Andrognathus Hoffmani, N. Sp., a Second Species in the Genus and the First Species of Andrognathidae from México (Diplopoda, Platydesmida, Andrognathidae)

Total Page:16

File Type:pdf, Size:1020Kb

Andrognathus Hoffmani, N. Sp., a Second Species in the Genus and the First Species of Andrognathidae from México (Diplopoda, Platydesmida, Andrognathidae) Andrognathus hoffmani, n. sp., A Second Species in the Genus and the First Species of Andrognathidae from México (Diplopoda, Platydesmida, Andrognathidae) William A. Shear1 Department of Biology Hampden-Sydney College Hampden-Sydney, Virginia 23943 Paul E. Marek2 Department of Biological Sciences East Carolina University Greenville, North Carolina 27858 Abstract Andrognathus hoffmani, n. sp., is described from near Monterrey, Nuevo León, México, and is the second species of the genus to be discovered; A. corticarius Cope was named in 1869. Anatomical details of both species revealed through scanning electron microscopy are discussed. Contrary to the assertion of Gardner (1975) that the form of the gonopods in the Andrognathidae is of no taxonomic utility, we found striking differences between the two species discussed here, and differences between two populations of nominal A. corticarius. It is possible that A. corticarius as presently understood represents a complex of cryptic species. Key words: Andrognathidae, Andrognathus, Brachycybe, cryptic species, Platydesmida. Introduction have been recorded from Virginia west to Indiana, and from central North Carolina south to northern Florida A surprising number of milliped genera, and even (Gardner 1975, Hoffman 1999), but detailed distribution families, are monotypic, containing but a single species. maps have not been published, nor have populations In recent years, increased interest in diplopods and more from this wide area been carefully examined. Perhaps thorough collecting in many parts of North America have the distinctive body form of A. corticarius, as well as revealed additional species within several of these taxa its small size, inhibited past investigators from looking (e.g., Branneriidae, Shear 2003a; Apterouridae, Shear closely and caused them to assume that all populations 2003b). It is a distinct pleasure to add a second species to were conspecific. yet another milliped genus that has remained monotypic Andrognathus corticarius went substantively for more than a century and a quarter. unmentioned in the literature for 60 years after its The milliped Andrognathus corticarius Cope, 1869 initial description in 1869, until a brief mention and was described as the type of a new genus and family, and inclusion in a key by Cook and Loomis (1928), and then, as now, was one of the most distinctive and unusual the publication of a few additional records by Loomis species of North American millipeds. A member of the (1936). Any new descriptive details, however brief, had Order Platydesmida, this species differs from all others to wait another 47 years until Gardner (1975) published in the order in the peculiar modifications of its tergites, a synopsis of the North American Andrognathidae, but its long, narrow body (about 40 times as long as wide in he focused mostly on the rich and diverse fauna of the adults), and its unexpectedly broad distribution. Specimens western United States. Hoffman (1980) presented a 1 To whom correspondence should be addressed; [email protected]. 2 Present address: University of Arizona, Center for Insect Science, Department of Entomology, Forbes Building, Tucson, AZ 85721, [email protected]. Pp. 155-164, in S. M. Roble and J. C. Mitchell (eds.). 2009. A Lifetime of Contributions to Myriapodology and the Natural History of Virginia: A Festschrift in Honor of Richard L. Hoffman’s 80th Birthday. Virginia Museum of Natural History Special Publication No. 16, Martinsville, VA. 156 FESTSCHRIFT FOR RICHARD L. HOFFMAN revised classification of the family, with a subfamily the sole species of Andrognathinae; Hoffman cited the Andrognathinae for Andrognathus alone, apposed to structure of the fifth diplosegment as the crucial character Dolisteninae and Bazillozoniinae. Shelley et al. (2005) setting off this species from the rest of the family. reviewed Brachycybe—long considered an andrognathid Certainly, in comparison to other genera in the family and genus—and questioned whether or not Andrognathidae even the order, this character is an apomorphy. Except might be divided, probably leaving A. corticarius as for the tribe Mitocybeini (Dolisteninae), new at the time, the sole species under the original family name, with no additional diagnoses were presented. By 1999, he Brachycybe and a few related genera placed in the evidently had become unsure of this arrangement, and new family Bazillozoniidae. Despite Hoffman’s (1980) presented a list of American andrognathid genera in assurances that the problems in the Andrognathidae alphabetical order. Curiously, Hoffman (1980, 1999) were “innocuous” and that “a good revision of the order makes little explicit reference to the posthumously should not be difficult to achieve”, no specialist has published monograph of the Colobognatha by Attems stepped forward to accomplish the task. (1951). This paper is in Gardner’s (1975) bibliography, In 2007, 138 years after the description of A. but goes unmentioned in the text. Despite many corticarius, Casey Richart of Olympia, Washington, sent errors of fact and interpretation, very likely due to the WAS a small collection of millipeds that he made in the incomplete nature of the manuscript at Attems’ death, vicinity of Monterrey, México. Much to our surprise, this monograph must be the starting point for any further a substantial sample of Andrognathus was included, work on platydesmids. and closer examination showed that these specimens It is particularly interesting that Shelley et al. (2005) belonged to an undescribed species. We are delighted detected five geographic clusters of samples of the to dedicate this significant new species to Richard L. andrognathid Brachycybe lecontii Wood (two of these Hoffman on the occasion of his eightieth birthday, and in they referred to as “point” localities—single or a few recognition of his monumental contributions to the study closely clustered samples from a very small area). While of the Diplopoda. suggesting that these clusters represented genetically isolated populations, they did not attempt to assess Family Andrognathidae Cope, 1869 differences between them (morphological or genetic); the clusters were defined on a geographic basis alone. Hoffman (1980) divided Andrognathidae into The distribution of A. corticarius has never been mapped three subfamilies, Andrognathinae, Dolisteninae, and in detail. One questions if similar geographic clusters, Bazillozoniinae. Andrognathus corticarius was listed as potentially representing genetically distinct lineages, Fig. 1. Andrognathus corticarius (below) and ?confamilial Brachycybe lecontii in nature (photographs by P. Marek). SHEAR & MAREK: ANDROGNATHUS HOFFMANI, N. SP. 157 occur in this genus, and if undetected cryptic species paranota arising from anterior part of metazonite, may be present in either Andrognathus or Brachycybe. projecting laterally or posteriorly, peritremata posteriorly Little attention has been paid to the gonopods of the directed. Prozonites with sculpture of small, rounded, platydesmids as possible sources of taxonomic characters. flat tubercles; metazonites with this sculpture variable Cook and Loomis (1928) offered a synopsis of the between species, densely set with short, stout, curved colobognath millipeds of North America, but illustrated setae (Fig. 17). On pleura, sculpture becomes smaller, gonopods for only one species. Gardner (1975) stated tubercles acute-triangular. Sternites narrow, leg coxae flatly that the gonopods of platydesmids were of no use touching or scarcely separated (Figs. 3, 12), sternites taxonomically and provided illustrations only for a single with sculpture of small, acute tubercles raised posteriorly, species of Brachycybe. Shelley et al. (2005) also illustrated with tuberculate knobs anterior to and between leg Brachycybe gonopods for one species, and opined that the coxae (Fig. 7). All leg coxae from third pair posterior peculiarly modified setae of the anterior gonopods might with prominent, eversible coxal glands (Fig. 12). be diagnostic of Brachycybe (these setae actually occur Legless diplosegments anterior to paraproct variable in in a fairly wide range of platydesmidans; see Attems number; one to three in mature animals, lacking sterna, 1951). Working with other colobognath orders, Shelley pleurotergites overlapping in midline (Fig. 5). Epiproct (i.e., 1995) has found the gonopods rich in species- (ultimate segment) cylindrical, without posterior level characters. We have examined the gonopods of a dorsal elongation; hypoproct (ventral preanal scale) few species of colobognaths, including platydesmidans, absent, presumably fused with epiproct; paraprocts using the scanning electron microscope, and at high semihemispherical (Figs. 5, 14). Anterior gonopods magnification under the compound microscope with with six postcoxal podomeres, second podomere with Nomarski differential interference contrast. We found anteriorly-projecting triangular apophyses, distalmost significant differences between nominal species and also podomere forming sheath or guide for posterior gonopod suspect that if samples from various localities occupied stylus; posterior gonopod with six postcoxal segments, by species now thought to have very wide distributions distalmost forming long stylus, form of which varies are so examined, cryptic species may be discovered between species (Figs. 7, 8-10, 18, 19). (Bickford et al. 2007, Pfenninger and Schwenk 2007). Included species: Andrognathus corticarius Cope, A. hoffmani, n. sp. Andrognathus
Recommended publications
  • Supra-Familial Taxon Names of the Diplopoda Table 4A
    Milli-PEET, Taxonomy Table 4 Page - 1 - Table 4: Supra-familial taxon names of the Diplopoda Table 4a: List of current supra-familial taxon names in alphabetical order, with their old invalid counterpart and included orders. [Brackets] indicate that the taxon group circumscribed by the old taxon group name is not recognized in Shelley's 2003 classification. Current Name Old Taxon Name Order Brannerioidea in part Trachyzona Verhoeff, 1913 Chordeumatida Callipodida Lysiopetalida Chamberlin, 1943 Callipodida [Cambaloidea+Spirobolida+ Chorizognatha Verhoeff, 1910 Cambaloidea+Spirobolida+ Spirostreptida] Spirostreptida Chelodesmidea Leptodesmidi Brölemann, 1916 Polydesmida Chelodesmidea Sphaeriodesmidea Jeekel, 1971 Polydesmida Chordeumatida Ascospermophora Verhoeff, 1900 Chordeumatida Chordeumatida Craspedosomatida Jeekel, 1971 Chordeumatida Chordeumatidea Craspedsomatoidea Cook, 1895 Chordeumatida Chordeumatoidea Megasacophora Verhoeff, 1929 Chordeumatida Craspedosomatoidea Cheiritophora Verhoeff, 1929 Chordeumatida Diplomaragnoidea Ancestreumatoidea Golovatch, 1977 Chordeumatida Glomerida Plesiocerata Verhoeff, 1910 Glomerida Hasseoidea Orobainosomidi Brolemann, 1935 Chordeumatida Hasseoidea Protopoda Verhoeff, 1929 Chordeumatida Helminthomorpha Proterandria Verhoeff, 1894 all helminthomorph orders Heterochordeumatoidea Oedomopoda Verhoeff, 1929 Chordeumatida Julida Symphyognatha Verhoeff, 1910 Julida Julida Zygocheta Cook, 1895 Julida [Julida+Spirostreptida] Diplocheta Cook, 1895 Julida+Spirostreptida [Julida in part[ Arthrophora Verhoeff,
    [Show full text]
  • A New Species of Illacme Cook & Loomis, 1928
    A peer-reviewed open-access journal ZooKeys 626: 1–43A new (2016) species of Illacme Cook and Loomis, 1928 from Sequoia National Park... 1 doi: 10.3897/zookeys.626.9681 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida) Paul E. Marek1, Jean K. Krejca2, William A. Shear3 1 Virginia Polytechnic Institute and State University, Department of Entomology, Price Hall, Blacksburg, Virginia, USA 2 Zara Environmental LLC, 1707 W FM 1626, Manchaca, Texas, USA 3 Hampden-Sydney College, Department of Biology, Gilmer Hall, Hampden-Sydney, Virginia, USA Corresponding author: Paul E. Marek ([email protected]) Academic editor: R. Mesibov | Received 25 July 2016 | Accepted 19 September 2016 | Published 20 October 2016 http://zoobank.org/36E16503-BC2B-4D92-982E-FC2088094C93 Citation: Marek PE, Krejca JK, Shear WA (2016) A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida). ZooKeys 626: 1–43. doi: 10.3897/zookeys.626.9681 Abstract Members of the family Siphonorhinidae Cook, 1895 are thread-like eyeless millipedes that possess an astounding number of legs, including one individual with 750. Due to their cryptic lifestyle, rarity in natural history collections, and sporadic study over the last century, the family has an unclear phylogenetic placement, and intrafamilial relationships remain unknown. Here we report the discovery of a second spe- cies of Illacme, a millipede genus notable for possessing the greatest number of legs of any known animal on the planet.
    [Show full text]
  • Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding
    Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next- Generation Sequence Analyses Michael S. Brewer1,2*, Jason E. Bond3 1 Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America, 2 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 3 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America Abstract Background: The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods: Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered.
    [Show full text]
  • Millipeds (Arthropoda: Diplopoda) of the Ark-La- Tex
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarWorks@UARK Journal of the Arkansas Academy of Science Volume 56 Article 16 2002 Millipeds (Arthropoda: Diplopoda) of the Ark-La- Tex. II. Distributional Records for Some Species of Western and Central Arkansas and Easter and Southeastern Oklahoma Chris T. McAllister Texas A&M University-Texarkana Rowland M. Shelley North Carolina State Museum of Natural Sciences James T. McAllister III W. T. White High School Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation McAllister, Chris T.; Shelley, Rowland M.; and McAllister, James T. III (2002) "Millipeds (Arthropoda: Diplopoda) of the Ark-La- Tex. II. Distributional Records for Some Species of Western and Central Arkansas and Easter and Southeastern Oklahoma," Journal of the Arkansas Academy of Science: Vol. 56 , Article 16. Available at: http://scholarworks.uark.edu/jaas/vol56/iss1/16 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected]. Journal of the Arkansas Academy of Science, Vol.
    [Show full text]
  • Order CALLIPODIDA Manual Versión Española
    Revista IDE@ - SEA, nº 25B (30-06-2015): 1–12. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Class: Diplopoda Order CALLIPODIDA Manual Versión española CLASS DIPLOPODA Order Callipodida Jörg Spelda Bavarian State Collection of Zoology Münchhausenstraße 21, 81247 Munich, Germany [email protected] 1. Brief characterization of the group and main diagnostic characters 1.1. Morphology The members of the order Callipodida are best recognized by their putative apomorphies: a divided hypoproct, divided anal valves, long extrusible tubular vulvae, and, as in all other helminthomorph milli- pede orders, a characteristic conformation of the male gonopods. As in Polydesmida, only the first leg pair of the 7th body ring is transformed into gonopods, which are retracted inside the body. Body rings are open ventrally and are not fused with the sternites, leaving the coxae of the legs free. Legs in the anterior half of the body carry coxal pouches. The small collum does not overlap the head. Callipodida are of uniformly cylindrical external appearance. The number of body rings is only sometimes fixed in species and usually exceeds 40. There are nine antennomeres, as the 2nd antennomere of other Diplopoda is subdivided (= antennomere 2 and 3 in Callipodida). The general struc- ture of the gnathochilarium is shared with the Chordeumatida and Polydesmida. Callipodida are said to be characterised by longitudinal crests, which gives the order the common name “crested millipedes”. Although crest are present in most species, some genera (e.g. Schizopetalum) lack a crest, while some Spirostreptida ( e.g. in Cambalopsidae, ‘Trachystreptini’) and some Julida (e.g.
    [Show full text]
  • Ordinal-Level Phylogenomics of the Arthropod Class
    Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next- Generation Sequence Analyses Michael S. Brewer1,2*, Jason E. Bond3 1 Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America, 2 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 3 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America Abstract Background: The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods: Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered.
    [Show full text]
  • An Apparently Non-Swinging Tentorium in the Diplopoda (Myriapoda): Comparative Morphology of the Tentorial Complex in Giant Pill-Millipedes (Sphaerotheriida)
    A peer-reviewed open-access journal ZooKeys 741: 77–91An (2018) apparently non-swinging tentorium in the Diplopoda (Myriapoda)... 77 doi: 10.3897/zookeys.741.21909 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research An apparently non-swinging tentorium in the Diplopoda (Myriapoda): comparative morphology of the tentorial complex in giant pill-millipedes (Sphaerotheriida) Leif Moritz1, Thomas Wesener1, Markus Koch2,3 1 Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Section Myria- poda, Adenauerallee 160, 53113 Bonn, Germany 2 Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany 3 Senckenberg Gesellschaft für Naturforschung, Dept. In- formation Technology and Biodiversity Informatics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany Corresponding author: Leif Moritz ([email protected]) Academic editor: G.D. Edgecombe | Received 29 October 2017 | Accepted 20 December 2017 | Published 7 March 2018 http://zoobank.org/8F4AEFD3-9943-42D5-9E08-11C0F1D94FB4 Citation: Moritz L, Wesener T, Koch M (2018) An apparently non-swinging tentorium in the Diplopoda (Myriapoda): comparative morphology of the tentorial complex in giant pill-millipedes (Sphaerotheriida). In: Stoev P, Edgecombe GD (Eds) Proceedings of the 17th International Congress of Myriapodology, Krabi, Thailand. ZooKeys 741: 77–91. https://doi.org/10.3897/zookeys.741.21909 Abstract The presence of a swinging tentorium is a key apomorphy of Myriapoda, but this character has been studied in detail in only few species. Here the tentorium, i.e., the peristomatic skeleton of the preoral chamber, is comparatively studied in three species of the millipede order Sphaerotheriida Brandt, 1833. Since dissections of the fragile tentorial components proved to be difficult, despite the large head size, they were analysed mainly in situ via micro-computed tomography.
    [Show full text]
  • Mortierellaceae Phylogenomics and Tripartite Plant-Fungal-Bacterial Symbiosis of Mortierella Elongata
    MORTIERELLACEAE PHYLOGENOMICS AND TRIPARTITE PLANT-FUNGAL-BACTERIAL SYMBIOSIS OF MORTIERELLA ELONGATA By Natalie Vandepol A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Microbiology & Molecular Genetics – Doctor of Philosophy 2020 ABSTRACT MORTIERELLACEAE PHYLOGENOMICS AND TRIPARTITE PLANT-FUNGAL-BACTERIAL SYMBIOSIS OF MORTIERELLA ELONGATA By Natalie Vandepol Microbial promotion of plant growth has great potential to improve agricultural yields and protect plants against pathogens and/or abiotic stresses. Soil fungi in Mortierellaceae are non- mycorrhizal plant associates that frequently harbor bacterial endosymbionts. My research focused on resolving the Mortierellaceae phylogeny and on characterizing the effect of Mortierella elongata and its bacterial symbionts on Arabidopsis thaliana growth and molecular functioning. Early efforts to classify Mortierellaceae were based on morphology, but phylogenetic studies with ribosomal DNA (rDNA) markers have demonstrated conflicting taxonomic groupings and polyphyletic genera. In this study, I applied two approaches: low coverage genome (LCG) sequencing and high-throughput targeted amplicon sequencing to generate multi-locus sequence data. I combined these datasets to generate a well-supported genome-based phylogeny having broad sampling depth from the amplicon dataset. Resolving the Mortierellaceae phylogeny into monophyletic groups led to the definition of 14 genera, 7 of which are newly proposed. Mortierellaceae are broadly considered plant associates, but the underlying mechanisms of association are not well understood. In this study, I focused on the symbiosis between M. elongata, its endobacteria, and A. thaliana. I measured aerial plant growth and seed production and used transcriptomics to characterize differentially expressed plant genes (DEGs) while varying fungal treatments. M. elongata was shown to promote aerial plant growth and affect seed production independent of endobacteria.
    [Show full text]
  • Journal of Cave and Karst Studies
    June 2020 Volume 82, Number 2 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy [email protected] Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University [email protected] Baton Rouge, LA [email protected] Exploration Paul Burger National Park Service Eagle River, Alaska [email protected] Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM [email protected] Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society.
    [Show full text]
  • United States National Museum ^^*Fr?*5J Bulletin 212
    United States National Museum ^^*fr?*5j Bulletin 212 CHECKLIST OF THE MILLIPEDS OF NORTH AMERICA By RALPH V. CHAMBERLIN Department of Zoology University of Utah RICHARD L. HOFFMAN Department of Biology Virginia Polytechnic Institute SMITHSONIAN INSTITUTION • WASHINGTON, D. C. • 1958 Publications of the United States National Museum The scientific publications of the National Museum include two series known, respectively, as Proceedings and Bulletin. The Proceedings series, begun in 1878, is intended primarily as a medium for the publication of original papers based on the collections of the National Museum, that set forth newly acquired facts in biology, anthropology, and geology, with descriptions of new forms and revisions of limited groups. Copies of each paper, in pamphlet form, are distributed as published to libraries and scientific organizations and to specialists and others interested in the different subjects. The dates at which these separate papers are published are recorded in the table of contents of each of the volumes. The series of Bulletins, the first of which was issued in 1875, contains separate publications comprising monographs of large zoological groups and other general systematic treatises (occasionally in several volumes), faunal works, reports of expeditions, catalogs of type specimens, special collections, and other material of similar nature. The majority of the volumes are octavo in size, but a quarto size has been adopted in a few in- stances. In the Bulletin series appear volumes under the heading Contribu- tions from the United States National Herbarium, in octavo form, published by the National Museum since 1902, which contain papers relating to the botanical collections of the Museum.
    [Show full text]
  • An Inventory of Endemic Leaf Litter Arthropods of Arkansas with Emphasis on Certain Insect Groups and Diplopoda Derek Alan Hennen University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2015 An Inventory of Endemic Leaf Litter Arthropods of Arkansas with Emphasis on Certain Insect Groups and Diplopoda Derek Alan Hennen University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Biology Commons, Entomology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Hennen, Derek Alan, "An Inventory of Endemic Leaf Litter Arthropods of Arkansas with Emphasis on Certain Insect Groups and Diplopoda" (2015). Theses and Dissertations. 1423. http://scholarworks.uark.edu/etd/1423 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. An Inventory of Endemic Leaf Litter Arthropods of Arkansas with Emphasis on Certain Insect Groups and Diplopoda A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology by Derek Hennen Marietta College Bachelor of Science in Biology, 2012 December 2015 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ___________________________________ Dr. Ashley P.G. Dowling Thesis Director ___________________________________ Dr. Frederick M. Stephen Committee Member ___________________________________ Dr. John David Willson Committee Member Abstract Endemic arthropods of Arkansas were sampled and their nomenclature and distributions were updated. The Arkansas endemic species list is updated to 121 species, including 16 species of millipedes. A study of the millipedes of Arkansas was undertaken, and resulted in the first checklist and key to all millipede species in the state.
    [Show full text]
  • Diversity and Function of Fungi Associated with the Fungivorous Millipede, Brachycybe
    bioRxiv preprint doi: https://doi.org/10.1101/515304; this version posted January 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Diversity and function of fungi associated with the fungivorous millipede, Brachycybe lecontii † Angie M. Maciasa, Paul E. Marekb, Ember M. Morrisseya, Michael S. Brewerc, Dylan P.G. Shortd, Cameron M. Staudera, Kristen L. Wickerta, Matthew C. Bergera, Amy M. Methenya, Jason E. Stajiche, Greg Boycea, Rita V. M. Riof, Daniel G. Panaccionea, Victoria Wongb, Tappey H. Jonesg, Matt T. Kassona,* a Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA b Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA c Department of Biology, East Carolina University, Greenville, NC 27858, USA d Amycel Spawnmate, Royal Oaks, CA, 95067, USA e Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA f Department of Biology, West Virginia University, Morgantown, WV, 26506, USA g Department of Chemistry, Virginia Military Institute, Lexington, VA, 24450, USA † Scientific article No. XXXX of the West Virginia Agricultural and Forestry Experiment Station, Morgantown, West Virginia, USA, 26506. * Corresponding author. Current address: G103 South Agricultural Sciences Building, Morgantown, WV, 26506, USA. E-mail address: [email protected] (M.T. Kasson). bioRxiv preprint doi: https://doi.org/10.1101/515304; this version posted January 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]