons; but where do heavy hadrons end and light begin? I shall focus on what heavy flavours can teach us about light, and vice versa. The possible discovery of an exotic and metastable baryon with positive strangeness, the Θ+(1540), has led to an explosion of interest in recent months and throughout this conference. There was a dedicated discussion session about it, which highlighted much confusion. In the hope of clarifying some of the issues, I have decided to devote a considerable part of this summary to a pedagogic description of wavefunctions and a review of some of the emerging literature that drew comment at the conference. Light Hadron Spectroscopy and Dynamics: Present and Future arXiv:hep-ph/0311087v1 6 Nov 2003 As regards the future of light hadrons experimentally: we have heard of several examples of innovative methods involving high energy machines. -
Solution of the Logarithmic Schrödinger Equation with a Coulomb OPEN ACCESS Potential
Journal of Physics Communications PAPER • OPEN ACCESS Related content - Combined few-body and mean-field model Solution of the logarithmic Schrödinger equation for nuclei D Hove, E Garrido, P Sarriguren et al. with a Coulomb potential - Advanced multiconfiguration methods for complex atoms: Part I—Energies and wave functions To cite this article: T C Scott and J Shertzer 2018 J. Phys. Commun. 2 075014 Charlotte Froese Fischer, Michel Godefroid, Tomas Brage et al. - Schwartz interpolation for the Coulomb potential K M Dunseath, J-M Launay, M Terao- View the article online for updates and enhancements. Dunseath et al. This content was downloaded from IP address 131.169.95.169 on 12/04/2019 at 22:48 J. Phys. Commun. 2 (2018) 075014 https://doi.org/10.1088/2399-6528/aad302 PAPER Solution of the logarithmic Schrödinger equation with a Coulomb OPEN ACCESS potential RECEIVED 5 June 2018 T C Scott1,2 and J Shertzer3 REVISED 1 4 July 2018 Near Pte. Ltd, 15 Beach Road, 189677, Singapore 2 Institut für Physikalische Chemie, RWTH Aachen University, D-52056 Aachen, Germany ACCEPTED FOR PUBLICATION 3 Department of Physics, College of the Holy Cross, 1 College St, Worcester, MA 01610, United States of America 12 July 2018 PUBLISHED E-mail: [email protected] 24 July 2018 Keywords: logarithmic Schrödinger equation, Gaussons, finite element methods Original content from this work may be used under the terms of the Creative Abstract Commons Attribution 3.0 licence. The nonlinear logarithmic Schrödinger equation (log SE) appears in many branches of fundamental Any further distribution of physics, ranging from macroscopic superfluids to quantum gravity. -
Download Particle Physics 4Th Edition Free Ebook
PARTICLE PHYSICS 4TH EDITION DOWNLOAD FREE BOOK B R Martin | --- | --- | --- | 9781118912294 | --- | --- Particle physics Archived from the original on 1 February That term was deprecated [ citation needed ] after the formulation of the Standard Model during the s, in which the large number of particles was explained as combinations of a relatively small number of more fundamental particles. In Maythe Particle Physics Project Prioritization Panel released its report on particle physics funding priorities for the United States over the next decade. This report emphasized continued U. Dynamics of particles are also governed by quantum mechanics ; they exhibit wave—particle dualitydisplaying particle- like behaviour under certain experimental conditions and wave -like behaviour in others. It was referred to informally as the " particle zoo ". There are also theoretical hints that this new Particle Physics 4th edition should be found at accessible energy scales. Graham Shaw Dr. The proton has a mass of around 9. Physics Newsletter. Feynman diagram. Brian R. Help Learn to edit Community portal Recent changes Upload file. There are several powerful experimental reasons to expect new physics, including dark matter and neutrino mass. Wikimedia Commons Wikinews Wikiquote. Manchester Physics Series. The T2K Collaboration. Quantum electrodynamics Electroweak interaction Quantum chromodynamics Higgs mechanism. Student View Student Companion Site. Thus, modern particle physics generally investigates the Standard Model and its various possible extensions, e. Archived from the original Particle Physics 4th edition 29 October Related products Sale! Higgs boson. By extracting the parameters of the Standard Model, Particle Physics 4th edition experiments with less uncertainty, this work probes the limits of the Standard Model and therefore expands our understanding of nature's building blocks. -
Pentaquarks from Chiral Solitons
Pentaquarks from chiral solitons Maxim V. Polyakov Liege Universitiy & Petersburg NPI Outline: -Predictions -Post-dictions -Implications GRENOBLE, March 24 Baryon states All baryonic states listed in PDG can be made of 3 quarks only * classified as octets, decuplets and singlets of flavour SU(3) * Strangeness range from S=0 to S=-3 A baryonic state with S=+1 is explicitely EXOTIC •Cannotbemadeof 3 quarks •Minimal quark content should be qqqqs , hence pentaquark •Must belong to higher SU(3) multiplets, e.g anti-decuplet observation of a S=+1 baryon implies a new large multiplet of important baryons (pentaquark is always ocompanied by its large family!) Searches for such states started in 1966, with negative results till autumn 2002 Possible reason: searches were for heavy and wide states Theoretical predictions for pentaquarks 1. Bag models [R.L. Jaffe ‘76, J. De Swart ‘80] Jp =1/2- lightest pentaquark Masses higher than 1700 MeV, width ~ hundreds MeV Mass of the pentaquark is roughly 5 M +(strangeness) ~ 1800 MeV An additional q –anti-q pair is added as constituent 2. Soliton models [Diakonov, Petrov ‘84, Chemtob‘85, Praszalowicz ‘87, Walliser ‘92] Exotic anti-decuplet of baryons with lightest S=+1 Jp =1/2+ pentaquark with mass in the range 1500-1800 MeV. Mass of the pentaquark is rougly 3 M +(1/baryon size)+(strangeness) ~ 1500MeV An additional q –anti-q pair is added in the form of excitation of nearly massless chiral field The question what is the width of the exotic pentaquark In soliton picture has not been address untill 1997 It came out that it should be „anomalously“ narrow! Light and narrow pentaquark is expected −> drive for experiments [D. -
Tetraquark and Pentaquark Systems in Lattice QCD
Journal of Modern Physics, 2016, 7, 774-789 Published Online April 2016 in SciRes. http://www.scirp.org/journal/jmp http://dx.doi.org/10.4236/jmp.2016.78072 Tetraquark and Pentaquark Systems in Lattice QCD Fumiko Okiharu1, Takumi Doi2, Hiroko Ichie3, Hideaki Iida4, Noriyoshi Ishii5, Makoto Oka3, Hideo Suganuma6, Toru T. Takahashi7 1Faculty of Education, Niigata University, Niigata, Japan 2Theoretical Research Division, Nishina Center, RIKEN, Wako, Japan 3Department of Physics, Tokyo Institute of Technology, Tokyo, Japan 4Research and Education Center for Natural Sciences, Keio University, Kanagawa, Japan 5Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Japan 6Department of Physics, Graduate School of Science, Kyoto University, Kyoto, Japan 7Gunma National College of Technology, Maebashi, Japan Received 12 February 2016; accepted 26 April 2016; published 29 April 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract We study multi-quark systems in lattice QCD. First, we revisit and summarize our accurate mass measurements of low-lying 5Q states with J = 1/2 and I = 0 in both positive- and negative-parity channels in anisotropic lattice QCD. The lowest positive-parity 5Q state is found to have a large mass of about 2.24 GeV after the chiral extrapolation. To single out the compact 5Q state from NK scattering states, we use the hybrid boundary condition (HBC), and find no evidence of the com- pact 5Q state below 1.75 GeV in the negative-parity channel. Second, we study the multi-quark po- tential in lattice QCD to clarify the inter-quark interaction in multi-quark systems. -
Resolving Cosmological Singularity Problem in Logarithmic Superfluid Theory of Physical Vacuum
XXI International Meeting of Physical Interpretations of Relativity Theory IOP Publishing Journal of Physics: Conference Series 1557 (2020) 012038 doi:10.1088/1742-6596/1557/1/012038 Resolving cosmological singularity problem in logarithmic superfluid theory of physical vacuum K G Zloshchastiev Institute of Systems Science, Durban University of Technology, Durban, South Africa E-mail: [email protected] Abstract. A paradigm of the physical vacuum as a non-trivial quantum object, such as superfluid, opens an entirely new prospective upon origins and interpretations of Lorentz symmetry and spacetime, black holes, cosmological evolution and singularities. Using the logarithmic superfluid model, one can formulate a post-relativistic theory of superfluid vacuum, which is not only essentially quantum but also successfully recovers special and general relativity in the \phononic" (low-momenta) limit. Thus, it represents spacetime as an induced observer- dependent phenomenon. We focus on the cosmological aspects of the logarithmic superfluid vacuum theory and show how can the related singularity problem be resolved in this approach. 1. Introduction It is a general consensus now that the physical vacuum, or a non-removable background, is a nontrivial object whose properties' studies are of utmost importance, because it affects the most fundamental notions our physics is based upon, such as space, time, matter, field, and fundamental symmetries. An internal structure of physical vacuum is still a subject of debates based on different views and approaches, which generally agree on the main paradigm, but differ in details; some introduction can be found in monographs by Volovik and Huang [1, 2]. It is probably Dirac who can be regarded as a forerunner of the superfluid vacuum theory (SVT). -
An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory
universe Article An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory Konstantin G. Zloshchastiev Institute of Systems Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa; [email protected] Received: 29 August 2020; Accepted: 10 October 2020; Published: 15 October 2020 Abstract: We derive an effective gravitational potential, induced by the quantum wavefunction of a physical vacuum of a self-gravitating configuration, while the vacuum itself is viewed as the superfluid described by the logarithmic quantum wave equation. We determine that gravity has a multiple-scale pattern, to such an extent that one can distinguish sub-Newtonian, Newtonian, galactic, extragalactic and cosmological terms. The last of these dominates at the largest length scale of the model, where superfluid vacuum induces an asymptotically Friedmann–Lemaître–Robertson–Walker-type spacetime, which provides an explanation for the accelerating expansion of the Universe. The model describes different types of expansion mechanisms, which could explain the discrepancy between measurements of the Hubble constant using different methods. On a galactic scale, our model explains the non-Keplerian behaviour of galactic rotation curves, and also why their profiles can vary depending on the galaxy. It also makes a number of predictions about the behaviour of gravity at larger galactic and extragalactic scales. We demonstrate how the behaviour of rotation curves varies with distance from a gravitating center, growing from an inner galactic scale towards a metagalactic scale: A squared orbital velocity’s profile crosses over from Keplerian to flat, and then to non-flat. The asymptotic non-flat regime is thus expected to be seen in the outer regions of large spiral galaxies. -
36 Just Six Numbers
MARTIN REES JUST SIX NUMBERS The Deep Forces That Shape the Universe A Member of the Perseus Books Group First published in 1999 in Great Britain By Weidenfeld & Nicolson Copyright O 2000 by Martin Rees Published by Basic Books, A Member of the Perseus Books Group All rights reserved Printed in the United States of America. No part of this book may be reproduced in any manner whatsoever without written permission except in the case of brief quotations embodied in critical articles and reviews. For information, address Basic Books, 10 East 53rd Street, New York, NY 10022-5299 Typeset at The Spartan Press Ltd, Lymington, Hants A CIP catalog record for this book is available &om the Library of Congress ISBN 0-465-03672-4 CONTENTS ............................................................................................ List of Illustrations vii Preface ix Acknowledgements xi 1. Thecosmosandthemicroworld 2. Our cosmic habitat I: planets, stars and life 3. The large number ?V: gravity in the cosmos 4. Stars, the periodic table, and & 5. Our cosmic habitat II: beyond our galaxy 6. The fine-tuned expansion: dark matter and 7. The n umber h: is cosmic expansion slowing or speeding? 8. Primordial ripples: the n umber Q 9. Our cosmic habitat III: what lies beyond our h orizon ? 10. Three dimensions (and more) 1 1. Coincidence, providence - or m ultiverse? Notes Index .............................................................................................LIST OF ILLUSTRATIONS The ouraborus 8 Cubic Space Division by M. C. Esher 58 Angels and Devils by M. C. Esher 60 The trajectory of an expanding universe 87 The emergence of structure in an expanding universe 111 Time chart of our universe 119 The Mandlebrot Set 149 PREFACE Astronomy is the oldest numerical science, crucial in ancient times for calendars and navigation. -
2019 Conference Program
First Floor Third Floor Fourth Floor Fifth Floor Note: The Armstrong Ballroom is on the eighth floor. CREATIVITY AND INNOVATION IN HONORS 2019 NCHC Annual Conference November 6-10, 2019 • New Orleans, LA • Sheraton New Orleans NATIONAL COLLEGIATE HONORS COUNCIL Welcome to the 54th Annual Conference of the National Collegiate Honors Council Greetings, Honors Colleagues: On behalf of the 2019 Conference Planning Committee, the Board of Directors, and the staff of the NCHC national headquarters, welcome to our 54th annual conference. We are very happy that you have taken this opportunity to learn, share, contribute, and grow with us as individuals and then extend this to not only your home institutions, but also to the larger realms of honors education and higher education. The conference topics of disruption and creativity are meant to challenge us to think, question, and act: all intrinsic to honors education globally. What better place to congregate and explore these concepts than New Orleans, a city that exemplifies them perfectly. With the diverse members of the honors community— students, faculty, administrators and administrative staff—the myriad of perspectives and experiences upon which we can draw, and the setting, we have something for everyone (from first-time attendees to veterans). Mindful that conference can be as exhausting as it is exhilarating (disruption and learning take energy!), we have added some opportunities to regain balance with networking receptions, Brain Breaks, morning yoga, and explorations of our amazing host city. We are excited that you have taken time from your busy schedules to spend the next few days with your extended honors family.